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Abstract—Optimization techniques are frequently applied in
science and engineering research and development. Evolutionary
algorithms, as a kind of general-purpose metaheuristic, have
been shown to be very effective in solving a wide range of
optimization problems. A recently proposed chemical-reaction-
inspired metaheuristic, Chemical Reaction Optimization (CRO),
has been applied to solve many global optimization problems.
However, the functionality of the inter-molecular ineffective
collision operator in the canonical CRO design overlaps that
of the on-wall ineffective collision operator, which can potential
impair the overall performance. In this paper we propose a new
inter-molecular ineffective collision operator for CRO for global
optimization. To fully utilize our newly proposed operator, we
also design a scheme to adapt the algorithm to optimization
problems with different search space characteristics. We analyze
the performance of our proposed algorithm with a number
of widely used benchmark functions. The simulation results
indicate that the new algorithm has superior performance over
the canonical CRO.

Index Terms—Chemical reaction optimization, global opti-
mization, inter-molecular operator, evolutionary computation,
meta-heuristic.

I. INTRODUCTION

CHEMICAL Reaction Optimization (CRO) [1] is a recently
proposed population-based general-purpose metaheuris-

tic optimization method. CRO mimics the interactions and
transformations of the reactant molecules in chemical reactions
to search for global optimums [2]. CRO was designed as
a general framework for optimization, and it was initially
proposed to solve combinatorial optimization problems [1]. It
has been applied to solve a wide range of classical and real-
world discrete problems, e.g. Quadratic Assignment Problem
[1], Sensor Deployment Problem [3], and Unit Commitment
Problem [4]. CRO demonstrated outstanding performance in
these problems and was shown to be both effective and
efficient in solving similar combinatorial problems.

Based on the CRO optimization framework, Lam et al.
proposed a variant of CRO, named Real-Coded Chemical
Reaction Optimization (RCCRO), to solve continuous opti-
mization problems [5]. RCCRO has four different operators for
the elementary reactions to facilitate the optimization process
(the details will be introduced in Section II). The encod-
ing scheme, boundary handling scheme, and other ancillary
schemes were also devised. RCCRO has also been applied

to solve different benchmark and real-world problems, e.g.
training artificial neural networks [6], Optimal Power Flow
problem [7], and Cognitive Spectrum Allocation problem [8].
We also conducted research on exploring the nature of differ-
ent operators in RCCRO. In our previous work, we attempted
to use different probability distribution function to replace the
Normal distribution adopted to perform neighborhood search
[9], and the results show no significant preference over the
four distributions studied.

In the canonical design of RCCRO, the inter-molecular inef-
fective collision operator is largely similar to having two on-
wall ineffective collisions occurring simultaneously, and the
only difference between inter-molecular and on-wall ineffec-
tive collisions is their different energy handling schemes. This
design can significantly alleviate the implementation effort
as the neighborhood search operator, i.e. on-wall ineffective
collision operator, is re-used. However, a potential drawback
of this implementation is that the functionalities of these
two elementary reactions overlap, which may lead to wasting
the limited function evaluations. Moreover, the neighborhood
search operator in the canonical RCCRO alters the value of one
dimension of the input solution, which can effectively solve
problems with minimal inter-dimensional correlation. But it is
not efficient at solving problems with strong inter-dimensional
correlation such as rotated functions. In order to resolve these
drawbacks, this paper focuses on proposing new operators and
schemes based on the canonical RCCRO framework.

The rest of this paper is organized as follows. We introduce
the canonical design of the CRO framework and the RCCRO
design in Section II. The newly proposed inter-molecular
ineffective collision operator and the adaptive collision scheme
is presented in Section III. Section IV introduces the experi-
mental setting we employed to analyze the performance of our
algorithm as well as the simulation results and discussions.
Finally this paper is concluded in Section V with some
potential future research.

II. CHEMICAL REACTION OPTIMIZATION FRAMEWORK

In this section we will introduce the general framework
of the canonical CRO and some implementation details of
RCCRO. We will use CRO to refer to both CRO and RCCRO
hereafter.



A. Molecule

Molecules are the basic operating agents of CRO. In CRO,
each optimization task is considered as a chemical reaction
occurring in a closed container with a population of molecules
and an energy buffer. The molecules in the container move
and collide with the wall or with other molecules. With the
collisions, the properties of molecules involved are changed,
allowing the algorithm to explore the solution space. Each
molecule possesses the following attributes:
• A molecular structure refers to a feasible solution of

the problem to be optimized. Each molecule possesses
one molecular structure, which is modified by different
operators invoked in the elementary reactions.

• Potential Energy (PE) stands for the quality of the solu-
tion held by the molecule. In terms of optimization, PE
is equivalent to the fitness value of the solution.

• Kinetic Energy (KE) stands for the tolerance of the
molecule to accept a worse molecular structure compared
to the current one in terms of the solution quality. A larger
KE means that the molecule can accept a much worse
molecular structure than those molecules with less KE
values.

Besides these properties, the molecules can also hold
some other attributes to suit different optimization prob-
lems. The implementation of these attributes can be problem-
independent.

B. Elementary Reactions

In CRO, the optimization task, i.e. the chemical reaction, is
tackled by four kinds of elementary reactions, including on-
wall ineffective collision (Onwall), decomposition (Dec), inter-
molecular ineffective collision (Inter), and synthesis (Syn).
They occur sequentially and randomly to manipulate the
structures of the molecules involved. Among them, Onwall
and Dec takes one molecule as input while Inter and Syn
takes two molecules. Onwall and Syn output one molecule
based on the input molecule(s), while Dec and Inter output
two molecules. Thus Dec and Syn can alter the total population
size. This dynamic population size property is a feature that
distinguishes CRO from other metaheuristics.

1) Neighborhood Search Operator: In the canonical design
of CRO, we use this neighborhood search operator as the
basic molecular structure manipulatimg operator [2]. It is
employed in Onwall, Dec, and Inter. This operator modifies
one molecular structure using Gaussian perturbation value.
Assume that the original molecular structure is ω, and the
newly generated molecular structure is ω′. We first randomly
choose a dimension i of ω to modify. Then a random number
ε is generated from a zero-mean Normal distribution whose
variance is a user-defined parameter stepSize. Then the new
molecular structure is generated by

ω′i = ωi + ε (1)

where ωi stands for the i-th dimension of the molecular
structure ω.

2) Elementary Reaction Operators: Based on the neighbor-
hood search operator, we further designed the four elementary
reaction operators. The detailed implementations are elabo-
rated as follows.
• An Onwall occurs when a molecule collides with the con-

tainer and bounce back. During this elementary reaction,
the structure of the involved molecule is manipulated
using the neighborhood operator. The main purpose of
this elementary reaction is to perform local search.

• A Dec occurs when a molecule collides with the container
and breaks into two new molecules. During this elemen-
tary reaction, the structure of the input molecule is copied
to the two new molecules. Then the new molecules go
through a number of independent neighborhood opera-
tors. The main purpose of this elementary reaction is to
jump out of local optimum.

• An Inter occurs when two molecules collide with each
other and bounce back. In the canonical implementation
of CRO, this elementary reaction is considered to be two
onwalls occurring simultaneously. The main purpose of
this elementary reaction is also to perform local search.

• A Syn occurs when two molecules collide and merge
into one new molecule. The detailed implementation of
this elementary reaction can be found in [2]. The main
purpose of this elementary reaction is to maintain the
population diversity [9].

C. Searching Pattern

CRO is composed of three phases: initialization, iteration,
and the final phase. In initialization, all algorithm parameters
are initialized, and the initial population is randomly gen-
erated. Then in the iteration phase, the algorithm manipu-
lates the molecules to search for the global optimum in an
iterative manner. In each iteration one elementary reaction
is selected and conducted. This selection is controlled by
the algorithm optimization parameters using a pre-defined
deterministic scheme [2]. After the elementary reaction is
selected, a corresponding number of molecules are randomly
picked to participate in the reaction. These molecules are then
manipulated and go through an energy check to determine
whether the reaction succeeds or not, i.e. whether the changes
are adopted. The energy check is elaborated in [1] and [5],
and the underlying concept is the conservation of energy. This
phase iterates until the stopping criterion is met. Then the
algorithm proceeds to the final phase and the optimum results
are output. Interested readers can refer to [1], [2], and [5] for
elaboration of the algorithm and its pseudocode.

III. CHEMICAL REACTION OPTIMIZATION WITH
ADAPTIVE COLLISION

In this section we will elaborate our proposed inter-
molecular adaptive collision scheme, which is composed of
a new inter-molecular ineffective operator and an adaptive
collision scheme. We call this algorithm CRO with Adaptive
Collision (CRO/AC). In all discussions hereafter, without loss
of generality, we only consider minimization problems.



A. Inter-molecular Ineffective Collision Operator

In the canonical design of CRO, the inter-molecular ineffec-
tive collision is considered to be two on-wall ineffective colli-
sions occurring simultaneously. However, this implementation
renders the effects of these two operators overlapping. So we
propose a new Inter operator to overcome this drawback.

When an Inter takes place, two molecules are randomly
selected from the current population to participate in the
elementary reaction. Instead of conducting neighborhood op-
erators on them as in canonical CRO, we first check their PE
values, i.e. the fitness values of the solutions they hold. We
use ωs to denote the molecular structure of the molecule with
a larger PE value, and ωt to denote the one with a smaller PE
value. This implies that ωt is better than ωs in terms of the
solution quality.

After the two molecules are examined, we use a two-step
approach to modify their structures. In the first step, we change
ωs to make it more similar to ωt. This can be accomplished
by using the following:

ω′s,i = (ωt,i − ωs,i)× ri + ωs,i, (2)

where ωs,i stands for the value of i-th dimension of ωs, ω′s,i
stands for the newly generated structure for ωs, and ri is a
random number uniformly generated in [0, 1). In this step,
the random number ri is independently generated for each
dimension.

The second step is to change ωt to make it less similar to
ω′s, accomplished by:

ω′t,i = (ωt,i − ω′s,i)× ri + ωt,i. (3)

The purpose of this design is to avoid pre-mature convergence
and maintain the population density. The first step significantly
reduces the population density, which may lead to pre-mature
convergence. This second step increases the density by a small
margin, and acts as a counter-measure of getting stuck in local
optimums. We will demonstrate the necessity of this step in
Section IV.

The remaining parts of the Inter operator are unchanged.
The new molecules will go through the energy conservation
test to check whether this Inter is deemed successful or
not. If so, the changes made on these molecules, including
molecular structures and molecule properties, are accepted.
Otherwise these molecules remain unchanged. This ends an
Inter elementary reaction for CRO.

B. Adaptive Collision Scheme

One main difference of our proposed Inter operator and the
canonical design is that our operator can update the values
of multiple dimensions in a solution. This operator is suitable
for problems with large inter-dimensional correlations [10],
but may have equal or even poorer performance on those
problems with no such correlations. Thus the ratio of occur-
rence of Onwall and Inter is critical to the performance. In
the canonical design of CRO, this ratio is generally controlled
by a user-defined parameter collision rate collRate [1], and
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Fig. 1. Sigmoid Function Used in Adaptive Collision Scheme

the value is usually set to be 0.2 [5][11]. However, with the
changes in the nature of Inter operator, this value is no longer
appropriate and we shall tune the parameter to tailor-make the
algorithm for different optimization problems, but this tuning
process can be very time-consuming. So we further devise
an adaptive collision scheme for CRO to control the ratio of
collision adaptively, using the information feedback from the
optimization process [12].

In our adaptive collision scheme, we add a new attribute to
the system, namely the number of successful inters, denoted
counter. Initially, this attribute is set to zero, and at the
beginning of each iteration, the value of collRate is calculated
using the following sigmoid function:

collRate =
1

1 + exp(−6× counter
maxFE )

, (4)

where maxFE is the maximum allowed number of function
evaluations. The plot of this function is demonstrated in Fig. 1,
where the x-axis is the value of counter and the y-axis is the
value of the corresponding collRate. The value of counter is
updated whenever an Onwall or Inter occurs and succeeds. If
a successful Onwall occurs, the value of counter is reduced
by one. Otherwise the value is increased by one. In this way,
the algorithm can adjust the collRate to favor either Onwall
or Inter, to match the optimization problem being solved.

C. Other Modifications

In order to fully exploit the utility of our proposed inter-
molecular collision scheme, we also make some other modi-
fications to the implementation of the CRO framework.

In the canonical CRO design, the algorithm does not impose
any mandatory constraints on the elementary reaction selection
until the size of the population is reduced to one. The
selection is controlled by the optimization parameters. When
the population size is one, neither Inter nor Syn would occur
as they need at least two molecules as inputs. However this
behavior may potentially reduce the occurrence of Inter and



TABLE I
BENCHMARK FUNCTIONS

f Function Solution Transformation* Name

f1
∑D

i=1
z
2
i z = x− o Shifted Sphere Function

f2
∑D

i=1

∑i

j=1
z
2
i z = x− o Shifted Schwefel’s Problem 1.2

f3
∑D

i=1
|zi|+

∏D

i=1
|zi| z = (x− o)× 0.1 Shifted Schwefel’s Problem 2.22

f4
∑D

i=1
|zi|+

∏D

i=1
|zi| z = M(x− o)× 0.1 Shifted Rotated Schwefel’s Problem 2.22

f5
−20 exp(−0.2

√
1

n

∑n

i=1
z2i )− exp(

1

n

∑n

i=1
cos 2πzi)

+20 + e

z = (x− o)× 0.32 Shifted Ackley’s Function

f6
−20 exp(−0.2

√
1

n

∑n

i=1
z2i )− exp(

1

n

∑n

i=1
cos 2πzi)

+20 + e

z = M(x− o)× 0.32 Shifted Rotated Ackley’s Function

f7 418.9829D −
∑D

i=1
zi sin

√
|zi| z = x× 5 Schwefel’s Problem 2.26

f8 418.9829D −
∑D

i=1
zi sin

√
|zi| z = Mx× 5 Rotated Schwefel’s Problem 2.26

f9
∑D

i=1
(z

2
i − 10 cos 2πzi + 10) z = (x− o)× 0.0512 Shifted Rastrigin’s Function

f10
∑D

i=1
(z

2
i − 10 cos 2πzi + 10) z = M(x− o)× 0.0512 Shifted Rotated Rastrigin’s Function

f11
∑D

i=1

z2i
4000

−
D∏

i=1

cos
zi

i
+ 1 z = (x− o)× 6 Shifted Griewank’s Function

f12
∑D

i=1

z2i
4000

−
D∏

i=1

cos
zi

i
+ 1 z = M(x− o)× 6 Shifted Rotated Griewank’s Function

f13

sin
2
(πy1) +

∑n−1

i=1
[(yi − 1)

2
(1 + 10(sin

2
yi+1))]+

(yn − 1)
2
(1 + sin

2
(2πyn)), yi = 1 +

1

4
(zi + 1)

z = (x− o)× 0.1 Shifted Levy’s Function

f14

sin
2
(πy1) +

∑n−1

i=1
[(yi − 1)

2
(1 + 10(sin

2
yi+1))]+

(yn − 1)
2
(1 + sin

2
(2πyn)), yi = 1 +

1

4
(zi + 1)

z = M(x− o)× 0.1 Shifted Rotated Levy’s Function

f15
+

1

10
[sin

2
(3πz1) +

∑n−1

i=1
(zi − 1)

2
(1 + sin

2
(3πzi+1))+

(zn − 1)
2
(1 + sin

2
(2πzn))] +

∑n

i=1
u(zi, 5, 100, 4)

z = (x− o)× 0.5 Shifted Penalized Function 1

f16
+

π

n
[10 sin

2
(πy1) +

∑n−1

i=1
(yi − 1)

2
(1 + 10 sin

2
(πyi+1))+

(yn − 1)
2
] +

∑n

i=1
u(zi, 10, 100, 4), yi = 1 +

1

4
(zi + 1)

z = (x− o)× 0.5 Shifted Penalized Function 2

* o is a shifting vector and M is a transformation matrix. o and M can be obtained from [13].

+ u(x, a, k,m) =


k(x− a)m for x > a

0 for − a ≤ x ≤ a

k(−x− a)m for x < −a

.

in return bias the ratio of Onwall and Inter. So we add a
mandatory constraint to maintain this ratio.

In CRO/AC, the elementary reaction selection scheme
works identically to the canonical design of CRO in the first
step, i.e. a random number is first generated and compared
with collRate. If the random number is larger, either Onwall
or Dec will occur. Otherwise, an Inter or Syn will take place
and here we impose the second mandatory condition. If the
current population size is no larger than two, all later selection
steps are skipped and an Inter will occur. This modification
can guarantee that the size of population is always larger than
one, and there are always enough molecules in the container
to perform an Inter elementary reaction.

IV. EXPERIMENTAL SETTING AND SIMULATION RESULTS

In this section we will first introduce the benchmark func-
tions adopted for performance evaluation and the experimental
settings used. The simulation results, comparisons and discus-
sions will also be presented.

A. Benchmark Functions

In order to evaluate our proposed CRO/AC, we conduct
a series of simulations on 16 different benchmark functions.
These benchmark functions are selected form the benchmark
set proposed by Yao et al. [14] and the latest benchmark prob-
lem set for the competition on real-parameter single objective
optimization at CEC 2013 [13]. The former benchmark set
has been adopted for testing performance by a wide range
of metaheuristics in recent years [15], and was adopted to
test the performance of RCCRO [5]. As revealed in [10],
the current benchmark functions often suffer from two major
problems: the global optimal points are located at the center
of the search space, and the inter-dimensional correlation is
weak. So we make a comprehensive test suite to resolve these
problems by shifting and rotating some of the benchmark
functions. The benchmark functions are listed in Table I. All
benchmark functions are optimized in 30 dimensions, and
the search spaces are defined to be [−100, 100]. The global



optimum values of these benchmark functions are zero, and
all simulation results smaller than 10−8 are considered to be
zero [13].

To evaluate the performance improvement of our proposed
CRO/AC over CRO, we compare the simulation results be-
tween these two designs. Lam et al. proposed three canonical
CRO variants in [5], where the major differences among them
are the constraint handling schemes and synthesis operators.
We use CRO/BP, CRO/HP, and CRO/BB to refer to RCCRO1,
RCCRO2, and RCCRO3 described in [5]. We will compare the
performance of CRO/AC with these three algorithms.

CRO/AC and all the CRO variants are implemented in
Python 2.7 on Microsoft Windows 7. All simulations are
performed on a computer with an Intel Core i7-3770 @
3.4GHz CPU. In order to reduce statistical errors and generate
statistically significant results, each benchmark function is
repeated for 51 independent runs for each algorithm according
to the suggestion by [13]. We use the maximum number
of function evaluation (maxFE) as the termination criteria
and maxFE is set to 300 000 for all benchmark functions,
satisfying the requirement of [13].

The parameters for all algorithms are set according to the
recommendation of [5] for solving multimodal problems, i.e.
population size is 20, stepsize is 1, initial energy buffer is 105,
initial kinetic energy for molecules is 107, molecular collision
rate is 0.2, kinetic energy loss rate is 0.1, decomposition
threshold is 1.5× 105, and synthesis threshold is 10.

B. Comparison of CRO/AC and Canonical CRO Variants

The mean values, standard deviations, and Student’s t-
test results obtained by CRO/AC and the three canonical
CRO variants are presented in Table II. The mean values
in bold indicate superiority of the corresponding algorithm
over the others. The t-test results are the calculated t-statistic,
where a negative value means that CRO/AC outperforms the
corresponding algorithm. The t-test values in italic indicate
that the advantage is significant at a confidence level of 95%.
From the simulation results the following key points can be
observed:
• CRO/AC performs better than all canonical CRO variants

in most of the tested benchmark functions when compar-
ing the mean simulation results. CRO/AC outperforms
the others in 14 functions, and its performance in the
remaining two functions (f11 and f12) are comparable to
the CRO variants.

• The t-test results further support our previous observation.
CRO/AC outperforms other algorithms in all but three
functions (f4, f11 and f12). In f4, CRO/AC outper-
forms CRO/HP and performs similarly with CRO/BP
and CRO/BB. In the meantime CRO/AC generates more
stable simulation results. In f11, CRO/AC generates a
slightly worse mean result, but the t-test results indicate
no significant advantage of the other algorithms.

In terms of the computational time, a very small amount
of additional time is required for our inter-molecular adaptive
collision scheme. The total extra time is around 2%–7% of the

TABLE II
SIMULATION RESULTS OF CRO/AC AND CANONICAL CRO VARIANTS

Function CRO/AC CRO/BP CRO/BB CRO/HP

f1

Mean 4.2111e-07 2.7374e-06 2.6009e-06 2.6684e-06
Std. Dev. 3.4578e-07 1.5487e-06 1.2265e-06 1.4386e-06
T-test - -10.3216 -12.0957 -10.7402

f2

Mean 8.0285e-06 1.8280e-05 1.8690e-05 1.9248e-05
Std. Dev. 7.1100e-06 8.4089e-06 9.3814e-06 9.9651e-06
T-test - -6.5827 -6.4043 -6.4804

f3

Mean 1.2540e-04 5.2846e-04 6.2956e-04 5.9767e-04
Std. Dev. 5.1818e-05 1.2148e-04 1.6374e-04 1.3829e-04
T-test - -21.5802 -20.7578 -22.6129

f4

Mean 3.9728e+01 1.2944e+07 4.6210e+06 6.8512e+06
Std. Dev. 1.9891e+01 7.0206e+07 3.0236e+07 2.3599e+07
T-test - -1.3037 -1.0807 -2.0528

f5

Mean 7.5571e+00 1.1503e+01 1.1177e+01 1.1305e+01
Std. Dev. 6.6117e-01 5.5733e-01 6.6192e-01 6.6029e-01
T-test - -32.2656 -27.3574 -28.3605

f6

Mean 7.8682e+00 1.1388e+01 1.1231e+01 1.1562e+01
Std. Dev. 8.0475e-01 7.0835e-01 6.6992e-01 5.5514e-01
T-test - -23.2181 -22.7117 -26.7181

f7

Mean 0.0000e+00 5.8231e+03 6.1206e+03 6.0672e+03
Std. Dev. 0.0000e+00 6.1178e+02 7.8931e+02 6.6152e+02
T-test - -67.3051 -54.8319 -64.8529

f8

Mean 0.0000e+00 5.7527e+03 5.6308e+03 5.5973e+03
Std. Dev. 0.0000e+00 6.7561e+02 1.1770e+03 6.4795e+02
T-test - -60.2089 -33.8292 -61.0824

f9

Mean 1.3400e+02 4.2171e+02 3.8941e+02 4.3384e+02
Std. Dev. 2.9142e+01 7.8572e+01 8.4037e+01 8.4771e+01
T-test - -24.2770 -20.3045 -23.6523

f10

Mean 1.4383e+02 4.3566e+02 4.1632e+02 4.5059e+02
Std. Dev. 3.9544e+01 8.9085e+01 8.8294e+01 9.0004e+01
T-test - -21.1713 -19.9162 -22.0647

f11

Mean 2.7991e+00 2.3064e+00 2.6168e+00 2.1902e+00
Std. Dev. 3.4417e+00 2.8145e+00 2.6376e+00 2.4651e+00
T-test - 0.7837 0.2972 1.0171

f12

Mean 1.0817e-02 4.7648e-03 4.0542e-03 1.9807e-03
Std. Dev. 1.2490e-02 1.2358e-02 6.6509e-03 4.3693e-03
T-test - 2.4357 3.3796 4.7222

f13

Mean 2.8092e+00 1.9428e+01 1.0251e+01 1.2036e+01
Std. Dev. 2.8073e+00 2.4661e+01 1.1397e+01 1.3504e+01
T-test - -4.7344 -4.4832 -4.7302

f14

Mean 5.2333e+00 3.7536e+01 6.9319e+01 3.8191e+01
Std. Dev. 5.6115e+00 4.2015e+01 4.3951e+01 3.8917e+01
T-test - -5.3885 -10.2274 -5.9271

f15

Mean 5.7647e-08 2.6110e-07 2.1121e-07 2.3093e-07
Std. Dev. 1.7199e-07 2.0579e-07 1.9243e-07 1.8260e-07
T-test - -5.3640 -4.2072 -4.8848

f16

Mean 7.4478e+00 1.6633e+01 6.9264e+00 1.5481e+01
Std. Dev. 6.9020e+00 1.1806e+01 7.3114e+00 9.8198e+00
T-test - -4.7492 0.3667 -4.7324

computational time needed by the canonical CRO variants. As
the benchmark functions we adopt are relatively less compu-
tationally intensive compared with most real-world problems,
we believe that the extra time used by CRO/AC is not critical
considering the significant performance improvement.

C. Analysis on the Two-step Inter-molecular Ineffective Col-
lision Operator and Adaptive Collision Scheme

Section III introduced our proposed inter-molecular inef-
fective collision operator, which is a two-step manipulation
method. In this section we will show the necessity of incorpo-
rating the second step, i.e. (3). We construct a CRO/AC variant
with one-step inter-molecular ineffective collision operator
(CRO/AC/1step) which removes the second step of manip-
ulating the input molecules. We also proposed an adaptive
collision scheme which adaptively changes the value for the
molecular collision rate. We construct CRO/AC/0.2 which



TABLE III
SIMULATION RESULTS OF CRO/AC VARIANTS

Function CRO/AC CRO/AC/0.2 CRO/AC/1step

f1

Mean 4.2111e-07 8.9465e-08 3.8261e-07
Std. Dev. 3.4578e-07 6.9765e-08 2.7951e-07
T-test - 6.6481 0.6123

f2

Mean 8.0285e-06 2.1730e-06 1.3225e-05
Std. Dev. 7.1100e-06 2.1997e-06 7.9482e-06
T-test - 5.5633 -3.4455

f3

Mean 1.2540e-04 6.0034e-05 1.9051e-04
Std. Dev. 5.1818e-05 2.3344e-05 5.8835e-05
T-test - 8.1321 -5.8727

f4

Mean 3.9728e+01 2.3252e+04 9.4010e+01
Std. Dev. 1.9891e+01 1.1502e+05 4.1884e+01
T-test - -1.4270 -8.2781

f5

Mean 7.5571e+00 9.1927e+00 8.3137e+00
Std. Dev. 6.6117e-01 8.0608e-01 6.7715e-01
T-test - -11.0930 -5.6529

f6

Mean 7.8682e+00 9.4500e+00 8.5155e+00
Std. Dev. 8.0475e-01 7.2286e-01 6.8856e-01
T-test - -10.3400 -4.3216

f7

Mean 0.0000e+00 6.7445e+02 6.6541e+03
Std. Dev. 0.0000e+00 1.3551e+03 7.5036e+02
T-test - -3.5193 -62.7052

f8

Mean 0.0000e+00 3.7914e+02 6.6298e+03
Std. Dev. 0.0000e+00 1.0612e+03 8.1775e+02
T-test - -2.5264 -57.3279

f9

Mean 1.3400e+02 2.1140e+02 1.9889e+02
Std. Dev. 2.9142e+01 4.7866e+01 3.8175e+01
T-test - -9.7669 -9.5546

f10

Mean 1.4383e+02 2.0337e+02 2.1631e+02
Std. Dev. 3.9544e+01 5.4420e+01 4.2253e+01
T-test - -6.2583 -8.8565

f11

Mean 2.7991e+00 4.4066e-01 7.3760e+00
Std. Dev. 3.4417e+00 8.6072e-01 5.0705e+00
T-test - 4.7007 -5.2810

f12

Mean 1.0817e-02 1.0379e-02 1.1223e-02
Std. Dev. 1.2490e-02 1.3075e-02 1.6374e-02
T-test - 0.1712 -0.1393

f13

Mean 2.8092e+00 6.3203e+00 6.6642e+00
Std. Dev. 2.8073e+00 8.2816e+00 9.4389e+00
T-test - -2.8391 -2.7681

f14

Mean 5.2333e+00 1.9807e+01 7.4475e+00
Std. Dev. 5.6115e+00 2.2535e+01 1.1233e+01
T-test - -4.4374 -1.2469

f15

Mean 5.7647e-08 1.1126e-08 9.2002e-08
Std. Dev. 1.7199e-07 3.2826e-08 1.6632e-07
T-test - 1.8787 -1.0153

f16

Mean 7.4478e+00 1.2715e+01 1.7369e+01
Std. Dev. 6.9020e+00 1.0369e+01 1.4167e+01
T-test - -2.9904 -4.4514

sets the collision rate constantly to 0.2 during the entire
search process. The same experimental settings and benchmark
functions are applied to these algorithms, and the simulation
results are presented in Table III. From these test results, we
have the following observations:

• Both the two-step manipulation method and the adap-
tive collision scheme contribute to the performance
improvement of CRO/AC. CRO/AC generates 10 best
mean values among the 16 benchmark functions while
CRO/AC/0.2 produces the best mean values pf the other
six.

• CRO/AC/0.2 tends to generate outstanding results in
the uni-modal optimization functions (f1–f4), while
CRO/AC is generally superior at solving multi-modal
functions (f5–f16)

• The less competitive results generated by CRO/AC/1step
are potentially due to pre-mature convergence, which is
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Fig. 2. collRate Changes of f1 and f11

caused by missing the second step manipulation that
allows molecules to jump out of local optima.

The effect of the adaptive collision scheme can also be
revealed by Fig. 2, where the changes on collRate of f1
and f5 are plotted. From the figure we can see the adaptive
scheme can adjust collRate to different values according to
the feedback from the optimization process.

V. CONCLUSION

CRO is a recently proposed simple and powerful meta-
heuristic optimization method which mimics the interactions
and transformations of molecules in chemical reactions to
search for the global optimum. CRO has been applied to solve
both combinatorial and continuous optimization problems. In
the canonical design of CRO for solving continuous opti-
mization problems, the functionalities of on-wall ineffective
collision and inter-molecular ineffective collision overlap, and
this potentially hampers the performance of CRO. In this
paper we propose a novel inter-molecular operator to overcome
this drawback. This operator changes the values on multiple
dimensions of a solution at one time, and is more efficient
at solving problems with strong inter-dimensional correlation
than the canonical design. In order to fully utilize the different
optimization features of this new operator, we also devise an
adaptive collision scheme to control the ratio of different ele-
mentary reactions. This scheme learns from the optimization
feedback and adjusts the collRate parameter of CRO to adapt
the algorithm to different problems. We incorporate the new
operator and the adaptive scheme into the CRO framework
and propose a new algorithm CRO/AC.

To examine the performance improvement of CRO/AC over
canonical CRO, we perform a series of simulations on a wide
range of different benchmark functions. The simulation results
indicate the superiority of our proposed CRO/AC over all the
compared CRO variants. We also analyze the performance
improvement contribution made by the new operator and the
adaptive scheme, and find both of them are essential for



CRO/AC to achieve better performance than the canonical
CRO.

In the future we will perform a systematic analysis on
the parameter selection for CRO/AC. All simulation in this
paper adopted the parameter settings devised in [5], which
was originally designed for the canonical CRO and may be not
suitable for CRO/AC. It is also an interesting topic to combine
CRO/AC with the stepSize adaptation scheme proposed in
[5]. Last but not least, we will apply CRO/AC to real-world
practical optimization problems to perform an overall study of
the performance of CRO/AC.
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