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ABSTRACT With increasing public demands for timely and accurate air pollution reporting, more air
quality monitoring stations have been deployed by the governments in urban metropolises to increase the
coverage of urban air pollution monitoring. However, due to systematic or accidental failures, some air
pollution measurements obtained from these stations are found to have missing values, which will adversely
affect the accuracy of any follow-up air pollution analyses and the quality of environmental decision-
makings. In this study, the mathematical property of air quality measurements is investigated to recover
the missing air pollution values. A new algorithm, which matches meteorology data with air pollution
data from different locations, to reconstruct the data matrix and recover missing entries, is proposed. Next,
a Low Rank Matrix Completion problem is used to reconstruct the missing values, by transforming the
data recovery problem to a sub-gradient primal-dual problem, based on the duality theory, with Singular
Value Thresholding (SVT) employed to develop sub-optimal solutions. Next, an Interpolation-SVT (ISVT)
approach is adopted to handle the sparsity of observed measurements. Comprehensive case studies are
conducted to evaluate the performance of the proposed methods. The simulation results have demonstrated
that the proposed SVT and ISVT methods can effectively recover the missing air pollution data and
outperform existing interpolation methods and data imputation techniques. The proposed study can improve
air pollution estimation and prediction whenever the low-rank data types that are used as proxies for air
pollution estimation contain a lot of missing values and require data recovery.

INDEX TERMS Missing data recovery, Interpolation, Low Rank Matrix Completion, Singular Value
Thresholding, Air pollution control policy-making.

I. INTRODUCTION

OVER the last few decades, air pollution has presented
an increasing health and environmental challenge to

many people especially those living in the most populated
cities in the world [1]–[3]. Air pollutants, such as PM2.5 and
PM10, have been responsible for many negative health con-
sequences, such as asthma, Chronic Obstructive Pulmonary
Disease (COPD) or cancers [4], [5].

Over the years, governments from all over the world have
increasingly tightened up their air pollution control regula-
tions with the hope of reducing air pollution and improve
the health of citizens. In China, concerns over continuous
deterioration in air qualities throughout the country due to

rapid industrialization and economic growth had eventually
led to the introduction of a series of highly stringent air
pollution control regulations and policies by the central gov-
ernment, starting from the 2000s. The Air Pollution Control
Law was updated in 2015/16, explicitly linking public health
with air pollution nationally. The updated environmental law
has provided a crucial ground for the central and municipal
governments to exercise strict controls over emissions gener-
ated from coal-fired power plants, and industry and vehicles
to cut air pollution at both the municipal and the national
level.

Due to the devastating health effects of air pollution,
there is an urgent need for timely and accurate disclosure
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of ambient air pollution information provided by government
monitoring stations. In response to this, an increasing number
of air quality monitoring stations have been deployed by
the governments around the world in recent years [6]. The
quality of air pollution data measured and collected from
these stations will directly affect the type of air quality
information the publics received at the end, as well as the
quality of environmental decision-makings. By ensuring the
delivery of good quality air pollution data to the relevant
stakeholders, such as the governments or the publics, one can
devise relevant measures to reduce the level of air pollution
and provide timely health alerts, which are especially crucial
for the vulnerable groups such as the asthmatics [7]. Much
research has been done to investigate the environmental and
health impacts of air pollution [8]–[10].

Nonetheless, such research relies heavily on the integrity
of the sampled data obtained from the monitoring stations,
and missing air quality data remains an unresolved challenge
[11]. The main contributors of data loss include: facility
or communication failures, or cyber-security attacks. Firstly,
air quality data are typically sampled by electronic devices
installed in the monitoring stations, any operational failures
may result in data loss [11]. Secondly, communication in-
frastructure that connects these monitoring stations and the
control centers may suffer continuous packet loss or failure
[12], [13]. In such case, any data transmitted may not be suc-
cessfully delivered. Thirdly, exposure of the entire sampling
and communication system to network attacks may create
potential cyber-security issues [14]. As citizens are increas-
ingly concerned about their personal exposure to ambient
air pollution and subsequent health consequences, deliberate
attempts to modify or erase these sensitive measurements
may occur via cyber attacks. Different drivers of air quality
data loss may create different missing data patterns. When
an entire measurement station is affected by a communi-
cation failure, the missing data will remain spatially and
temporally correlated with the sampled data. If a facility and
communication failure can be tackled within a short period
of time, the missing data are likely to become temporally-
correlated. Meanwhile, if any monitoring station suffers from
frequent cyber- security attacks or facility failures, missing
data may appear to be randomly distributed. In practice, no
specific causes will lead to purely spatially-correlated data
loss. Furthermore, no data loss satisfying the purely spatially-
correlated data loss pattern can be found in the air quality
dataset we collected. As such, this study will only focus on
the recovery of the first three common types of data loss,
namely, (1) the randomly-missing data, (2) the temporally-
correlated missing data, and (3) the temporally- and spatially-
correlated missing data.

While the missing data in air quality measurements can
greatly affect the operation of air quality-related public infor-
mation services [15], [16], no solution has yet been currently
available to address this pressing issue. Directly removing the
missing data entries or replacing them with a zero value or
with historical data, may affect data distribution and generate

biased results, and affect subsequent data analyses. Hence,
any simple measures taken to tackle missing air pollution
data problem may be undesirable [6].

To bridge this research gap, our previous work [17]
first identified the importance of the low rank property of
air quality data. We employed Low Rank Matrix Com-
pletion (LRMC) to address the missing data challenge for
the air quality data. Specifically, we proposed a Singular
Value Thresholding (SVT)-based method to tackle the prob-
lem. While the previous results demonstrated better perfor-
mance than the baseline interpolation-based algorithms, the
case studies were non-exhaustive. In addition, the previous
method was notably challenged by data sparsity, which is
commonly found in any real-world air quality samples col-
lected [16]. Under such cases, interpolation-based algorithms
can outperform the proposed SVT-based method. By using
Interpolation to pre-populate the missing entries into the
observation set of SVT, the new Interpolation-SVT (ISVT)
algorithm can overcome data sparsity and reconstruct the
matrix more effectively. In this new study, the missing rate in
[17] will be further re-adjusted. This rate is calculated based
on all measurements of the ground truth data [17], instead of
the available measurements, as shown in Section IV.

To overcome the matrix reconstruction deficiency of SVT
and Interpolation, we propose a new Interpolation SVT-based
air quality data recovery algorithm to address the missing
data problem. Using Interpolation, we first pre-estimate the
missing entries as the additional observations. The additional
information is later adopted in SVT to give more accurate
estimation.

This research carries the following novelties and signifi-
cance:

1) We formulate the missing Air Quality Data Recovery
(AQDR) problem as an optimization problem, and
transform it into a tractable form using interpolation
and matrix completion methods.

2) We propose a new strategy to match meteorology data
with air pollution data and design an effective algo-
rithm to construct the data matrix and recover missing
entries considering the heterogeneous locations of me-
teorology and air quality data sources.

3) We devise a new method based on SVT and Interpo-
lation algorithms for air quality missing data recov-
ery, which can achieve satisfactory performance on
sparsely observed data.

4) We perform a series of comprehensive simulations to
assess the performance of the proposed method, and
compare our results with existing data imputation and
interpolation techniques.

Compared to our previous work re. missing data recovery
[17], the current work presents the additional novelties (refer
to Point (2) and Point (3) above). Besides, this proposed
method can be extended to recover other missing data prob-
lems that exhibit similar low rank properties, such as traffic
data or meteorology data.
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Recent works aimed at predicting the air quality by using
proxy data to fill in the missing information at locations not
covered by monitoring stations [6], [18]. However, this work
focuses on recovering the missing data directly measured
from the stations. There is a significant difference between
these two challenges. Furthermore, the recovered air quality
data can serve as the input information of the models pro-
posed in [6], [18]. To the best of our knowledge, we are the
first team to identify the low-rank property of air pollution
data and address the missing data problem in air quality
measurements.

The rest of this paper is organized as follows. Section II
introduces the formulation of the air quality missing data
problem and related work covering missing data recovery
with applications on other fields of study. Section III anal-
yses the formulated problem, then elaborates on the details.
Section IV investigates the performance of the proposed
method. Finally, the conclusion is drawn in Section V, with
suggestions on future research.

II. AIR QUALITY DATA RECOVERY PROBLEM
The objective of this work is to recover the missing air quality
data, using other observed measurements. This problem can
be formulated as an Air Quality Data Recovery (AQDR)
problem. We first introduce the AQDR problem. Then we
introduce related work that was adopted to recover missing
information in other research areas. The definitions and nota-
tions generally follow the previous work in [17].

A. NOTATION

In the AQDR problem, we recover the missing entries in a
dataset which contains n21 categories of air quality measure-
ments sampled from n22 monitoring stations in n1 sampling
time intervals. We use MGT ∈ Rn1×n2 to denote the
ground truth matrix of this dataset, where n21 × n22 = n2.
Nevertheless, the control center can only obtain a partially
observed data matrix, denoted by MOB, instead of MGT due
to data loss:

MOB(i, j) =

{
MGT(i, j) (i, j) ∈ Ω

null otherwise
, (1)

where MOB(i, j) and MGT(i, j) represent the air quality
measurement in matrixes MOB and MGT, respectively. Ω
is the set of matrix indexes (i, j) of the observed entries. For
simplicity, we use the following expression to represent the
relationship defined in (1):

PΩ(MGT) = PΩ(MOB), (2)

where PΩ(·) : Rn1×n2 → Rn1×n2 is a projector of matrixes
that maps indexes in Ω. In addition, we use I to denote the
indexes of missing entries in MOB:

I = {(i, j) /∈ Ω|i, j ∈ Z+, i ≤ n1, j ≤ n2}. (3)

B. PROBLEM FORMULATION
The objective of the AQDR problem is to estimate the
missing data entires in matrix MOB with the observed data
entries. With the notations defined above, AQDR can be
formulated as follows:

minimize ‖M −MGT ‖22 (4a)
subject to PΩ(M) = PΩ(MGT) (4b)

where M is the estimated matrix with the recovered entries.
In this optimization problem, M should keep all the observa-
tions while minimizing the difference from the ground truth
MGT on missing data entries.

However, the ground truth matrix in practice is only par-
tially known in the form of MOB (or PΩ(MGT) ). When
solving problem (4), the lack of MGT makes the problem
intractable, since the only constraint (4b) cannot guarantee a
unique solution. In order to get accurate estimations of the
missing air quality data, the problem needs to be addressed
using other techniques besides this intuitive optimization
approach.

C. RELATED WORK
While the missing air quality data can greatly affect the
operation of air quality-related public information services
[15], [16], no solution has yet been currently identified to
address this pressing issue. Some work based on air quality
data tends to ignore this missing data problem. For example,
the research in [19] simply removed the missing data directly
when using deep learning techniques to predict urban air
quality. In [6], [18], the missing values were filled in with ran-
domly chosen ones. In some other air quality related previous
studies [7], [20], it was common to tackle the missing data by
Historical Data Imputation (HDI) or zero imputation, which
replaces the lost entries with historical data or zeros. Such
methods make the missing data entries either meaningless or
inaccurate, which may potentially undermine system perfor-
mance. More effective methods to solve the AQDR problem
are necessary.

1) Interpolation
Interpolation has been employed in a wide range of engi-
neering and science research topics, see [21]–[23] for some
examples. As a classical tool for recovering the missing data,
interpolation uses a combination of temporally-correlated
observations to reconstruct the values of lost data. In real-
world applications, a few air quality-related research efforts
also attempted to adopt interpolation to address the miss-
ing data problem [11], [24]. Two interpolation methods are
adopted, between which the Univariate Nearest Neighbor
Interpolation (NIN) is arguably the simplest interpolation
scheme. This method utilizes the values of the endpoints of
the missing gaps to estimate the missing values. However,
Linear Interpolation (LIN) adopts the linear fitted line be-
tween the endpoints to recover the values of entries in the
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missing gap. Both interpolation methods will be investigated
in this work.

2) Matrix Completion
Matrix Completion offers an alternative approach to recover
missing data [25]. This method focuses on estimating miss-
ing entries in the matrix by exploiting the statistical structure
of the data. Many methods have demonstrated their effica-
cies in recovering the ground truth matrix based on Matrix
Completion by adopting this characteristics, e.g., total non-
local models [26], [27], variation-based models [28], [29],
sparsity-based models [30], [31], and low-rank models [32],
[33].

The low-rank property, which is widely used in practice
[32], [34], [35], [36], indicates that the underlying observed
matrixes can be represented by linear combinations of a small
number of base vectors. Using this property, many low-rank-
based matrix completion methods have been proposed. For
instance, convex optimization can be employed to estimate
the missing entries by minimizing the nuclear norm, e.g.,
Singular Value Thresholding (SVT) [37] and SoftImpute
[38]. Alternatively, matrix factorization with non-convex op-
timization is also an effective approach. [39]. Considering
these recent developments in Low Rank Matrix Completion
(LRMC), the algorithm has been widely applied to solve the
missing data problem in various engineering research fields,
such as in social network [40], power system [41], and remote
sensing [42].

3) Other Methods
Apart from interpolation methods, there exist some other
approaches for data imputation in other research areas.

For instance, K-Nearest Neighbour (KNN) is an algorithm
that is useful for substituting a missing value with its closest k
neighbors in a multi-dimensional space [43]. A drawback of
this algorithm is the time-consuming nearest neighborhood
data point search.

Miss Random Forest (MissForest) imputation is another
machine learning based technique that is an extension of clas-
sification and regression trees [44]. However, this algorithm
aims to predict individual missing data rather than consider
the distribution of the dataset. Therefore, this method is not
good at handling continuous missing data and the imputed
values may lead to biased parameter estimates in statistical
models [45].

Expectation maximization (EM) algorithm is an iterative
algorithm that finds the maximum log-likelihood of param-
eters when there are missing values [46]. A drawback of
this approach is that it assumes the data loss are uniformly
random [47].

Multivariate Imputation by Chained Equations (MICE) is
a common method of generating imputed values by drawing
from estimated conditional distributions of each variable
given all the others [48], [49]. Similar to EM, this approach
also requires the missing data positions follow a uniform

TABLE 1: DATA COLLECTED

Domain Category Data Source

Air pollutant

PM2.5 (µg/m3)

HK government [50], [51]

PM10 (µg/m3)
O3 (µg/m3)
NO2 (µg/m3)
SO2 (µg/m3)

Meteorology Temperature (◦C)
Pressure (Pa)

FIGURE 1: Locations of 16 air pollution monitoring stations
and 36 meteorology monitoring stations in Hong Kong.

distribution, which can be unrealistic for practical implemen-
tation.

III. DATA RECOVERY MODEL
We firstly introduce a real dataset which suffers from the
AQDR problem, and propose a strategy to align the meteorol-
ogy data with the air pollution data for recovering the missing
entries. Then the commonly used methods summarized in
Section II will be introduced to address the AQDR problem.
By combining the interpolation and the matrix completion
approaches, we propose a novel missing data recovery model.

A. THE AIR QUALITY DATASET
The data we used consists of seven categories of air quality
related data. As listed in Table 1, all these data are collected
from the Hong Kong Environmental Protection Department
and Hong Kong Observatory [50], [51]. The first five cate-
gories represent the concentrations of five different air pollu-
tants, and the last two are the values of the temperature and
pressure, respectively.

Different from the data in [17], these data are sampled syn-
chronously from different official stations distributed across
the city of Hong Kong. All five categories of air pollutants
data are monitored by 16 air pollution monitoring stations.
On the other hand, temperatures are sampled by 36 meteo-
rology monitoring stations, eleven of which also record air
pressure values. Fig. 1 shows the locations of both air quality
and meteorology monitoring stations in Hong Kong.
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TABLE 2: MISSING VALUES IN THE TEST SET

Source Number of missing data Total percentage
PM2.5/PM10/O3 /NO2/SO2 410 1.92%

Temperature 45 0.21%
Pressure 96 0.45%

Total 551 2.58%
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FIGURE 2: Measurements of five air pollutants obtained
from the air pollution monitoring stations in Central Western
and Sham Shui Po, Hong Kong.

The ground truth dataset contains data collected from 01-
Jul-2016 to 07-Jul-2016. All measurements are sampled once
per hour. Consequently, 21336 data records are sampled if
there is no data loss, i.e., 7 × 24 × (16 × 5 + 36 + 11) =
21336. However, some data in this dataset were missing due
to various events analyzed in Section I. A summary of the
missing data is presented in Table 2.

B. MAPPING METEOROLOGY DATA WITH AIR
POLLUTION DATA

As depicted in Fig. 2, different measurements of air pollu-
tants sampled by various stations have similar trends within
the selected time interval. This observation supports the
theoretical analysis presented by the micro-scale dispersion
model [52], which indicates significant temporal-spatial (T-
S) dependency on the concentrations of air pollutants. In
addition, air pollutants can be drastically influenced by urban
meteorologies (see [17] and [6] for examples).

Based on the relationship between different categories of
air quality related data, the missing data in the dataset can
be recovered by utilizing the remaining observed measure-
ments. For instance, in the previous work [17], the observed
meteorology data and air pollution data in Beijing can be
directly adopted to recover the lost data entries. However,
in Hong Kong, the air pollution monitoring stations and
the meteorology monitoring stations are not co-located (see
Fig. 1). There are different numbers of air pollution and

meteorology monitoring stations. In addition, the distance
between these stations influence the correlations of different
measurements [52]. With the increase of the distance, the
correlation decreases. The structural property of the observed
data matrix is thus impacted, and missing data recovery is
also adversely influenced. In order to improve the recovery
accuracy, we propose a data processing algorithm to con-
struct a new observed data matrix M̂OB from the raw air
quality related measurements.

The pseudo-code for constructing of M̂OB is summarized
in Algorithm 1. For each measurement sampled from the
p-th meteorology monitoring station, Cp is defined as a
correlation coefficient of the meteorology monitoring station
with respect to all the other air pollution monitoring stations,
which is expressed as follows:

Cp =
1∑

q
d2
pq

, (5)

where dpq denotes the distance between the p-th meteorology
monitoring station and the q-th air pollution monitoring
station. Similar to the definition of "gates" in other data
processing application, e.g., [53], Cp can be regarded as a
regulator of the values of the data from the p-th meteorology
monitoring station that need to be filled into M̂OB. Through
this regulator, M̂OB can strengthen the linear correlation of
the data by eliminating the negative impact of the distance of
stations.

With Cp , M̂OB can be constructed as follows. Firstly,
we can obtain the observed matrix MOB from the ground
truth matrix MGT of the real measurements dataset. Then,
for each MOB(i, j), which is sampled from the p-th me-
teorology monitoring station, the corresponding coefficient
Cp is employed as a multiplier. Hence, the newly formed
matrix M̂OB can be considered as the new observed matrix
for the AQDR problem. Similar to other data processing
methods [54], [55], we normalize the data matrix to improve
the effectiveness of data processing.

C. INTERPOLATION TO ADDRESS AQDR PROBLEM
By introducing interpolation methods into the AQDR prob-
lem, formula (4) can be re-written as

minimize ‖M(:, j)− PΘ(M̂OB(:, j)) ‖22 (6a)

subject to PΩ(M) = PΩ(M̂OB) (6b)

where j ∈ {1, 2, · · · , n2}. M(:, j), M̂OB(:, j) represent the
j-th column in M and M̂OB, respectively. We denote PΘ(·)
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Algorithm 1 Constructing M̂OB

Input Initial observed matrix MOB, Matrix size (n1, n2),
Locations of meteorology monitoring stations (x, y) and air
pollution monitoring stations (x′, y′)
for p = 1 to pmax
for q = 1 to qmax do
1. dpq = ((xp)− (x′q))

2 + ((yp)− (y′q))
2

end for q
2. Cp = 1/

∑
q=1

dpq

end for p
for i = 1 to n1

for j = 1 to n2 do
3. if MOB(i, j) is sampled from (xp, yp)

4. M̂OB(i, j) = Cp ·MOB(i, j)
5. else
6. M̂OB(i, j) = MOB(i, j)
7. end if
end for j
end for i
Output M̂OB

as an interpolation-based projection from M̂OB(:, j) to M(:
, j).

PΘ(M̂OB(:, j)) =

{
M̂OB(i, j) (i, j) ∈ Ω

Intp(M̂OB(:, j)) otherwise
, (7)

where Intp(·) represents the rule of the specific interpolation
approach. With this rule, the missing entries in the j-th
column of M̂OB can be replaced by the interpolation of
observed entries. Based on the different formulations of the
Interpolation, Intp(·) represents different rules. For instance,
in NIN, the values of Intp(·) are the endpoints of the missing
gap. Meanwhile, in LIN, Intp(·) corresponds to the fitted line
of the missing gap as introduced in Section II-C. Based on
(7), this projector helps to address the AQDR problem.

D. MATRIX COMPLETION FOR TACKLING AQDR
PROBLEM
By exploring the structural property of the air quality data,
a matrix completion method can be used to solve the AQDR
problem. In the past decade, research has been conducted on
transforming the matrix completion problem into a convex
optimization problem by introducing an extra regularization
[56]. For the AQDR problem, in order to obtain a unique and
robust solution, equation (4) is reformulated as follows:

minimize R(M) (8a)

subject to PΩ(M) = PΩ(M̂OB) (8b)

The regularization term R(M) is strategically selected to
reflect the structural property of the matrix. With objective
function (8a), the optimal solution M∗ can accurately resem-
ble the ground truth matrix.
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FIGURE 3: Distribution of singular values of MGT.

TABLE 3: THE 10 LARGEST SINGULAR VALUE OF MGT

σi
Rank 1∼5 6∼10

1 28.2543 0.1299
2 0.4212 0.1195
3 0.2990 0.1029
4 0.2303 0.0993
5 0.1679 0.0956

By LIN, the values of missing entries in MGT can be
filled. Then, utilizing the Singular Value Decomposition
(SVD) method [57], the singular values of MGT can be
computed as follows:

MGT = UΣV T , (9)

where U and V are unitary matrixes, Σ is a rectangular
diagonal matrix. The columns of U and V are called the
left and right singular vectors of the matrix, respectively.
The non-negative diagonal entries σi in Σ are the singular
values of MGT, which are related to the rank of MGT. The
distribution of singular values is shown in Fig. 3. We also list
the top-10 largest singular values in Table 3.

As depicted in Fig. 3, the singular values of MGT di-
minish quite quickly. This suggests that the matrix can be
approximated by a low-rank matrix with high accuracy [58].
Hence, LRMC is suitable for solving the AQDR problem.
Equations (4) and (8) can be transformed into a relaxed
convex optimization problem [37], [56]:

minimize τ‖M‖∗ +
1

2
‖M‖2F (10a)

subject to PΩ(M) = PΩ(M̂OB) (10b)

where ‖M‖∗ is the nuclear norm, which is the sum of the
singular values of M . Additionally, ‖M‖F is the Frobenius
norm of M . In (10), with a relatively large τ , the solution
can be considered as a sub-optimal estimation of MGT [37].
For this convex optimization problem, the numerical solution
can be calculated (see Appendix I), and an SVT can be used
to solve it in an iterative manner.
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Based on SVD, we can first define the core operator of
SVT as follows, which is named singular value shrinkage:

Dτ (X) ≡ UΣ̃τV
T , (11)

where Σ̃τ = diag{σi−τ}+, and operator {t}+ = max(0, t).
Then, we adopt an intermediate matrix X as the Lagrange
Multiplier matrix. By the Sub-gradient Primal-Dual method
[59], [60], X can be computed in an iterative manner and
adopted into the calculation of M . We initialize X0 = 0,
which, in subsequent iterations k = 1, 2, · · · , kmax, are
updated using the following rules:

Mk = Dτ (Xk−1), (12a)

Xk = Xk−1 + δPΩ(M̂OB −Mk), (12b)

where M is approached iteratively using Mk. kmax is
the maximum number of iterations, which is set to a large
positive value (2 × 104 in this paper) [56]. This iterative
process repeats until a termination criterion is met:

‖PΩ(Mk − M̂OB)‖F
‖PΩ(M̂OB)‖F

≤ ε, (13)

where ε is the convergence threshold, which is set to a
small positive value 10−4 [17]. The pseudo-code for SVT is
summarized in Algorithm 2.

Algorithm 2 Singular Value Thresholding (SVT) Algorithm

Input Observed set Ω, observed entries PΩ(M̂OB), step size
δ, tolerance ε, parameter τ , and maximum iteration count
kmax
Set X0 = 0
for k = 1 to kmax do
1. Mk = Dτ (Xk−1)

2. if ‖PΩ(Mk − M̂OB)‖F /‖PΩ(M̂OB)‖F ≤ ε
3. break
4. else
5. Xk = Xk−1 + δPΩ(M̂OB −Mk)
6. end if
end for k
Output Mk

E. ISVT ALGORITHM
Similar to the results in [41], [61] and [62], in the previous
work [17], the performance of SVT is undermined with the
increase of missing rate. For LRMC, there is a lower bound
for the observed data. In [56], it is demonstrated that all
entries in an n1 × n2 matrix, whose rank r � n1, n2, can
be efficiently reconstructed with only O(rn log2 n) entries
, where n = max (n1, n2) [35], [61], [62]. According to the
singular value distribution of the ground truth matrix depicted
in Fig. 3, for the AQDR problem, MGT can be approximated
by a low-rank matrix with r ≈ 10. For such matrixes,
we need to keep at least around 58.2% overall observed
data for SVT to perform well. When addressing cases in
which the observed data entries are not sufficient, auxiliary

methods are necessary to provide more information for SVT.
Combining the interpolation and matrix completion methods,
we proposed an Interpolation-SVT (ISVT) algorithm.

Given the missing entry indexes I of M̂OB, we first
randomly select a subset I1 of I . Let c, c1 denote the
numbers of elements in I and I1, respectively. We define α
as the percentage of missing entries that will be recovered by
interpolation initially:

I1 ⊂ I, I1 6= ∅, (14)

c1 = αc, α ∈ (0, 1), (15)

where α is the proportion of c1 over c. In ISVT, the missing
entries in I1 are recovered by the interpolation method in
the first step. Then these recovered entries are added into
Ω, which is subsequently processed by SVT. When handling
different missing rate cases, α may have different optimal
values to achieve the best performance. The selection of α
will be investigated in Section IV-B. The pseudo-code of the
proposed ISVT algorithm is as shown in Algorithm 3. The
convergence analysis of the proposed algorithm is presented
in Appendix II.

Algorithm 3 ISVT Algorithm

Input Observed set Ω, observed entries PΩ(M̂OB), missing
entries indexes set I , missing entries counts c, percentage α ,
step size δ, tolerance ε, parameter τ , and maximum iteration
count kmax
1, Select I1 from I based on c and α
2. Initialization Interpolation for entries located in I1

3. Combine I1 and Ω into Ω̃
4. Add entries located in I1 into M̂OB, we have PΩ̃(M̂OB)
5. Set X0 = 0
6.1 for k = 1 to kmax do
6.2 Mk = Dτ (Xk−1)

6.3 if ‖PΩ(Mk − M̂OB)‖F /‖PΩ(M̂OB)‖F ≤ ε
6.4 break
6.5 else
6.6 Xk = Xk−1 + δPΩ̃(M̂OB −Mk)
6.7 end if
6.8 end for k

7. Output Mk

IV. EXPERIMENT
In order to demonstrate the performance of the proposed
algorithms in recovering missing air quality data, a series of
simulations are conducted. In these experiments, we use the
normalized MGT as described in Section III as the ground
truth matrix. Besides the original 551 missing data, some
other air pollution entries are erased in different cases, to
mimic missing data. We use p to represent the ratio of the
missing data to overall measurements.
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FIGURE 4: Comparision of MOB and M
ÔB

The recovery performance of the AQDR problem is mea-
sured by the relative recovery error, which has been adopted
in previous literatures, e.g., [17] and [41]:

Re =
‖E −Erec‖F
‖E‖F

, (16)

where E represents the real values of the erasures in MGT,
and Erec represents the recovered values of these data entries.

The sensitivity analysis of SVT has been illustrated in
the previous work [17]. For simplicity, we empirically set
these parameters according to their overall performance in
different missing data scenarios [17]. The values of the SVT
parameters are as follows:

τ = 1.2
√
n1n2, (17)

δ = 1.5
n1n2

|Ω|
, (18)

In addition, the convergence threshold ε in SVT is set to 10−4

[17].

A. PERFORMANCE OF PROPOSED M̂OB

This subsection aims to evaluate M̂OB, which is obtained by
the proposed construction method. In order to investigate the
performance of the constructed matrix, the SVT algorithm is
employed to recover the missing data. With different values
of p ∈ {0.05, 0.10, 0.15, 0.20, 0.25, 0.30}, we randomly
remove some entries of air pollution data in MGT to obtain
the initial observed matrix MOB. By Algorithm 1, M̂OB

can be developed from MOB. The relative recovery errors
of the erasures under different p values are presented in Fig.
4. The performance of the initial observed matrix MOB is
also displayed in this figure as a baseline performance.

As shown in Fig. 4, it can be observed that the proposed
M̂OB, which maps meteorology data into air pollution data,
outperforms the initial MOB. The performance improvement
of M̂OB over MOB persists regardless of the missing rate p.
It can be concluded that the data processing algorithm can
significantly improve the recovery performance of SVT.
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FIGURE 5: Relative recovery errors of four methods for
randomly missing air pollution data entries.

B. COMPUTATIONAL COMPLEXITY ANALYSIS
For any matrix X ∈ Rn1×n2(n1 > n2), the computational
complexity of SVD is O(n1n

2
2) [63]. As the core operator

can be regarded as a truncated SVD, the major computa-
tional cost of SVT in each iteration is contributed by SVD.
Compared to SVT, ISVT injects an interpolation process in
front of the subsequent SVT computation. The complexity
of interpolation is O(n2). Therefore, the computation cost
of ISVT is O(n2 + kn1n

2
2), where k is the number of

iterations. Since kn1n
2
2 � n2, ISVT spends the longest

time on addressing the optimization problem (19) by SVT
iteration. From the above discussion, we can conclude that
the computational complexity of ISVT is comparable to (in
the same order of magnitude) that of SVT.

From the computational complexity analysis, it is obvious
that the time consumption of SVT increases dramatically
with the size of data. So, in the previous studies, some
researchers focus on the acceleration of matrix completion
[64], [65]. However, such acceleration is at the expense of
data reconstruction accuracy. Since the scale of the data we
used is relatively small (min(n1, n2) < 1000), the time
consumption of traditional SVT is affordable (within several
minutes). And this computation time is much smaller than the
monitoring time interval (1hr). Thus, we can conclude that
both SVT and ISVT can recover the weekly air measurement
matrix in time.

C. RECOVERY OF RANDOMLY MISSING DATA
The performance of the proposed SVT and ISVT in recov-
ering randomly missing entries are assessed. In this test, we
randomly remove some air pollution data entries in MGT to
construct MOB. Then according to the result of Section IV-
A, the better-performing M̂OB by Algorithm 1 is adopted
for recovering the missing measurements. With different p ∈
{0.05, 0.10, 0.15, 0.20, 0.25, 0.30}, all results are averaged
based on 50 independent runs, in which the erasures are
randomly generated for each run. The simulation results are
depicted in Fig. 5 and Fig. 6.
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TABLE 4: RELATIONSHIP BETWEEN MISSING RATE p AND RATIO α

Re α of ISVT SVT LIN
p 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%

0.05 0.1557 0.1558 0.1568 0.1578 0.1577 0.1595 0.1614 0.1625 0.1629 0.1633 0.1641 0.1557 0.1683
0.10 0.1703 0.1705 0.1707 0.1711 0.1721 0.1714 0.1723 0.1721 0.1734 0.1736 0.1742 0.1703 0.1761
0.15 0.1803 0.1801 0.1804 0.1807 0.1805 0.1803 0.1808 0.1808 0.1806 0.1810 0.1817 0.1803 0.1832
0.20 0.1946 0.1941 0.1935 0.1938 0.1936 0.1933 0.1921 0.1922 0.1920 0.1925 0.1935 0.1946 0.1972
0.25 0.2074 0.2070 0.2057 0.2036 0.2030 0.2026 0.2019 0.2011 0.2027 0.2047 0.2056 0.2079 0.2079
0.30 0.2358 0.2277 0.2230 0.2195 0.2210 0.2207 0.2206 0.2210 0.2216 0.2231 0.2244 0.2391 0.2266
0.40 0.9717 0.8065 0.6385 0.3472 0.2774 0.2740 0.2793 0.2865 0.2898 0.2960 0.3000 - 0.3026
0.50 -* - - - 0.6115 0.3927 0.3791 0.3898 0.4006 0.4088 0.4172 - 0.4219
* − represent the value is larger than 1.0, it can be considered as an invalid value of relative recovery error.

Fig. 5 shows that, even though the recovery error of each
algorithm increases with the missing rates, LIN and SVT
consistently surpass other approaches across the entire range
of missing rates. When p ≤ 0.25, SVT significantly outper-
forms LIN. Meanwhile, when the missing rate is extremely
high (p > 0.25), LIN performs slightly better. However, it is
highly unlikely that the data suffers from such a high missing
rate in practice [6]. Therefore, it can be concluded that SVT
generally achieves better missing data recovery performance
as compared to MICE, HDI, NIN, EM, MissForest, KNN and
LIN. The outstanding performance of SVT is attributed to
its ability to recover multivariate data. Except for using the
observed data, nuclear-norm based optimization can estimate
the multivariate missing entries by fully exploring the low-
rank property of the entire data distribution. However, the re-
covery accuracy of other traditional methods can be severely
degraded with high-dimensional data [45], [47], [66].

As analyzed in Section III-E, the main cause of the de-
creased accuracy on high missing rate is the sparsity of the
observed data. In such cases, SVT is limited by the number of
observations. When the number of observations is below the
suggested lower bound [56], namely, approximately 58.2%
c.f. Section III-E, SVT has subpar recovery accuracy per-
formance. Considering this factor, with linear interpolation
method that has the sub-optimal performance, ISVT may
improve the performance by introducing partially recovered
missing entries into the observations.

We also assess the performance of ISVT with different α
values. For each p, 50 independent runs are evaluated. As
shown in Fig. 6, the best-performing ISVT (ISVT based on
LIN) outperforms both SVT and LIN. In particular, when
p > 0.25, the superiority of the best-performing ISVT over
SVT is more obvious. The averaged relative recovery errors
of ISVT based on LIN are presented in Table 4 with different
α and p, where the best performing α values are in bold.
Even for extreme cases (p ≥ 0.3), ISVT can still achieve
better performance than other methods. Moreover, with the
increase of missing rate p, a relatively large α is shown to be
much more effective.

D. RECOVERY OF TEMPORALLY-CORRELATED
MISSING DATA
In the real world, due to facility failures and other issues,
consecutive data loss is commonly encountered. In these
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FIGURE 6: Comparison of ISVT, SVT and LIN

TABLE 5: RELATIVE RECOVERY ERRORS FOR 10%
TIME CORRELATED RANDOMLY MISSING AIR POLLU-
TION DATA ENTRIES

Nt

Recovery methods 2 4 8 16 32
KNN 0.2231 0.2523 0.2892 0.3083 0.3322

MissForest 0.2252 0.2434 0.2714 0.2882 0.3131
EM 0.3232 0.3533 0.3680 0.3730 0.3844

MICE 0.3043 0.3081 0.3120 0.3172 0.3273
LIN 0.2146 0.2832 0.4840 0.8592 1.7051
SVT 0.1872 0.1989 0.2186 0.2310 0.2537
ISVT 0.1871 0.2010 0.2214 0.2437 0.2892

cases, the missing data are temporally correlated. In order
to investigate the performance of the proposed methods for
recovering such incomplete air pollution data, we develop the
observed data matrix by removing consecutive samples from
MGT. By setting the missing rate p constant, we remove con-
secutive air pollution data sequences in MGT randomly. Let
Nt ∈ {2, 4, 8, 16, 32} be the number of consecutive entries in
one temporal erasures sequence. To focus on the performance
of ISVT in handling such cases, the locations of α missing
data are included in I1 for LIN initially. All simulations are
conducted for 50 times for statistical significance.

The averaged recovery errors for p = 0.1 and p = 0.3
are presented in Fig. 7. The plots of ISVT represent the
recovery performance of the best-performing ISVT based
on LIN. Tables 5 and 6 show more detailed comparisons of
the recovery accuracy of seven different approaches, namely
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TABLE 6: RELATIVE RECOVERY ERRORS FOR 30%
TIME CORRELATED RANDOMLY MISSING AIR POLLU-
TION DATA ENTRIES

Nt

Recovery methods 2 4 8 16 32
KNN 0.2541 0.2910 0.3253 0.3764 0.3893

MissForest 0.2500 0.2712 0.3011 0.3524 0.3772
EM 0.3469 0.3518 0.3565 0.3719 0.3916

MICE 0.3122 0.3210 0.3451 0.3613 0.3800
LIN 0.2627 0.3753 0.6841 1.3261 3.0072
SVT 0.2858 0.3043 0.3299 0.3464 0.3720
ISVT 0.2287 0.2635 0.3042 0.3562 0.4357
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FIGURE 7: Relative recovery errors for 10% and 30%
temporally-correlated randomly missing air pollutant data
entries.

KNN, MissForest, EM, MICE, LIN, SVT and ISVT. With
the increase of p, the performance of all seven methods
become worse. At the same time, for a fixed missing rate,
the recovery accuracy of the methods are also undermined
with the increase of the value of Nt. The deteriorating
performance of traditional methods is caused by their strict
random missing data assumptions. Also, due to the decrease
of observations, the performance of SVT-based methods is
limited as discussed in Section III-E.

As depicted in Table 5, although ISVT has a slightly
better performance when p = 0.1, Nt = 2 (see Table

5), SVT can be considered as the best performing method
compared to other methods in the other Nt cases. This is due
to the bad performance of LIN in the time-related missing
data problem. By LIN, inaccurate data entries are used in
ISVT as the input observations. This makes ISVT worse than
SVT. The difference between the relative recovery error of
SVT and ISVT becomes more significant due to the rapidly
deteriorated LIN performance.

The impact of LIN on ISVT is more significant for
p = 0.3. Table 6 shows that, although LIN can obviously
improve the performance of ISVT compared to SVT when
Nt ≤ 4, the recovery accuracies are severely constrained
by the drawback of LIN with the increase of Nt. Although
MissForest outperforms SVT at Nt = 8, similar to LIN,
MissForest cannot handle continuous miss data cases. SVT
is also the best choice in cases with other Nt value.

Therefore, we can conclude that SVT is the best method
for handling the temporally-correlated missing data problem.
However, for the extremely large missing case, the benefits
of ISVT cannot be ignored.

E. RECOVERY OF TEMPORALLY- AND
SPATIALLY-CORRELATED MISSING DATA
As introduced in Section I, different types of air pollution
monitoring equipment are deployed in the same stations. It
is possible that some monitoring devices in one station are
broken at the same time. Such missing data may exhibit
spatial-correlation characteristics. In this case, the missing
data are not only temporally but also spatially correlated.
These lost entries in MGT can be considered as "blocks" .
By setting p constant, we randomly remove some fixed size
data blocks in MGT to construct MOB. Besides the original
missing data, we use symbol Nts = Nt ×Ns to indicate the
size of one missing block, where Ns denotes the number of
columns that suffer from the spatially correlated data loss.

We set Nt ∈ {2, 4, 8, 16} and Ns ∈ {2, 3}. So there
are totally eight different sizes of missing blocks. For each
Nts, the simulations are conducted 50 times for statistical
significance. The averaged recovery errors are presented in
Fig. 8, Tables 7 and 8 for p ∈ {0.1, 0.3}.

As shown in Fig.8, LIN is less effective in addressing
temporally-spatially correlated missing data. In addition,
SVT is always better than the best performing ISVT with LIN
except for the case that p = 0.1,Nt = 2. With the increase of
Nt, the advantage becomes more obvious. This observation
accords with the previous results in Section IV-D.

Furthermore, Tables 7 and 8 give the detailed comparison
of different methods. From the tables, it is clear that the
difference of the recovery accuracy between SVT and other
approaches increases not only with Nt but also Ns. Since
SVT recovers the missing data by exploiting the structural
property of the whole data matrix, SVT is better than LIN,
which only adopts the endpoint values of the missing gap for
estimating spatially correlated missing data. Furthermore, as
limited by the individual drawbacks described in Section II,
other baseline methods are also worse than SVT for recov-
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FIGURE 8: Relative recovery errors for 10% and 30% temporally-spatially correlated randomly missing air pollutant data
entries.

TABLE 7: RELATIVE RECOVERY ERRORS FOR 10% TEMPORALLY-SPATIALLY CORRELATED RANDOMLY MISSING AIR
POLLUTION DATA ENTRIES

Ns = 2 Ns = 3
Nt 2 4 8 16 2 4 8 16

KNN 0.2083 0.2383 0.2800 0.2944 0.2372 0.2534 0.2816 0.2889
MissForest 0.2114 0.2273 0.2587 0.2769 0.2414 0.2487 0.2705 0.2778

EM 0.3421 0.3516 0.3565 0.3731 0.3042 0.3424 0.3729 0.4026
MICE 0.2832 0.2923 0.3091 0.3118 0.2916 0.2977 0.3099 0.3148
LIN 0.2035 0.2754 0.4839 0.7893 0.2022 0.2762 0.4845 0.7761
SVT 0.1753 0.1909 0.2145 0.2235 0.1735 0.1900 0.2065 0.2141
ISVT 0.1751 0.1921 0.2232 0.2447 0.1731 0.1928 0.2152 0.2294

ering the continuous missing data. Besides, the performance
of ISVT is influenced by the inaccurate LIN computation.
Hence for temporally-spatially missing data scenarios, SVT
has the best performance.

In summary, the previous case studies provide guidelines
for selecting the best recovery methods to address different
missing data patterns. Specifically, ISVT has the best per-
formance for randomly missing data, and SVT is considered
best for temporally- and temporally-spatially correlated miss-
ing data. In addition, it can be observed that for all missing
data patterns, SVT is more stable. Although the effectiveness
of ISVT cannot be ignored, LIN limits the performance of
ISVT in continuous data loss cases. As previously analyzed,
SVT is insensitive to the distribution of missing data since
it can utilize complete information of the matrix, while the

traditional interpolation relies on merely the neighbor entries
around the missing values, leading to a relatively unstable
performance.

V. CONCLUSION
This study examines the problem of missing data recovery,
using air pollution data recovery as a case study. The prob-
lem has been formulated and two widely used data recov-
ery approaches, namely, the Interpolation approach and the
Matrix Completion approach, have been introduced. Given
the heterogeneous distribution of monitoring stations for air
pollution and meteorology, a new strategy to reconstruct the
data matrix to recover the missing air pollution data has been
proposed. Next, the low-rank property of a newly constructed
data matrix has been introduced. The formulated AQDR
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TABLE 8: RELATIVE RECOVERY ERRORS FOR 30% TEMPORALLY-SPATIALLY CORRELATED RANDOMLY MISSING AIR
POLLUTION DATA ENTRIES

Ns = 2 Ns = 3
Nt 2 4 8 16 2 4 8 16

KNN 0.2722 0.2773 0.3497 0.3968 0.2496 0.2638 0.2929 0.3271
MissForest 0.2681 0.2986 0.3280 0.3842 0.2377 0.2735 0.3161 0.3754

EM 0.3044 0.3328 0.4651 0.5646 0.3000 0.3132 0.3814 0.5261
MICE 0.2926 0.3180 0.3597 0.3984 0.2823 0.3066 0.3127 0.3340
LIN 0.2832 0.4276 0.7710 1.5245 0.2501 0.3945 0.7535 1.5421
SVT 0.2365 0.2529 0.3247 0.3824 0.2037 0.2209 0.2411 0.2676
ISVT 0.2422 0.2666 0.3292 0.4353 0.2041 0.2230 0.2501 0.2944

problem can be transformed into an LRMC problem. The
relaxed convex form of the LRMC problem has a numerical
solution, with SVT generating an iterative procedure to solve
the challenge. In an extreme case, when the observed data is
too sparse to ensure the recovery accuracy of SVT, the new
ISVT algorithm, which incorporates the values of the missing
entries estimated by Interpolation into the observations, is
developed.

Simulations have been conducted to test the performances
of the proposed SVT and ISVT. The simulation results indi-
cate that SVT and ISVT outperform the traditional interpola-
tion methods and data imputation techniques in most of our
test cases. In addition, with the increase in data missing rates,
more intermediate data can be estimated by Interpolation to
obtain a better performance. Therefore, ISVT has a better
performance when recovering randomly missing air quality
values. With sparse observations for handling the temporally-
correlated or the temporally- and spatially- correlated miss-
ing air pollution data, SVT is the best choice.

Future studies will focus on the design of novel missing
data recovery approaches based on advanced deep learning
methods. Furthermore, our proposed approach may also be
extended to other research problems. While the low rank
property of air quality data is dependent on the high spatial-
temporal (S-T) correlations [17], many other naturally occur-
ring data, such as meteorology data, traffic data, or power
system data may also exhibit similar spatial-temporal (S-T)
correlations characteristics. It is highly plausible that this
newly proposed method, which utilizes the respective low
rank properties, can be applied in such contexts for missing
data recovery.

.

APPENDIX I. NUMERICAL SOLUTION FOR
ADDRESSING LRMC

Based on the modified objective function, the original AQDR
problem can be transformed into a convex optimization prob-
lem:

minimize τ‖M‖∗ +
1

2
‖M‖2F (19a)

subject to PΩ(M) = PΩ(MGT) (19b)

where the parameter τ > 0 is constant. The corresponding
Lagrangian can be constructed as follows :

L(M ,X) =τ‖M‖∗ +
1

2
‖M‖2F

+ 〈X,PΩ(MGT)− PΩ(M)〉,
(20)

X corresponds to the Lagrangian, and 〈A,B〉 = trace(A ∗
B).

In addition, the objective function (19a) is convex, and
the sole constraint (19b) is a linear equality. This makes the
optimization problem accord with Slater’s conditions [67].
Hence, the strong duality property holds. Using (20), we
can solve the modified problem numerically with the sub-
gradient method [59], [60]. For the primal problem (19), the
corresponding dual problem is constructed as follows:

g(X) = infML(M ,X). (21)

By the sub-gradient method, the Lagrange multiplier X can
be computed in an iterative manner:

Xk = Xk−1 + δh(k−1), (22)

where δ is a positive step size, and X is initialized as
X0 = 0. h(k−1) is the sub-gradient of the dual problem
at Xk−1 , which provides a gradient descent direction for
X . In subsequent iterations k = 1, 2, · · · , we consider Mk∗

as optimal for L(Mk,Xk). Hence, at point Xk−1, the sub-
gradient h(k−1) for X can be calculated as

h(k−1) = PΩ(MGT)− PΩ(M (k−1)∗)

= PΩ(MGT −M (k−1)∗)

= PΩ(MOB −M (k−1)∗).

(23)

After updating X , we also need to update the optimal Mk∗

inductively:

Mk = M (k−1)∗

= argmin L(M ,Xk−1).
(24)

Combining (21)–(24), X and M are updated by the follow-
ing rules:

Mk = argmin L(M ,Xk−1), (25a)

Xk = Xk−1 + δPΩ(MOB −Mk). (25b)

The estimated values of missing entries can be updated
from Mk.
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APPENDIX II. CONVERGENCE ANALYSIS
We will analyze the convergence for the algorithm. In ISVT,
the interpolation operation and SVT cascade. Although the
pre-interpolation operation can enhance the input observa-
tions of subsequent SVT, the optimization problem (19) is
not changed. Therefore, the convergence of ISVT algorithm
is based on the convergence of the iterative SVT for our
optimization problem.

Let f(·) be the original objective function (19a) and
∂f(M) be a subgradient of f at M . First, we establish the
convexity of the objective f(·) by proving the convexity of
both ‖ · ‖∗ and ‖ · ‖2F , respectively.
Lemma 1: The objective function f(·) is convex.
Proof 1 (Proof): Let f1(·) = ‖ · ‖∗ and f2(·) = ‖ · ‖2F . The
subgradients of f1 and f2 at M are ∂f1(M) and ∂f2(M),
respectively. Then

∂f1(M) = ∂‖M‖∗, (26)

∂f2(M) = ∂‖M‖2F = 2M , (27)

Thus, for M1,M2 ∈ Rn1×n2 , we get

〈∂f2(M1)−∂f2(M2),M1−M2〉 = 2‖M1−M2‖2F > 0,
(28)

which proves the convexity of f2.
Besides, From Lemma 4.1 in [56], we obtained that

‖∂f1(M)‖2 6 1 and 〈∂f1(M),M〉 = ‖M‖∗ at any M .
For any M1,M2 ∈ Rn1×n2 , this gives

|〈∂f1(M1),M2〉| 6 ‖∂f1(M1)‖2‖M2‖ 6 ‖M2‖∗, (29)

Therefore,

〈∂f1(M1)−∂f1(M2),M1 −M2〉 = ‖M1‖∗ + ‖M2‖∗
− 〈∂f1(M1),M2〉 − 〈∂f1(M2),M1〉 > 0,

(30)

which proves the convexity of f1.
Since f (f = τf1 + 1

2f2) is a linear combination of the
convex functions f1 and f2, f is convex.

This lemma is essential for the convergence of this algo-
rithm. According to Lemma 1, we show the boundedness of
〈∂f(M1)− ∂f(M2),M1 −M2〉.
Lemma 2: Let M1,M2 ∈ Rn1×n2 . Then

〈∂f(M1)− ∂f(M2),M1 −M2〉 > ‖M1 −M2‖2F (31)

Proof 2: Since f = τf1 + 1
2f2, the left-hand term can be

rewritten as
〈∂f(M1)− ∂f(M2),M1 −M2〉 = τ〈∂f1(M1)

−∂f1(M2),M1 −M2〉+ ‖M1 −M2‖2F
(32)

According to inequality (30), 〈∂f1(M1)− ∂f1(M2),M1 −
M2〉 > 0. Thus, Lemma 2 holds.

With these lemmas, we now prove the convergence of the
algorithm.
Theorem 1: The updated Mk in (25) can converge to the
unique solution of our optimization problem (19), if the step
size δ satisfies 0 < δ < 2.

Proof 3 (Proof): For some iteration k, Mk is the minimizer
of L(M ,Xk−1) as given in (24). Therefore,

∇L(Mk,Xk−1) = ∂f(Mk)− PΩ(Xk−1) = 0 (33)

Let (M∗,X∗) be the primal-dual optimal for the problem
(19). Based on the Karush–Kuhn–Tucker (KKT) conditions
[68], we have

∇L(M∗,X∗) = ∂f(M∗)− PΩ(X∗) = 0 (34)

Based on Lemma 2, we have

〈PΩ(Xk−1 −X∗),Mk −M∗〉 =

〈∂f(Mk)− ∂f(M∗),Mk −M∗〉 > ‖Mk −M∗‖2F
(35)

Since PΩ(M∗) = PΩ(MOB) and Xk = Xk−1 +
δPΩ(MOB −Mk),

‖PΩ(Xk−X∗)‖2F
= ‖PΩ(Xk−1 −X∗) + δPΩ(M∗ −Mk)‖2F
= ‖PΩ(Xk−1 −X∗)‖2F + δ2‖Mk −M∗‖2F
− 2δ〈PΩ(Xk−1 −X∗),Mk −M∗〉

(36)

Combine (35) with (36),

‖PΩ(Xk−X∗)‖2F 6 ‖PΩ(Xk−1 −X∗))‖2F
+ δ2‖Mk −M∗‖2F − 2δ‖Mk −M∗‖2F

(37)

Under the assumption that 0 < δ < 2, we have

2δ − δ2 > α (38)

where some α > 0, thus

‖PΩ(Xk −X∗)‖2F 6‖PΩ(Xk−1 −X∗))‖2F−
α‖Mk −M∗‖2F .

(39)

Therefore, ‖PΩ(Xk −X∗)‖2F is non-increasing and finally
converges to a limit. Meanwhile, ‖Mk −M∗‖2F → 0 as
k →∞. Theorem 1 is established.
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