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Abstract— Deep neural networks (DNNs) have emerged as a
dominant approach for developing traffic forecasting models.
These models are typically trained to minimize error on averaged
test cases and produce a single-point prediction, such as a scalar
value for traffic speed or travel time. However, single-point
predictions fail to account for prediction uncertainty that is
critical for many transportation management scenarios, such as
determining the best- or worst-case arrival time. We present
QUANTRAFFIC, a generic framework to enhance the capa-
bility of an arbitrary DNN model for uncertainty modeling.
QUANTRAFFIC requires little human involvement and does not
change the base DNN architecture during deployment. Instead,
it automatically learns a standard quantile function during
the DNN model training to produce a prediction interval for
the single-point prediction. The prediction interval defines a
range where the true value of the traffic prediction is likely to
fall. Furthermore, QUANTRAFFIC develops an adaptive scheme
that dynamically adjusts the prediction interval based on the
location and prediction window of the test input. We evaluated
QUANTRAFFIC by applying it to five representative DNN models
for traffic forecasting across seven public datasets. We then
compared QUANTRAFFIC against six uncertainty quantification
methods. Compared to the baseline uncertainty modeling tech-
niques, QUANTRAFFIC with base DNN architectures delivers
consistently better and more robust performance than the existing
ones on the reported datasets.

Index Terms— Traffic prediction, uncertainty qualification,
quantile model.

I. INTRODUCTION

ACCURATE prediction of future traffic information,
including traffic volume, congestion levels, traffic speed,

and travel time, is crucial for a variety of transportation appli-
cations, such as congestion control [1], travel time estimation
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[2], emergent route planning [3], and taxi demand prediction
[4]. It also supports effective transportation planning and
management, enabling policymakers to optimize traffic flow
and emergency response planning while providing road users
with a safer and more efficient travel experience.

In recent years, there has been a growing interest in the
development of advanced predictive models for traffic informa-
tion using data-driven approaches such as DNNs [5]. Multiple
studies have shown that traffic forecasting models based on
DNNs outperform classical machine learning methods by a
large margin [6], [7]. However, these models are typically
trained to minimize the averaged prediction error, resulting in
a considerable variation in performance across test samples
[8]. This variation poses significant challenges for individ-
ual use cases where precise traffic prediction is critical but
difficult to achieve. For instance, accurately predicting traffic
at crossroads with high traffic volumes during rush hours is
crucial for urban travel but can be challenging due to complex
traffic patterns [9]. As the accuracy of traffic forecasting can
fluctuate over time [10], it is crucial to model and quantify
the prediction uncertainty of the model for individual roads,
locations, and sensors for a given prediction window (e.g.,
traffic predictions for the next n minutes).

Modeling and quantifying traffic forecasting uncertainties
have real-world use cases in transportation management. For
example, knowing the upper bound of a traffic flow predic-
tion in emergency response situations can help emergency
responders avoid congested roads and take the quickest and
safest route to their destination. Similarly, knowing the earliest
and worst-case travel times enables users to make informed
decisions about their travel plans, such as selecting the most
convenient transportation method while minimizing the like-
lihood of being late to an appointment or arriving too early.
Therefore, by quantifying the forecasting uncertainty, we can
improve the reliability of traffic prediction and traffic man-
agement efficiency. Unfortunately, despite the huge benefits
of uncertainty modeling, prior research on traffic forecasting
has largely overlooked this issue. This is a massively missed
opportunity.

While uncertainty quantification has gained popularity in
several deep learning domains, such as computer vision [11],
human mobility [12], and medical applications [13], it is note-
worthy that the modeling uncertainties in traffic forecasting
has only recently started to receive attention. Recent studies,
such as those presented in [14] and [15], represent some of the

1558-0016 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

https://orcid.org/0000-0002-0817-7519
https://orcid.org/0000-0001-9782-218X
https://orcid.org/0000-0001-6105-3796
https://orcid.org/0000-0002-6392-6711
https://orcid.org/0000-0001-6157-0662


2 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

initial attempts in this direction. Reference [14] uses a classical
statistical method to quantify the uncertainties associated with
average daily traffic volume forecasts. However, this approach
requires manual tuning and selecting a set of features for each
dataset to fit a linear model. Its requirement of intensive expert
involvement thus limits its practicability. In [15], DeepSTUQ
is employed to estimate the data and model uncertainties in
traffic forecasting, based on variational inference and deep
ensemble learning. This approach provides a more comprehen-
sive understanding of the uncertainties involved, but it requires
significant changes to the original model architectures, which
limits its generalization ability.

In this paper, we present QUANTRAFFIC, a generic
framework for quantifying the prediction uncertainties of a
DNN-based traffic forecasting model. Unlike prior work [14],
[15], QUANTRAFFIC is designed to minimize engineering
efforts and expert involvement. It can work with any DNN
model without changing the underlying architecture during
deployment. By producing a prediction interval (PI) that
captures the range in which the true value (such as travel time)
is likely to fall, QUANTRAFFIC enhances the capability of a
standard DNN to capture prediction uncertainties.

At the core of QUANTRAFFIC is a quantile function built
upon the recently proposed Conformalized Quantile Regres-
sion (CQR) algorithm [16]. The quantile function estimates
the PI of a given model output based on the data distribution
and validation errors observed during the standard DNN model
training process. QUANTRAFFIC is designed to simplify the
training and usage of the quantile function. The process
involves attaching a linear layer to the last layer of the base
DNN model and using a pinball loss function [17] during stan-
dard DNN training. Once trained, the base DNN model and
the quantile function can be used as standalone components
during deployment. During inference, the quantile function
generates an initial PI based on the DNN model’s single-
point prediction. Then, an adjustment is made to refine it and
improve its accuracy. The goal is to increase the coverage of
the PI while simultaneously minimizing the width between its
upper and lower bounds.

Unlike standard CQR, which uses a constant global value
to adjust the initial PI, QUANTRAFFIC develops an adaptive
scheme to tailor the adjustment value applied to the initial
PI for the specific location (or sensor node) of the test
sample within a given prediction window. This allows the
uncertainty method to consider the prediction difficulty of
each test sample. For example, locations with high variability
in traffic patterns may require a larger adjustment to achieve
accurate PIs. In contrast, those with more predictable traffic
patterns may require a smaller value. We achieve this by
utilizing a calibration table that is automatically constructed
using an optimization function on a calibration dataset. This
table provides the optimal adjustment for a node-prediction-
window combination, enabling QUANTRAFFIC to account for
unique prediction challenges in each test sample. By using
differentiated residues to adjust the initial PI, we achieve
greater precision and reliability over the standard CQR.

We have implemented a working prototype of QUANTRAF-
FIC, which will be open-sourced upon acceptance of this

Fig. 1. A representative emergency route planning example between two
points. A single-point travel time estimation does not provide the upper-bound
travel time for route selection which is important for ensuring the worst-case
arrival time.

work. We evaluate QUANTRAFFIC by applying it to five
representative DNN architectures [18], [19], [20], [21], [22] for
traffic forecasting. We then test the QUANTRAFFIC-enhanced
DNN model on seven public datasets for traffic speed and flow
prediction. We compare QUANTRAFFIC against six state-of-
the-art uncertainty modeling methods [23], [24], [25], [26],
[27] and two classical methods based on historical data.
Experimental results show that QUANTRAFFIC consistently
outperforms competing baselines across DNN models and
datasets, delivering better and more robust performance for
uncertainty quantification.

This paper makes the following contributions:
• It presents a generic framework for modeling the uncer-

tainty of predictions in DNN-based traffic forecasting
models without requiring any modifications to the under-
lying DNN prediction model (Section V);

• It develops an adaptive scheme to consider the predic-
tion variances of individual locations, leading to more
robust results than standard uncertainty modeling meth-
ods (Section V-D);

• It provides a large independent study to highlight the
importance of uncertainty modeling of traffic forecasting.
We hope our study can encourage further research along
this line (Section VII).

A. Data Availability

The data and code associated with this paper are openly
available at: https://github.com/wuyingvia/QUANTRAFFIC

II. MOTIVATION

As a motivative example, consider the emergency route
planning task depicted in Figure 1. This example represents
a day-to-day scenario where traffic forecasts are employed to
plan optimal routes, like an ambulance traveling from Regional
Medical Center to Santa Clara Valley Medical Center. The
objective is to identify the quickest route based on the pre-
dicted traffic while ensuring the worst-case arrival time.

Typical traffic forecasting models can provide estimates for
travel time of different routes, as seen in Figure 1. However,
relying solely on these single-point forecasts for route planning
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can lead to unreliable decisions since they lack information
about the uncertainty or confidence of the predictions. In the
example shown, a user may choose Route 1 due to its lowest
average travel time (13 minutes). Nevertheless, this decision
overlooks the potential variability in traffic dynamics and
route complexity, possibly rendering a worse real travel time.
To account for this variability and provide worst-case scenario
estimates, it is essential to have confidence intervals associated
with the travel time predictions. Incorporating such confidence
estimation can have a significant impact on time-critical route
planning tasks, a factor that is overlooked in the current
literature.

We show how estimating the uncertainty of travel time
predictions can provide valuable information for time-critical
route planning. By providing travel time bounds besides
single-point forecasts, we can tell that selected routes have
much higher variability in their predicted travel times than
others. If the uncertainty estimation is accurate, the additional
information help users avoid routes that are more uncertain
on travel times, even if their average predicted travel time
is lower. For example, in the scenario depicted in Figure 1,
one may finally choose Route 3 despite it being the longest,
in order to ensure the worst-case arrival time.

This example demonstrates the limitations of single-
point-based traffic forecasting models for time-critical travel
planning. This highlights the need for uncertainty modeling in
traffic forecasting. To address this, our work proposes a generic
framework for precise single-point and bound estimations to
better model traffic prediction uncertainties.

III. BACKGROUND AND RELATED WORK

Our work builds upon the following past foundations, but
our focus differs from each.

A. Spatio-Temporal Traffic Forecasting

Traffic forecasting is a well-established research topic with a
wide range of proposed solutions. Classical statistical methods,
such as historical average, regression, and integrated moving
average models, have been explored in the past [28]. How-
ever, more recent research has leveraged DNNs to model
the spatio-temporal correlations in traffic data. Compared
to classical statistical methods, DNNs can better capture
complex relationships in historical data while avoiding the
need for hand-engineered features. Researchers have explored
several approaches to represent traffic data, including temporal
sequence modeling with recurrent neural networks [29], mul-
tidimensional matrix representations with convolutional neural
networks [30], and graph neural networks (GNN) [7]. DNN-
based methods have been shown to deliver state-of-the-art
results in various traffic-related tasks, such as ride-sharing
[31], and travel planning [32]. Due to the better performance
over alternative methods, DNNs have emerged as the dominant
approach for building traffic forecasting models.

The majority of existing DNN-based traffic forecasting
models only provide a single-point prediction such as the
travel time. However, a single-point estimation only reflects
the average traffic scenario but not the best or worse cases.

As highlighted in Section II, the upper and lower bounds of the
travel time can be critical for choosing the best route in time-
critical route planning tasks. This requires one to consider the
uncertainty of the predicted travel time and to produce metrics
similar to statistical confidence intervals. This work aims to
address this issue by developing a generic approach that can
provide such information from any DNN model, making it
applicable to a wide range of traffic forecasting architectures.

B. Modeling Prediction Uncertainty

Although uncertainty modeling has been largely overlooked
in prior traffic forecasting approaches, it has drawn much
attention in other DNN-based modeling tasks. Various tech-
niques have been proposed to quantify prediction errors,
confidences, or uncertainties. These methods can be broadly
categorized as Bayesian and Frequentist ones, which have been
extensively studied in the literature [33], [34].

1) Bayesian Models: provide a robust probabilistic frame-
work for modeling uncertainty with Bayesian statistics [35].
In this approach, the model incorporates prior knowledge or
beliefs for parameter initialization and infers the posterior
distribution using the likelihood function between the data
and a predefined initial distribution. Techniques for quanti-
fying uncertainty in DNNs using Bayesian models include
Monte Carlo (MC) dropout [25] and Variational Inference
[24]. However, there are emerging challenges, such as rela-
tively low computation efficiency and strong prior distribution
assumptions. These challenges can be particularly acute in
high-dimensional models or large datasets.

2) Frequentist Methods: provide predictions based on a
single forward pass with a deterministic network and quantify
uncertainty by using additional qualification schemes. These
methods use post-hoc calibrations, such as conformal pre-
diction and differentiable modeling structures, and their loss
objectives, such as quantile prediction [36], to capture uncer-
tainties. Ensemble methods, such as those that use random
initialization or a mixture of experts [37], retrain models on
partial datasets, or adopt data augmentation techniques (e.g.,
cross-validation [38], and bootstrap aggregating [39]), are also
considered frequentist methods. However, ensemble methods
require trial-and-error adjustments to parameters without a
solid mathematical foundation, leading to poor coverage guar-
antees. Moreover, frequentist methods are often overconfident
[36], [40], which can result in inaccurate uncertainty estimates.
Despite these limitations, frequentist methods are attractive
because they are computationally efficient and do not require
prior assumptions on the model or data distribution.

C. Summary

In summary, existing methods for quantifying uncertainty
suffer from several issues, including inaccurate coverage guar-
antees, strong distributional assumptions, and insufficiently
calibrated prediction intervals. These challenges are further
compounded when dealing with heteroscedastic data.1

1Heteroscedastic data refers to data with varying levels of variability
or scatter across its range, as opposed to homoscedastic data, which has
consistent levels of variability or scatter. An example of heteroscedastic data
in traffic forecasting is rush hour traffic, which typically has more variability
than traffic during off-peak times.
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To address these issues, we propose an adaptive confor-
malized quantile model that provides a unified and reliable
framework for quantifying uncertainty in traffic forecasting.
Our approach is one of the first attempts to use frequen-
tist methods for estimating uncertainty in traffic forecasting.
We provide a comprehensive and structured comparison of
existing approaches to real traffic data using various state-of-
the-art DNN-based traffic forecasting models. We hope our
work can promote more research in this important area of
uncertainty quantification for traffic forecasting.

IV. PRELIMINARIES

A. Problem Definition

A single-point traffic forecasting model attempts to pre-
dict future traffic information based on the past. Examples
of traffic information include flow, speed, and density.
Given a D-dimensional multivariate time series X ={

xt−(m−1), . . . , xt−1, xt
}

∈ RN×D collected at t time with
past m steps from N data sources (roads or sensors), a point
forecasting model f (·) attempts to estimate the multivariate
time series Y =

{
yt , . . . , yt+h−1, yt+h

}
∈ RN×D in the next

prediciton window (e.g., h steps), : X
f (·)
→ Y .

Probabilistic traffic forecasting involves predicting the like-
lihood of various potential outcomes rather than estimating the
most likely outcome. Given historical data X , a probability
predictor F(·) can estimate the uncertainty of future traffic
conditions by producing a set of PIs, which contain the real
data with a certain level of confidence.

Specifically, a probabilistic forecasting model attempts to
estimate PIs for a set of future values denoted as Ŷ =

{ŷt , . . . , ŷt+h−1, ŷt+h} ∈ R2×N×D , where t is the current
time, h is the prediction window. The PI for ŷt+h is defined
as ŷl

t+h ≤ ŷt+h ≤ ŷu
t+h , where ŷl

t+h and ŷu
t+h are the lower

and upper bounds of the PI, respectively. By specifying a
confidence level α, we can say that there is a probability of
(1−α) that the true value Yt+h falls within the PI of Ŷt+h . The
probabilistic forecasting process can be described as X

F(·)
→ Ŷ ,

where F(·) is the probability predictor that maps historical
data X to the predicted PIs for Ŷ .

This paper aims to develop a generic framework to extend
a single-point predictor f to model the uncertainties in traffic
modeling tasks. We target DNN-based traffic forecasting mod-
els as they are the core of state-of-the-art traffic forecasting
methods [7]. It is worth noting that our approach does not
change the underlying DNN model structure and can be
integrated with other classical supervised learning methods,
including support vector machines [41], linear [42] and non-
linear regressors [43].

B. Optimization Goals

Our goal is to generate PIs that are narrow and accurate,
meaning that they are just wide enough to cover the true values
(e.g., the actual traffic speed) with high probability. To achieve
this, we need the PI to be discriminative so that it is narrow for
single-point predictions with high confidence but wide enough
to ensure good coverage overall [44].

We also require the uncertainty method to perform well
across test samples and have good coverage, so we need the
results to be valid [44]. Specifically, for a given probability
or coverage rate of x (defined as 1 − α), we expect the PI to
encompass the true value at least x of the time.

C. Quantified Metrics

We adopt the established practices of prior uncertainty
modeling methods in related domains [34], [44] and use two
metrics to evaluate the efficacy of the PI: validity and discrim-
ination [44]. Specifically, we use mean prediction interval
width (MPIW) and prediction interval coverage probability
(PICP) to measure these requirements. We aim is to obtain
a small MPIW with adequate coverage across test samples.
While a large MPIW can ensure good coverage, it may fre-
quently underestimate or overestimate traffic information, even
when the model is relatively confident with the prediction.
On the other hand, a small MPIW can miss the true value,
leading to incorrect decision such as selecting a slower route
due to incorrect prediction.

1) Mean Prediction Interval Width: We compute the MPIW
across n test samples as:

MPIW =
1
n

n∑
i=1

∣∣yu
i − yl

i

∣∣ . (1)

The MPIW is a smaller-is-better metric as we anticipate the
prediction width as narrow as possible.

2) Prediction Interval Coverage Probability: In addition to
MPIW, we also consider the frequency PI that covers the real
value over the complete n test samples. The observed coverage
Ĉα is computed as:

Ĉα =
1
n

∑n
i=1 ci , ci =

{
1, yi ∈ [yl

i , yu
i ]

0, yi /∈ [yl
i , yu

i ]
. (2)

where ci is a binary value counting if the true value yi is
within the PI {yl

i , yu
i } for the test sample i .

Given a target probability level 1−α, the expected coverage
is 1 − α for n test samples. α is defined as a mis-coverage
rate. For this case, an ideal uncertainty predictor produces n
PIs for all test samples to cover the real value of at least 1−α

time, rendering the observed coverage Ĉα , to be 1−α as well.
If Ĉα is less than 1 − α, the PI is likely undercovered.

Undercoverage is generally non-intuitive since it limits the
PI to meet the requirement of retaining the true values of
important test samples.

D. Conformalized Quantile Regression

Our approach is inspired by the recently proposed CQR
algorithm [16]. CQR combines conformal prediction [23] and
classical quantile regression [26] for uncertainty qualification.
It uses quantile regression to generate an initial PI and then
uses conformal prediction to adjust the PI if required.

1) Working Mechanism of CQR: In layperson’s terms,
a quantile regressor is a tool for quantifying the chance of
having a specific point in a range of possible outcomes. For
instance, if we want to predict the 90th percentile or quantile
for traffic speed, there is a 5% chance that the actual speed
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Fig. 2. Modeling forecasting uncertainties during deployment. QUANTRAFFIC extends the standard DNN-based traffic forecasting model to quantify
prediction uncertainties. For a given test input, a trained DNN generates a single-point prediction akin to traditional DNN models. This single-point prediction
is subsequently processed by a quantile function, which produces an initial PI for the input. The initial PI, along with the test input, is then passed through
the calibration component to produce a final PI.

will be lower than our prediction and a 5% chance it will
be higher. By fitting two quantile functions - one at the 5th
percentile and another at the 95th percentile - we can create a
PI with a 90% coverage. This is where CQR comes in handy
for modeling traffic uncertainty, allowing us to estimate these
quantiles. However, no previous work has used CQR for traffic
uncertainty modeling, making our work the first attempt to fill
this research gap.

In CQR, the training data is divided into two distinct sets:
a training set and a calibration set. The training set is used to
develop the traffic forecasting model using standard supervised
learning techniques. Then, two quantile regressors are trained
on the training set to generate initial estimates of the upper
and lower bounds of the PI. One quantile regressor is used for
estimating the upper bound quantile and the other for the lower
bound. After obtaining the initial estimates, a conformal step
is performed on the calibration to learn a single adjustment
(e.g., increasing or decreasing the PI by x%) to be used to
adjust the PI for all test samples.

2) Limitations of CQR: A drawback of using CQR for
traffic forecasting is that it only produces a single, global
quantile adjustment for all test samples. However, a global
quantile adjustment is unlikely to be effective, as prediction
difficulties can vary significantly across domains or roads.
To illustrate this point, consider once again Routes 1 and
2 given in our motivation example (Section II). Suppose the
traffic conditions on Route 1 are more complex than those
on Route 2. Applying a global adjustment, such as increasing
or decreasing the model prediction by a certain percentage,
to both Routes 1 and 2 is unlikely to be effective. It could
result in a PI that is too narrow for the complex Route 1 or
too wide for the smooth Route 2. A better approach, which
is adopted in this paper, is to generate different adjustment
ranges for each route, resulting in more accurate and reliable
PIs. Doing so enhances the robustness of traffic uncertainty
modeling by considering the specific prediction difficulties of
each location.

V. OUR APPROACH

QUANTRAFFIC is a generic framework for quantifying
the prediction uncertainties of DNN-based traffic forecasting
models. Given a certain confidence level, the QUANTRAFFIC
framework computes a PI that defines a range of possible
values where the real data (e.g., traffic time, flow or speed) is
likely to fall within.

QUANTRAFFIC extends the existing CQR framework but
offers a significant advantage by incorporating a dedicated
calibration component. This component dynamically adjusts

the width of the PI based on locations and prediction windows
(e.g., traffic conditions in the next n minutes, also known
as the prediction horizon), resulting in improved accuracy.
Another important feature of QUANTRAFFIC is its ability to
integrate without requiring modifications to the underlying
DNN model structure, making it easy to implement. Instead,
QUANTRAFFIC uses a dedicated loss function to train the
DNN model and a quantile function to predict an initial PI.
This seamless integration allows QUANTRAFFIC to efficiently
and effectively enhance traffic forecasting in any DNN-based
traffic predictor.

This section begins by providing an overview of
QUANTRAFFIC and illustrating its design principle. It then
discusses how to train and construct the key components that
drive the DNN model to achieve better coverage and more
accurate PIs. It also elaborates on how uncertainty qualification
is achieved with test samples during deployment.

A. Overview of QUANTRAFFIC

Figure 2 demonstrates how QUANTRAFFIC enhances a
standard DNN-based traffic forecasting model to quantify
uncertainties for traffic forecasting during deployment. For
a given test sample (e.g. traffic speed or flow), the trained
DNN generates a single-point prediction that is then passed
to the quantile function to create the initial PI. This PI is a
2-dimensional numerical vector with lower and upper bound
values. Using the node id of the test sample and the prediction
window, we search the calibration table for the corresponding
residual value, which is used to amend the initial PI. Through
this process, the PI can be more accurately adjusted to reflect
the specific context of the prediction, leading to enhanced
accuracy and better coverage.

In Figure 3, our approach adapts the standard DNN model
training workflow for uncertainty modeling. Our training pro-
cess starts by partitioning the training data into two disjoint,
namely training and calibration sets, respectively, to train
the DNN model and build the calibration table separately.
This process is described in Section V-B. Specifically, the
first training set is used to train both the DNN-based traffic
forecasting model and a quantile function, using a pinball
function to compute the loss during training (Section V-C).
Once the DNN model and quantile function have been trained,
we then use the calibration set to construct the calibration table
(Section V-D).

B. Pre-Processing of Training Data

As shown in Figure 3(a), as a one-off preprocessing step,
the training data is split into a standard model training dataset
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Fig. 3. Training workflow of our approach. We first partition the DNN model training datasets into disjoint parts (a). We use the first part to train the
DNN forecasting model and a quantile function that can produce an initial PI during deployment (b). We then apply the trained DNN model and quantile
function to the set-aside calibration dataset to build the calibration component (c).

and a calibration dataset. Specifically, in this paper, we split
the time series data of each node in chronological order. For
calibration purposes, we allocate 40% of the training data, and
this ratio can be adjusted by the user. During the preprocessing
stage, the quantile function (e.g., a linear function) is also
added to the last layer of the DNN model.

C. Training DNN Model and Quantile Function

As depicted in Figure 3(b), the underlying DNN model
and the attached quantile function are trained as a single
network using the DNN training data. Then, during the back-
propagation, the pinball loss is used to figure out the loss
of the network. Specifically, the native DNN model makes a
single-point estimate for each input, which is then passed to
the quantile layer to determine the upper and lower boundaries
of the PI. Then the loss of the network is computed as follows:

Lα =

{
αtra(y − ŷ) y − ŷ > 0
(1 − αtra)(ŷ − y) otherwise

, (3)

where αtra is a pre-defined mis-coverage rate (see
Section IV-C) used at the training phase, y is the ground
truth, and ŷ is the single-point prediction given by the base
DNN model.

Essentially, the pinball loss function applies different
weights to positive and negative residuals based on a known
confidence level (1 − α) [17]. A smaller value of α results
in a greater penalty for samples with values smaller than
the predicted value, and vice versa [45]. When αtra is set to
0.5, Eq. 3 degenerates to the yielding median value of the
corresponding dataset. Practically, setting αtra to 0.1 expects
that 90% of ground truths would fall within the generated PI.

D. Building Calibration Table

In Figure 3 (c), we outline constructing the calibration table
using the left-over calibration dataset.

1) Calibration Table: The proposed calibration table is a
matrix designed to record the residual errors of a sensor node
(or location) for a given prediction window. Each row of the
table stores the residuals of a specific sensor node for various
prediction windows, while each column records the residuals
of a particular prediction window for different sensor nodes.

2) Data Preprocessing: Similar to the standard DNN train-
ing procedure, where the training data is partitioned into
training and validation sets, we split the calibration data into
two sets: χ1 for constructing the potential adjustments set for
the initial PI and χ2 for decision-making to determine the
best adjustment. In the first set χ1, the trained quantile DNN
predicts the traffic information for each test node in a given
prediction window. Then, the prediction errors or residuals are
calculated by measuring how far the PI boundaries deviate
from the ground truth. In the second validation set χ2, the
residual candidates obtained in χ1 are used to determine
the optimal values. These optimal values are stored in the
corresponding cells of the calibration table for a given pair of
node id and prediction window. We gain these optimal values
by minimizing a carefully designed objective function. In this
paper, we leave 50% of the calibration data as the χ2.

3) Compute Residual Percentiles: To compute the residuals
for populating the calibration table, we apply the trained
quantile DNN to each test sample (from the first calibration
dataset χ1) of a given node i and prediction window to produce
a PI, denoted as {ŷl

i, j , ŷu
i, j }, where ŷl

i, j and ŷu
i, j are the lower

and the upper bound of the PI of node i in the prediction
window j , respectively. We then compute the residuals of the
PI as Ri, j =

∣∣∣ŷu
i, j − yi, j

∣∣∣ ∩

∣∣∣ŷl
i, j − yi, j

∣∣∣, where yi, j is the
true value of node i in the given prediction window j . Note
that there may be multiple test samples for a given node-
prediction window pair, resulting in n residuals denoted as
R1

i, j , R2
i, j , . . . , Rn

i, j .
Next, the percentiles of n residuals for each node-prediction-

window combination could be constructed. Specifically, the
residual candidates R1

i, j , R2
i, j , . . . , Rn

i, j are first sorted by
value and subsequently partitioned into m equal-size groups,
commonly referred to as percentiles, based on their relative
position within the distribution. It is worth noting that the
number of quantiles m is a user-defined parameter that bal-
ances calibration accuracy and computational complexity. For
our study, we set m = 100. The 0th percentile corresponds
to the lowest value of residuals, while the 100th percentile
corresponds to the maximum value in the residual dataset.
Compared to histogram-based approaches, residual quantiles
demonstrate more robustness to outliers (as demonstrated in
Section VII-F). Finally the residual percentiles are denoted as
Q1

i, j , Q2
i, j , . . . , Qm

i, j .
4) Choosing the Best Quantile: After calculating the resid-

ual percentiles, the next step is to choose a specific quantile
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from the distribution to be saved in the matching cell of a
node-prediction-window pair. To this end, we apply the trained
quantile DNN to test samples from the second validation set χ2
to produce an initial PI for each test sample. Next, the residual
quantiles, Q1

i, j , Q2
i, j , . . . , Qm

i, j , are applied to the initial PI to
obtain an adjusted PI one by one. We determine which residual
provides the best performance by comparing the coverage and
effective width of each resulting PI for each node-prediction-
window combination against the true value of the validation
set. The optimal residual for the node-prediction-window
combination is then recorded in the corresponding cell of the
calibration table.

Specifically, our objective in selecting the residual recorded
in the calibration table is to minimize the following:

L = arg min
Qm

i∑
0

j∑
0

−λCcov(Qm
i, j , χ2)

+ (1 − λ)PI(Qm
i, j , χ2), (4)

where λ ∈ [0, 1] is a weight to control the balance of the
coverage Ccov and PI for a given node-prediction-window
combination. Finally, the calibration table records the residual
value where the index is the calibration quantile that gives the
minimum L .

E. Using the Trained DNN and Calibration Component

Once we have trained the DNN model as well as the quantile
function and constructed the calibration table as described
above, we can then apply them to unseen test samples. This
process is illustrated in Figure 2.

In contrast to standard CQR that applies a global adjustment
to the initial PI, our approach utilizes the test input’s sensor
node id and prediction window to locate a residual value,
δi , from a calibration table. Specifically, the trained DNN
generates a single-point prediction for a given test sample
that is then passed to the quantile function to create the
initial PI, {l, u}. Using the node id of the test sample and
the prediction window, we search the calibration table for the
corresponding residual value δi . This value is used to amend
the initial PI to the final PI as {l − δi , u + δi }, resulting in a
wider PI for a positive δi and a narrower PI for a negative
δi . No residual value may be presented in the calibration for a
given combination of node id and prediction window, in which
case the initial PI remains unchanged. Through this process,
the PI can be more accurately adjusted to reflect the specific
context of the prediction, leading to enhanced accuracy and
better coverage.

Residual errors of missing combinations of node ids and
prediction windows can be later inserted into the calibration
table. This can be done by using the true value measured after
the prediction window to compute the residual errors of the
node-prediction-window pair. Similarly, during deployment or
every time the DNN model is re-trained, the calibration table
can be updated with the recorded predictions and true values.
This way, the calibration table and quantile function can evolve
to adapt to changes in the deployment environment.

TABLE I
DESCRIPTION OF THE DATASETS USED

VI. EVALUATION SETUP

We evaluate QUANTRAFFIC on seven real-world datasets.
In particular, we apply QUANTRAFFIC to representative DNN
architectures for traffic forecasting and compare it with a
wide range of baseline methods for uncertainty modeling.
This section provides a detailed description of the datasets
used in our evaluation, the baseline quantile methods that
we compare QUANTRAFFIC against, and the hardware and
software platforms used for the experiments.

A. Datasets

In our evaluation, we used seven public traffic datasets that
are widely adopted in the literature. Table I provides the basics
of each dataset, including the type of traffic data collected
(e.g., speed or flow), the number of sensors used to collect
the data, and the time covered by each dataset. The raw data
from these datasets are aggregated into 5-minute intervals,
in alignment with previous literature, e.g., [46].

B. Base Traffic Forecasting Models

To demonstrate the applicability of QUANTRAFFIC over
a variety of DNN-based traffic predictors, we adopt five
representative models, namely, Spatio-Temporal Graph Con-
volutional Network (STGCN) [18], Graph Wavenet (GWNet)
[19], Graph Multi-Attention Network (GMAN) [20], Long-and
Short-term Time-series Network (LSTNet) [21], and Multi-
variate Graph Neural Network (MTGNN) [22]. These models
cover different variants of GNN and the long short-term
memory (LSTM) architecture. They have been widely used in
the literature and represent different classes of deep learning-
based methods for traffic forecasting. Note that our goal
is to demonstrate the generalization ability of QUANTRAF-
FIC to different models rather than to compare the relative
performance of the base DNN architectures. Therefore, our
evaluation is designed to compare the performance of various
quantile methods in uncertainty modeling, all within the same
base DNN architecture.

C. Competing Baselines

We compare QUANTRAFFIC against five representative
uncertainty quantification methods and two classical methods
based on historical data:

Historical data-based methods assume that traffic data,
such as speeds or flow distribution, exhibit strong repeating
patterns during the same period (e.g., the same day across
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weeks or the same hour across days). These methods predict
current travel speed and flow distribution by utilizing the
distribution of the same period from prior data, such as the
distribution of the same day from the previous weeks. In our
experiments, we consider two baseline methods that rely on
historical data: Hist-D, which uses data from the previous days
in the training dataset for predictions, and Hist-W, which uses
the distribution of the same period from the previous weeks
for prediction. For example, if we were to predict the PI for
node i at 8 a.m. on Monday, Hist-W would calculate the mean
µt

i and variance σ t
i across all previously seen samples of node

i at 8 a.m. of all Mondays. Once the mean and variance for
each time slot and node of interest are calculated, these two
values can be used to construct the prediction interval for that
slot and node with {µt

i -σ
t
i , µt

i + σ t
i }.

Bayesian uncertainty quantification models the uncer-
tainty in the model parameters using a likelihood function
constructed by Bayesian modeling [24]. It also computes the
data uncertainty by approximating the probability distribution
over the model outputs through sampling and averaging over
the resulting models. Our work uses a Gaussian prior distri-
bution with zero mean and unit variance [24] and the MC
sampling number of 50.

Monte Carlo dropout [25] models predictive distributions
by randomly switching off neurons in DNNs during testing.
This generates different model outputs that can be interpreted
as samples from a probabilistic distribution, allowing MC
dropout to estimate the prediction probability. Our work added
a dropout layer with a rate of 0.3 after the last hidden layer
of the base traffic forecasting model and used a sample of 50.

Deep quantile regression (DQR) generates PIs by using
quantile function [26], [36]. Unlike conventional methods
that minimize the averaged residual errors, DQR calculates
the prediction errors at a specific distribution quantile. This
method requires differential models or tailored loss objectives
such as NLL-based or pinball losses to generate the boundaries
of the PI. We use the 5th and 95th percentile estimates,
following the configuration outlined in [16].

Conformal prediction [27] is a post-processing method for
quantifying prediction uncertainties. The main idea behind
conformal prediction is to use a nonconformity measure
to evaluate the similarity between new input and training
data. Given a certain confidence level, conformal prediction
constructs prediction regions containing a certain fraction of
predictions with the same nonconformity measure. In this
study, we use inductive conformal prediction [47] due to its
simplicity, which requires splitting the training data into two
subsets. We use the same training dataset splitting ratio for
conformal prediction and our approach.

D. Experimental Setting

1) Hardware and Software: We implemented QUANTRAF-
FIC as a Python package using PyTorch version 1.8.0.
We conduct our model training and evaluation on a multi-
core machine equipped with a dual-socket 20-core, 2.50 GHz
Xeon(R) Silver 4210 CPU, 256GB of DDR4 RAM, and 2x
NVIDIA GeForce RTX 2080 Ti GPUs. Our system is running

Ubuntu 18.04.5 with Linux kernel 4.15.0, and we execute the
GPU code using CUDA version 11.1.

2) Training Setup: For consistency with prior work [7],
we split the data into training, validation, and test sets at a
ratio of 7:1:2. To model uncertainty, we further reserve 40% of
the training data for calibration (see Section V-B). We use the
Kullback–Leibler divergence loss function to train Bayesian
models [24], pinball loss for DQR, CQR, and the proposed
QUANTRAFFIC. We use mean absolute error (MAE) as the
loss function for all other models. We train all models using
the Adam optimizer [48] with a learning rate of 0.001 and a
batch size of 64 (except for GMAN, where we use a batch size
of 16 due to GPU memory constraints). The training process
stops after 200 training epochs or when the validation loss
remains unchanged for ten consistent epochs, following the
standard practice in prior work [7].

To ensure a fair comparison, the hyperparameters of
quantile-based methods are identical to those of CQR methods.
For the additional hyperparameters in CQR, i.e., calibration
mis-coverage rate αcal controlling the movement and direction
of the upper and lower marginal bounds, we use the calibration
set to pick the best value.

E. Evaluation Methodology

We vary the observation step from 1 to 12, corresponding to
historical data in the last 5 to 60 minutes, as each step contains
sensor data over 5 minutes. We also set the prediction windows
to 1, 2, . . . , 12 steps by requiring the based DNN model to
predict traffic information in the next 5, 10, . . . , 60 minutes.
In other words, the base model takes as input sensor data of
the last n minutes to predict information in the next n minutes.

We evaluate the coverage and discrimination guarantees
when applying an uncertainty method to each tested DNN
model. As explained in Section IV-C, we use MPIW (where
smaller values are better) to evaluate the discriminative perfor-
mance and PICP (where larger values are better) to quantify
the coverage of the generated PIs for each test sample.
We compute PICP and MPIW by averaging the results across
nodes in the prediction window settings.

VII. EXPERIMENTAL RESULTS

We evaluate the effectiveness of QUANTRAFFIC on seven
datasets, comparing it to six state-of-the-art uncertainty mod-
eling methods, two classical methods based on historical data.
Highlights of our evaluation are:

• QUANTRAFFIC consistently delivers the best overall per-
formance than the baseline uncertainty methods across
base DNN architectures and datasets (Section VII-A);

• The adaptive calibration scheme enhanced QUANTRAF-
FIC by giving a better trade-off between the coverage and
PI width for individual locations and sensor nodes over
CQR (Section VII-B and Section VII-F);

• QUANTRAFFIC gives more robust performance over
CQR and DQR at different desired coverage rates
(Section VII-C and Section VII-D);

• We showcase how QUANTRAFFIC can be used to
enhance the evaluation of traffic forecasting models
(Section VII-G).
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TABLE II
PERFORMANCE EVALUATION FOR TRAFFIC METHODS WITH DIFFERENT UNCERTAINTY QUANTIFICATION METHODS ON TRAFFIC

SPEED DATASETS. (PICP (%) ↑/MPIW ↓)

• We discuss how the data impact QUANTRAFFIC’s per-
formance in terms of training-calibration split ratio
(Section VII-E) and pre-processing data splitting methods
(Section VII-H).

• We present a real-world case study to demonstrate the
practical application and effectiveness of QUANTRAFFIC
(Section VII-I)

A. Overall Results

In this experiment, we set an expectation of a 90% coverage
rate, and we evaluate if the quantification method can reach or
even exceed the 90% coverage rate across test samples using
PICP. Later in Section VII-D, we compare the performance
under different coverage rate expectations.

Tables II and III present the results obtained when applying
each evaluated uncertainty method to different DNN models
and datasets. The best-performing results are highlighted in
bold for each base DNN model. In the corresponding column
of each uncertainty method, we first show the improvement
of PICP (as a percentage concerning a 90% coverage rate),
followed by the MPIW that measures the width of the PI
(lower-is-better). In this context, a positive PICP improvement
means that the coverage of PI exceeds the expectation of a 90%
coverage rate. In contrast, a negative PCIP improvement (−)

means that the coverage of PI falls below the expectation. For
example, in Table II(a), applying QUANTRAFFIC to STGCN
yields +1.1% / 20.5. This should read as that QUANTRAFFIC
achieves a 91.1% coverage rate (above the coverage expec-
tation) with 20.5 in MPIW (i.e., the difference between the
upper and the lower bound of the PI is 20.5). We report the
average PCIP and MPIW for each dataset across test samples.
Other comparative baselines, including Hist-W, Hist-D, and
DeepSTUQ, are shown at the bottom of each dataset table.

As expected, the MPIW given by all methods depends on
the base DNN model’s capability because a larger MPIW (or
a wider PI) is needed to ensure the coverage for a less accu-
rate DNN model. However, we observe that QUANTRAFFIC
achieves or exceeds the desired 90% coverage rate for most
test cases. For a handful of cases where the QUANTRAFFIC
PICP falls below 90%, the resulting coverage rate remains
close to the target of 90%, with a coverage rate of at least
88% (i.e., ⩾ −1.8% in the tables). In addition to achiev-
ing a good coverage rate, QUANTRAFFIC produces small
MPIW, thus providing a meaningful uncertainty measure for
decision-making.

Compared to QUANTRAFFIC, non-frequentist baselines
such as MC dropout, Bayesian, and Conformal methods pro-
vide a narrow PI, resulting in a small MPIW. However, they
struggle to meet the coverage expectation, where the true value
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TABLE III
PERFORMANCE EVALUATION FOR TRAFFIC METHODS WITH DIFFERENT UNCERTAINTY QUANTIFICATION METHODS ON

TRAFFIC FLOW DATASETS (PICP (%) ↑/MPIW ↓)

of the test sample often falls outside the PI. This suggests that
the PI given by non-frequentist baselines can mislead decision-
making by being too optimistic or over-conservative for traffic
forecasting. The performance of non-frequentist baselines is
also not consistent, showing significant variance depending
on the test datasets and DNN models. For instance, while
Bayesian gives a coverage rate of 86.7% (−3.3% in Table II)
on PEMS-BAY when using GMAN as the base DNN, its
coverage rate is only 22.5% (−67.5% in Table II)) on the
same dataset when using MTGNN as the base model.

By utilizing previously collected data, Hist-D gives good
coverage but with a large MPIW, leading to over-conservative
forecasts. In contrast, quantile-based methods such as DQR
and CQR significantly outperform others by providing a better
coverage guarantee. By incorporating an adaptive scheme to
adjust the initial PI based on the test node and prediction

window, QUANTRAFFIC improves upon CQR and DQR with
higher PCIP and smaller MPIW for all test cases. QUANTRAF-
FIC also delivers consistent good performance across datasets
and base DNN models, demonstrating the robustness of our
approach. This further highlights the advantage of quantile-
based methods over non-frequentist baselines, which exhibit
inconsistent and varying performance depending on the test
datasets and base DNN models.

QUANTRAFFIC also improves over DeepSTUQ, a state-of-
the-art uncertainty modeling method, for the majority of the
test cases. For example, for the PEMS04 dataset, under a
PICP of 90.8%, QUANTRAFFIC gives a lower MPIW value
than DeepSTUQ (82.4 verse 83.2). We emphasis that Deep-
STUQ uses a particular DNN model architecture built upon
Graph Convolutional Networks and Gated Recurrent Networks
and are based on variational inference and deep ensembles,
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Fig. 4. Violin diagrams show PICP and MPIW by applying CQR and
QUANTRAFFIC to GWNet model tested on the PEMS04. The thick black
line shows where 50% of the data locates.

hence incompatible with the underlying DNN models (e.g.,
STGCN, GWNet, etc.) evaluated in this work. In contrast,
QUANTRAFFIC is a generic framework that can work with
any underlying DNN models. Therefore, QUANTRAFFIC has
a better generalization ability than DeepSTUQ.

B. Adaptive PI Adjustments

QUANTRAFFIC advances CQR by adaptively adjusting the
initial PI through a dedicated calibration table that uses dif-
ferent adjustments rather than a constant global value adopted
by standard CQR. To demonstrate the benefit of QUANTRAF-
FIC over CQR, we closely examine the test samples of the
PEMS04 dataset when using GWNet as the base DNN for
traffic forecasting. The results are given in the violin diagram
of Figure 4. In the diagram, the width of the violin indicates
the density of test data points with a given PICP, and the center
of the plot is a box plot with the median and quartiles the test
samples fall into a specific PICP (or coverage rate).

For this test scenario, the averaged PICP given by CQR
and QUANTRAFFIC is comparable at 90.9% and 91.1%,
respectively. However, the effectiveness of the PI can vary
significantly for individual nodes, highlighting the impor-
tance of having an adaptive scheme. Upon closer inspection
of Figure 4, we see that the coverage rates provided by
QUANTRAFFIC are more uniformly located around the desired
coverage rate of 90% across nodes. In contrast, the coverage
rate provided by CQR is highly diverse, ranging from 45%
to 100%. In other words, the performance of CQR is less
consistent and less robust than QUANTRAFFIC, as CQR can
lead to a poor coverage guarantee for individual nodes under
a given prediction window.

C. Case Study of Selected Test Samples

In Figure 5, we closely examine the PI generated by differ-
ent uncertainty methods for traffic flow prediction performed
on PEMS04 on the date from 2012-02-18 18:00 to 2012-02-
19 18:00. In the diagram, the PI is represented as a grey area,
while the ground truth of a test sample is represented by a
point. If a point falls within the grey belt, the generated PI
covers the true value, otherwise, it fails to cover the true value.
The grey area of a good strategy should cover as many points
as possible while being as narrow as possible.

Methods like MC drop and Hist-W result in a small grey
area with a small MPIW, but their PIs fail to cover the
ground truth for a large number of test samples, leading to

TABLE IV
PERFORMANCE COMPARISON OF QUANTILE METHODS UNDER

DIFFERENT COVERAGE LEVELS FOR PICP (%) ↑/MPIW ↓

a poor PICP and insufficient coverage. Quantile methods like
DQR and CQR perform significantly better than MC dropout
and Bayesian. Compared to DQR and CQR, QUANTRAFFIC
produces PIs that cover the ground truth of more test samples
(i.e., a higher PICP) with a smaller MPIW (i.e., a narrower
grey area in the diagram). This example demonstrates the
effectiveness of our adaptive scheme.

D. Impact of Desired Coverage Rates

So far, our evaluation set 90% as the targeting coverage rate.
In this section, we investigate the impact of the desired cover-
age rate on the performance of uncertainty methods. Previous
evaluations have shown that DQR, CQR and QUANTRAFFIC
are the best-performing methods. Therefore, we focus on
quantile-based methods in this experiment. We apply the
quantile methods to the METR-LA dataset using GWNet as
the base DNN model. We vary the expected coverage level,
1 − α, from 0.6 to 0.95, corresponding to a target coverage
rate of 60% to 95%, respectively, to evaluate the usefulness
of traffic uncertainty models in different practical scenarios.

Table IV compares the PCIP/MPIW given by each quantile
method averaged across the test samples for a target coverage
level. As expected, when we increase the coverage level to
ensure a coverage rate, a larger MPIW (and a wider PI) is
required. Once again, QUANTRAFFIC outperforms the other
methods, providing the best coverage rate across settings.
While DQR has the smallest MPIW in most cases, it gives
a poor coverage rate, which can be up to 41% below the
expected value. This suggests that the PI provided by DQR
is too narrow (and hence has a small MPIW) to cover the true
value of the prediction. CQR addresses the issues of DQR by
using a constant adjustment value. However, it can still provide
poor coverage or a PI that is too wide for some individual
nodes. By dynamically adjusting the PI based on individual
nodes, QUANTRAFFIC provides the best overall performance.
This further demonstrates the effectiveness and flexibility of
our approach in adapting to different sensor nodes or locations.

E. Impact of Training-Calibration Split Ratio

To build the calibration component, QUANTRAFFIC and
CQR require setting aside some data from the training dataset
as the calibration data. Our experiments described so far leave
40% of the original training data as the calibration dataset.
In this experiment, we evaluate how the training-calibration
dataset ratio affects the performance on QUANTRAFFIC and
CQR. Specifically, We vary the ratio (β) between the DNN

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 



12 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Fig. 5. Coverage and prediction intervals for different uncertainty quanlification models of PEMS04 from 2012-02-18 18:00 to 2012-02-19 18:00.

TABLE V
PERFORMANCE COMPARISON OF DIFFERENT TRAINING-CALIBRATION

RATIO β ON TRAFFIC FLOW DATASET PEMS08
(PICP (%) ↑/MPIW ↓)

model training data and the calibration data to examine the
impact on performance. Specifically, we evaluate the ratios
of 6:1, 5:2, 4:3, 1:1, 3:4, 2:5, and 1:6. We then apply
QUANTRAFFIC and CQR to the PEMS08 dataset, using
GWNet as the base DNN model, with a target coverage rate
of 90%.

The result is given in Section V. Leaving too few samples
to train the base DNN model may lead to decreased accuracy,
resulting in a wider PI (and larger MPIW) required to ensure
sufficient coverage. For instance, when the training-calibration
data ratio β is set to 1:6 or 2:5, CQR and QUANTRAFFIC
produce a wide PI. However, insufficient calibration data can
also impact the accuracy of the uncertainty model, given that
QUANTRAFFIC relies on partitioning the calibration dataset to
construct the calibration table. As a result, a smaller calibration
dataset (e.g., when β is 6:1) can affect the performance
of the model. Nevertheless, for most experimental settings,
QUANTRAFFIC outperforms CQR in terms of both the PICP
and MPIW metrics.

TABLE VI
PERFORMANCE COMPARISON OF GRID SEARCH AND QUANTILE SEARCH

(PICP (%) ↑/MPIW ↓)

F. Quantile Search for Calibration Table Construction

As described in Section V-D, in order to construct the
calibration table, we first apply the trained DNN and quantile
function to the calibration dataset to obtain the prediction
residuals. We then partition the residuals into continuous
intervals with equal percentiles rather than predefined equal-
sized intervals. This experiment compares our quantile-based
approach against a grid method for projecting the residuals
onto intervals. The results were obtained on the PEMS08
dataset using GWNet as the base DNN model and a target
coverage rate of 90%. The results are given in Section VI,
demonstrating the effectiveness of quantile search over the grid
search method.

Using quantiles over a specific range can be advantageous
in situations where traffic data is partially missing and the
range of possible values for residuals is not well-defined.
Quantile search reduces the need for dense interval steps by
focusing the search on the most promising regions in the
parameter space, thereby increasing the efficiency of the search
process. It can also help to avoid overfitting and increase
robustness to outliers. On the other hand, in grid search, miss-
ing traffic data can cause a narrow range of possible values,
requiring more interval steps to capture better adjustments.
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TABLE VII
PERFORMANCE EVALUATION BASED ON POINT

AND UNCERTAINTY METRICS

G. Performance Evaluation of Traffic Forecasting Models

The ability to model prediction uncertainty can also be
useful in evaluating the creditability of a traffic forecasting
mode. In this experiment, we extend our evaluation to explore
the trade-off between accuracy and confidence in traffic fore-
casting tasks. There is increasing research effort in discovering
the best-scoring traffic predictor in specific or ideal scenarios
[49]. Meanwhile, the reliability of the experimental evaluation
is often neglected. For example, a traffic forecasting model
could have a good performance on average in point estimation
matrices but be less accurate during peak hours than at night.
In this evaluation, we apply QUANTRAFFIC to METR-LA and
PEMS08 and compare the prediction accuracy measured by
commonly used loss functions, Mean Absolute Error (MAE),
Root Mean Square Error (RMSE), Mean Absolute Percentage
Error (MAPE) and the corresponding coverage and discrimi-
nation on test data measured in PICP and MPIW.

As can be seen from the Table VII, GWNet would be
regarded as the most accurate model using traditional point-
based evaluation metrics, but it is less reliable in coverage and
discrimination metrics. While evaluating model credibility is
not the focus of this work, our approach can provide a new
measure for the performance evaluation of traffic forecasting
models.

H. Impact of Pre-Processing Data Splitting Methods

So far, our evaluation is based on cross-validation on the
timeline. In this section, we aim to explore the influence
of varying timeline window lengths on the performance of
uncertainty methods. To achieve this, we employed a rolling
cross-validation technique comprising ten folds. The model
was trained on consecutive folds and subsequently tested on
the subsequent fold in an iterative manner. The final results
were derived by averaging the outcomes obtained from all
folds.

Table VIII presents the cross-validation performance of
GWNet utilizing various uncertainty qualification methods on
the PEMS08 traffic flow dataset. The analysis results align
closely with those discussed in Section VII-A, where time
series were split chronologically. Specifically, QUANTRAF-
FIC exhibits a high coverage rate of approximately 90%
while maintaining a small MPIW. Moreover, QUANTRAFFIC

TABLE VIII
CROSS-VALIDATION PERFORMANCE EVALUATION FOR GWNET WITH

DIFFERENT UNCERTAINTY QUANTIFICATION METHODS ON TRAFFIC
FLOW DATASET PEMS08 (MEAN±VARIANCE)

Fig. 6. Comparative analysis of route selection between single-point model
and QUANTRAFFIC.

demonstrates improved robustness, indicated by a smaller
variance in both PICP and MPIW.

I. Case Study

We now consider a practical use case of QUANTRAFFIC,
as defined in Figure 6. In this experiment, we use GWNet as
the baseline single-point prediction model.

Figure 6(a) gives the sensor locations from the PEMS08
dataset, where each dot represents a sensor location.
Figure 6(b) shows the differences in route selection given by
a single-point prediction and QUANTRAFFIC on the journey
from sensor IDs 717492 to ID 716956 on Monday, August 8,
2016. In Figure 6(b), the horizontal axis represents time slots,
while the vertical axis represents the selected paths, R1, R2,
and R3. The paths are arranged from the inner ring to the
outer ring in decreasing order of distance: R1 (15.2 miles),
R2 (14.1 miles), and R3 (13.9 miles). During peak hours, the
actual congestion situation follows the order of R1 > R2 >

R3. Each dot in Figure 6(b) represents a path selection strategy
during different time slots, enabling a comparison between
the single-point prediction method and the QUANTRAFFIC
approach.

During peak hours (9 a.m. - 9:30 a.m., 6 p.m. - 8 p.m.),
QUANTRAFFIC selects a longer but faster route (R3) as this
route has less traffic and the fastest travel time. In contrast,
a single-point prediction tends to select a shorter route (R1)
despite the possibility of encountering congestion. In the early
morning hours (1 a.m. - 5 a.m.), both methods prefer the
shorter route (R1), and during other periods (5 a.m. - 9:30 a.m.,
1 p.m. - 5 p.m., 9 p.m. - 12 a.m.), both methods show a
preference for the middle-distance route (R2) to balance the
excessive congestion and travel distance.
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VIII. DISCUSSION

Naturally, there is room for future work and improvement.
We discuss a few points here.

A. Alternative Quantile Functions

In the quantile DNN model training (see Section V-C),
we attach a linear layer to the last layer of the DNN and use
the linear layer as the quantile function. An alternate solution
could be using a dedicated network to generate two separate
predictions. In this way, for each input, the DNN model would
produce two separate outputs from the modified last layer, one
for the lower bound and the other for the upper bound. The
pinball loss assigns orthogonal weights to both predictions and
uses them to calculate the loss. We leave this as our future
work.

B. Calibration Component

In this paper, we use a dedicated calibration table to provide
customized PI adjustments for individual nodes. Another way
to do this is to train a calibration function using, e.g. linear
regression or a neural network. Doing so would require
having sufficient training data to learn an accurate calibration
function.

C. Coverage Goal

QUANTRAFFIC aims to produce a PI that meets the user-
defined coverage level. In general, a higher coverage level
guarantees stronger prediction accuracy. In practise, a high
coverage level can be employed to ensure, for instance, the
worst-case arrival time. In contrast, a lower coverage level
may suffice if the user is willing to tolerate a certain level
of prediction error in traffic information, for example, if the
consequence of missing an event is insignificant. As such,
techniques for learning and modeling user needs [50] are
complementary to QUANTRAFFIC.

D. Other Calibration Techniques

QUANTRAFFIC employs a straightforward yet efficient
method of utilizing a calibration table to adjust the PI.
Additionally, other post-processing techniques can be used
to enhance initial predictions. For instance, ensemble meth-
ods [37] can leverage multiple prediction models, and data
augmentation techniques [9] involve applying various data
augmentation methods to the test input to obtain multiple
predictions to form the PI. Our future work will investigate
the use of these techniques.

E. Data Distribution Drifts

Although differences in data characteristics between the
training and calibration sets may lead to decreased accuracy in
model prediction, the calibration component of QUANTRAF-
FIC is used to adjust the prediction interval during calibration
to address this drop in accuracy. However, in many real-world
applications, particularly in traffic forecasting, the data distri-
bution may be shifted due to various factors such as changes

in road infrastructure (e.g., temporary road closures), weather
patterns, and traffic patterns (e.g., traffic accidents), leading to
a shift in the test data distribution with respect to the training
data. In case the accuracy of QUANTRAFFIC decreases, a user
can re-train the base model to predict new intervals, update
the uncertainty component, or integrate continuous learning
methods [51] to periodically update the base model and the
QUANTRAFFIC component. Our future work will investigate
how online adaptation techniques can be employed to detect
data drift.

F. Calibration Data Size

QUANTRAFFIC and CQR require setting aside some data
from the model training dataset as calibration data. If the
calibration set is not representative of the test set, the perfor-
mance of CQR and QUANTRAFFIC may suffer, as shown in
Section VII-D. As such, techniques for data augmentation [52]
like basic data augmentation methods (e.g. window cropping
[53]), Deep Generative Models [54] and data selection [55]
like active learning and scoring functions [56] are orthogonal
to our approach.

IX. CONCLUSION

We have presented QUANTRAFFIC, a framework that
enhances the capability of DNN-based traffic forecasting mod-
els to quantify the uncertainty of their predictions. Specifically,
QUANTRAFFIC generates the upper and lower bounds of the
prediction, which is useful in tasks like emergency route
planning to ensure the worst-case arrival time. Our framework
is generic, applicable to any DNN model, and does not alter
the DNN model’s underlying architecture during deployment.
QUANTRAFFIC builds on CQR and utilizes a dedicated loss
function to train a quantile function that generates a prediction
confidence interval for the single-point output of the DNN
model. It advances standard CQR by dynamically adjusting
the prediction interval based on individual locations or sensor
nodes of the test samples, leading to a more accurate PI with
valid coverage.

We evaluate QUANTRAFFIC by applying it to six represen-
tative DNN architectures for traffic forecasting and comparing
it against five uncertainty quantification methods and two
classical historical-data-based methods. Experimental results
show that QUANTRAFFIC has good generalization ability,
delivering better performance than the competing methods
across the evaluated DNN models. This outcome underscores
the significance of QUANTRAFFIC as one of the first attempts
to develop a generic framework for modeling uncertainties in
traffic forecasting.

We hope that the open-source release of QUANTRAFFIC
will enable more research into robust traffic forecasting by
providing a means to quantify uncertainty in DNN-based
models.
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