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Abstract— Estimated time of arrival (ETA) is one of the
critical services offered by navigation and hailing providers. The
majority of existing solutions approach ETA as a regression
problem and leverage GPS trajectories for estimation. However,
the travel time fluctuates greatly between different trips, making
simple regression methods skewed. Additionally, these methods
are incapable of conducting estimation in practice because the
trajectories of future trips are unknown. To jointly tackle these
problems, we propose a novel Categorical approximate method
to Estimate Time of Arrival (CatETA). Specifically, we formulate
the ETA problem as a classification problem and label it with the
average time of each category. To eliminate bias in categorical
labeling, we approximate travel time using the weighted average
of different classes in the testing stage. Then, we design a
network structure that extracts the spatio-temporal features
of link sequences and integrates a set of global information.
Furthermore, we merge link sequences according to network
topology and graph embedding to alleviate the computational
burden associated with large-scale link networks. Comprehensive
experiments on real-world datasets demonstrate that CatETA
considerably improves the estimation performance and signifi-
cantly reduces computational effort.

Index Terms—Estimated time of arrival, traffic prediction,
spatio-temporal data mining.

I. INTRODUCTION

STIMATED time of arrival (ETA) or travel times esti-

mation that estimates the travel time between a pair of
origin and destination, is a critical component of modern
intelligent transportation systems (ITS). It empowers online
ride-hailing and navigation platforms to improve the quality
of their services [1], [2], [3].

For instance, accurate ETA can assist businesses like Didi
Chuxing, Uber, and Google Maps in determining optimal
routes in a manner that not only satisfies operational objectives
but also promotes customer satisfaction (see Fig. 1 for an
illustration). Therefore, ETA is essential for these online
transportation service providers to be successful [4], [5], [6].
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Fig. 1. Example of obtaining the estimated time of arrival (ETA) for a given
origin-destination pair. The mobile app initiates an ETA query to the service
provider, who then leverages the city map to determine the best route, before
finally returning the trip details and ETA.

The problem of ETA has been extensively studied in recent
years. A straightforward approach is to calculate the aver-
age travel time from origin to destination using historical
data [7], [8], [9], [10], [11], [12]. However, these methods fall
short when confronted with unknown or sparse routes (e.g.,
some routes do not belong to or are only rarely recorded in
the historical database). Meanwhile, historical-based methods
ignore external factors such as departure time or weather
conditions, resulting in low ETA accuracy. In addition, history-
based methods often fail to meet route planning targets,
such as in cases where multiple routes connect the same
origin-destination pair [5], thereby necessitating the use of
advanced ETA solutions.

Given that global positioning system (GPS) trajectories
contain rich temporal and spatial information, a body of
research formulates the ETA problem as a regression problem
subsequently modelled via deep learning algorithms [1], [2],
[13], [14], [15], [16]. Some solutions divide the road network
into links, i.e., road segments, which are defined as routes that
connect two junctions and have no junctions in the middle.
In this way, trips can be represented as a sequence of traversed
links without requiring GPS-specific information [5], [6], [17],
[18], [19]. By incorporating external features that have a
significantly impact on the ETA problem (e.g., route state,
distance, and departure time) they achieve highly competitive
results [13], [20]. Taking Fig. 1 as an example, when users
send an ETA query, the service provider only knows the start
and end points of the user’s trip. And the service provider
therefore needs to determine the best path based on this query
and return a sequence of links for this trip. Nonetheless,
existing work has not yet addressed the following limitations:

o GPS trajectories exhibit diverse spatio-temporal correla-
tions that are challenging to capture. In addition, GPS
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Fig. 2. Probability distribution function (PDF) and cumulative distribution

function (CDF) of travel time and trip distance during a weekday. Most travel
times are within 40 min, while the longest is 195 min; most trip distance are
within 20 km, while the longest is 144 km. Each trip traverses an average of
87 links and a maximum of 757 links.

data are inextricably linked to privacy concerns, limiting
large-scale data collection in real-world applications [21],
[22]. Arguably most significantly, predicting future GPS
coordinates for a given trip is unrealistic, rendering end-
to-end inference impractical.

o Road traffic is dynamic, with complex spatial and tempo-
ral correlations among road network links [23]. Extracting
and computing features for each link requires substantial
computational resources that may not be available in
time-critical use cases [18].

o Because the travel time distribution of trips is highly
volatile, pure regression models may produce large errors
in small-scale data. As depicted in Fig. 2, the majority of
travel times during a weekday are within 40 min and most
trip distance are within 20 km. This skewed distribution
may cause a significant difference in model prediction
among different travel time lengths.

To bridge these gaps, we propose a categorical approximate
approach for estimating time of arrival termed CatETA. The
primary contributions of this work are summarized as follows:

« We propose a travel time estimation method that takes as
input a sequence of individual links. Unlike prior methods
relying on GPS trajectories, the proposed method better
suits mobile computing as it does not need to predict the
GPS trajectories of travel trips on the client side.

o We build a deep neural network consisting of three main
components designed to extract spatio-temporal features
in addition to a set of global attributes. We further
improve computational efficiency by merging the input
link sequence based on spatial proximity.

« We propose an approximate categorical approach that
groups travel time into classes and then estimates it using
a weighted approximation of the various classes. Com-
pared to regression methods, this approach can effectively
reduce errors caused by skewed travel time distributions.

o We conduct comprehensive case studies on a large real-
world dataset. The result shows that CatETA significantly
outperforms other baselines in multiple scenarios. Finally,
the hyperparameter settings are investigated and analyzed
to provide insights into their selection.

The rest of this paper is organized as follows. Sec. II

first reviews the literature on ETA, grouped into trajectory-
and link-based methods. Then, Sec. III provides preliminary
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definitions and formalizes the problem to be addressed in this
work. Sec. IV elaborates on the proposed CatETA frame-
work and its constituting spatio-temporal learning, attributes
embedding, and prediction components. Next, Sec. V conducts
a series of experiments to assess the performance of CatETA
against competitive baselines, in addition to a hyperparameter
sensitivity test. Finally, Sec. VI concludes this paper.

II. RELATED WORK

A large number of studies have been conducted on estimat-
ing ETA. Besides the naive history-based approaches (e.g., [7],
[8], [24], [25]), advanced ETA solutions can generally be
classified into the following two broad categories from a data-
driven perspective: GPS trajectories-based and link-based.

A. GPS Trajectories-Based ETA

With GPS sensors embedded in a multitude of modern smart
devices, acquiring GPS trajectories for ETA studies is now
easier than ever [4]. Wang et al. proposed an error feedback
recurrent convolutional neural network (eRCNN) to estimate
travel time and speed on sequential GPS points [26]. Although
the proposed method considered the spatial-temporal correla-
tion of trajectories and derived the estimated time based on
the speed of each constituting segment, simply accumulating
the travel time of each trajectory segment ultimately did not
produce remarkably accurate results. Therefore, Dong et al.
proposed schemes for directly estimating the arrival time of
the entire trip in a later research [1]. Specifically, they used
complex neural network models to capture fine-grained tra-
jectories features and combine them with other attributes such
as driver ID and departure time. Compared to the previous
trajectory segment prediction and accumulation approach, this
framework achieves higher accuracy.

To further improve the accuracy of ETA, Zhang et al.
mapped GPS trajectories to a grid and combined the
spatio-temporal information embedding with auxiliary features
like driving and traffic statuses (both short- and long-term) in
the grid to design an end-to-end ETA model [13]. Shen et al.
which adopts tensor decomposition and graph embedding [14].
This scheme employed a non-negative tensor decomposition
method to recover the travel speed distribution and then
integrated a neural network model for representation learning.
In addition, it used graph embedding to generate represen-
tations of road network structures, achieving a high level
of estimation accuracy. Considering the impact of different
transportation modes on ETA, Xu et al. proposed a multi-task
learning model for ETA. This method is able to capture
the interaction between transportation modes and travel time,
which can recommend the appropriate transportation mode for
the user and then estimate the associated ETA [27].

While GPS trajectories-based approaches have enabled sig-
nificant improvements in ETA, these solutions face serious
challenges: 1) These schemes utilize data consisting of real
GPS points, but it is very difficult to predict future GPS
points in real scenarios; 2) These schemes rely heavily on the
sampling frequency and accuracy of the GPS points, which
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is far from perfect for low-frequency sampling and long-term
prediction.

B. Link-Based ETA

To address the aforementioned challenges, a few link-based
methods were proposed lately. These methods view trips as a
series of traversed links and consider their interactions, which
resolves the dependence on GPS points and enables trip plan-
ning for ETA prediction. Wang et al. combined the advantages
of the wide linear model, the deep neural network, and the
recurrent neural network to propose a wide depth recurrent
(WDR) learning model for estimating the arrival time [6]. This
scheme agglomerates multiple trip features, such as traffic,
personalized, and global information to accurately predict the
travel time for a given planned trip. Based on this concept,
researchers introduced an auxiliary task to learn personal-
ized driving information (driving preferences, driving speed,
etc.) in a multi-task learning framework [28]. In addition,
Sun et al. proposed a road network metric learning framework
for learning representations of elements (such as links) in
road networks. Besides performing ETA prediction, they also
designed auxiliary learning tasks to improve the quality of
embedding vectors and proposed a triangle loss function to
improve the efficiency of metric learning [29]. Considering
that previous work fail to capture the movement behavior of
the embedding in the trip well, Fu and Lee proposed Deep
Image-based Spatio-Temporal network (DeepIST) [19]. This
framework represents the trip as a sequence of “generalized
images” containing sub-paths and auxiliary information, and
designed a novel two-dimensional convolutional (pathCNN)
for spatio-temporal modeling along the trip.

Since graph neural networks (GNN) have achieved remark-
able success in modeling unstructured data, researchers have
also attempted to model the spatial and temporal dependence
of road traffic through spatio-temporal graph convolution [5],
[30], [31]. Jin et al. proposed a spatio-temporal graph neural
network framework for the ETA problem. Specifically, their
approach adopts a multi-scale deep spatio-temporal graph
convolutional network to capture structured spatio-temporal
traffic conditions along with a transformer layer to extract
long-term time dependencies. Finally, the two components
are integrated into a real-time traffic condition representation
to estimate arrival times by a gated fusion module [32].
Hong et al. utilized heterogeneous information graphs to
transform the roadmap into a multi-relational network in
the ETA task, and introduced a network based on vehicle
trajectories to jointly consider traffic behavior patterns to
achieve accurate ETA predictions [5]. To further exploit the
spatial and temporal correlation in the traffic road network,
i.e., the contextual information and connectivity of links.
Fang er al. employed a graph attention mechanism to cap-
ture the relationship of spatio-temporal information. Then,
convolution layers are applied to capture the contextual infor-
mation in a local window [33]. Based on this network frame-
work, they further proposed a self-supervised meta-learning
scheme for en-route ETA, which can fast adapt to the user’s
driving preferences and improve the time estimation for the
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Fig. 3. [Illustration of graph representation of link network. Each link in the
road network is a node in the graph.

link network

remaining links. Specifically, this scheme considers the
observed behaviors in the traveled links as training exam-
ples and the future behaviors in the remaining links as test
examples, and then utilizes self-supervised learning techniques
(equivalent to generating a large number of synthetic learn-
ing tasks) to further improve performance [34]. Moreover,
Yu proposed a Bayesian and geometric deep learning based
approach to estimate the travel time distribution of road
links in a citywide traffic network. The evaluation shows that
the probabilistic distribution describe the ETA better than
the deterministic model due to the uncertainty caused by
the unstable traffic [35].

However, link-based approaches require feature extraction
using complex neural networks for each link, which inevitably
leads to a heavy computational burden [18]. On the other
hand, general regression models cannot accurately predict
arrival times due to the large variation in data distribution
across travel times and the number of links. Inspired by the
previous work, we propose a novel categorical approximate
method to estimate the time of arrival without relying on GPS
predictions, and use graph embedding to obtain the correlation
of road link, which can significantly reduce the computation
burden.

III. PROBLEM DEFINITION

Definition 1 (Link): A link represents a road segment,
which is defined as a tuple v = (vid, Vratio, Ustatus) With
three components, where vig is the id number of the link.
Dratio 1ndicates the ratio of this link traversed in a trip (Since
a trip may start or end at the middle of a link, for the first
and last links in a trip, vmaio € (0, 1], otherwise vraio = 1).
vstatus denoted as the status of the link at the trip departure
time. ogas including five types: O—unknown, 1—clear,
2—slow, 3—congestion, and 4 — gridlock.

Definition 2 (Link Network): The basic link network is rep-
resented as a directed graph of links G = (V, A), where V is
the set of graph nodes, that is, links in the traffic network.
Fig. 3 shows an example of graph representation where the
11 links in the link network are represented by 11 nodes in
the graph, and connectivity are represented by edges in the
graph. The connectivity between links is represented by A,
where A;; = 1 denotes that link v; is the following one of
link v;, i.e., vehicles can travel from v; to v;.
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Fig. 4. Proposed CatETA consists of three core components: spatio-temporal learning, attribute embedding, and prediction. The prediction component

combines information from both the spatio-temporal learning and attribute embedding components and predicts the category to which the trip ETA belongs.

Definition 3 (Trip): A trip x' is defined as x! = {si, o',
d',V'}, where s' is the departure time, o' is the origin
location, d' is the destination, V! = {01, v2, ..., v,} represents
a sequence of links that the trip traverses on.

Definition 4 (Estimated Travel Time): For a given query
qi = [o',d',s'], the goal of ETA is to predict the travel
time 3’ using the formed trip and external attributes (such
as week date, distance, weather conditions) of this query.
We assume that V' in trip x’ are designated by the user or
generated by a routing algorithm of service providers, and
this assumption was also adopted in previous literature and in
practical navigation systems [1], [6], [13].

IV. METHODOLOGY

In this section, we give a detailed description of the pro-
posed CatETA approach. As depicted in Fig. 4, the proposed
model consists of three components: spatio-temporal learning
component, attributes embedding component, and prediction
component. The spatio-temporal learning component com-
prises two steps for extracting spatio-temporal features from
link sequences. We begin by merging spatially neighboring
links according to the graph embedding of the link network.
A bi-directional gated recurrent unit (BiGRU) is further
applied to learn representations of fine-grained temporal fea-
tures. The attributes embedding component converts travel
times to categorical values and embeds external attributes
such as departure time, date, distance, and weather conditions.
Finally, the prediction component takes the outputs of the
preceding components as inputs and uses categorical approx-
imation to estimate the travel time. Following elaborates on
the details of these components.

A. Spatio-Temporal Learning Component

1) Link Merging: As mentioned previously, a trip comprises
a link sequence and a set of external attributes. Existing

research extracts temporal dependencies from link sequences
via recurrent neural networks (RNN), such as long short-term
memory (LSTM) [1], [18]. In practice, however, a trip is
divided into short links of varying lengths, which results in
the link sequence length fluctuating between different trips,
with the shortest being less than 10 and the longest greater
than 500. Directly feeding such link sequences into an RNN
may incur massive computational costs [18]. To tackle this
drawback, we merge spatially adjacent links before extracting
the temporal features using RNN. This process reduces fluctu-
ations in link sequence length while also reducing subsequent
computational burden (See spatio-temporal learning compo-
nent in Fig. 4, where the input links are merged after link
embedding and merging, and the merged links with similar
properties have the same color).

Given that we have a link network G denoting adjacent
relationships. Graph embedding, which maps a graph to an
appropriate low-dimensional vector space, has been shown
to be a highly effective approach to characterizing spatial
relationships [14], [36], [37]. A general expression of graph
embedding is to learn a mapping function f : RVXN — RNxh
that embeds a sparse network RY*V into low-dimensional
representations RV*h where h <« N. In this work, we utilize
DeepWalk to learn the representation of links as it exhibits sig-
nificant performance in various network embedding tasks [37].
Recall that we have a link network G = (V, A), DeepWalk first
generates walk sequences starting from a specific link » in V
by random walks. The transition probability between link v;
and v; is defined as:

Pr(vilvj) = —24
T Y eN ;) dil

. 0 € N(v)), (1)
where A (v;) is the set of adjacent links of j, and d;; is the
distance from link v; to v;. After generating walk sequences
by random walks, the objective is to estimate the probability
that the next link of the walking sequence {vg, v1,...,0;—1}
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is v;, which can be formulated as Pr(v;|{vo, v1,...,0i—1}).
As graph embedding methods are designed to learn a dense
representation of the sparse network, a mapping function 6 :
v € V — RVl s introduced to embed links in the graph
into latent vectors. In this work, € is an empirical two-layer
neural network whose input is the one-hot encoding of link v;,
and the output 6(v;) € R? is the embedding vector. Thus, the
problem can be formulated as,

Pr(v;[{0(v1),0(v1),...,0(vi-1)}). 2

Instead of calculating Eq. 2, DeepWalk applies Skip-Gram [38]
for relaxation, which ignores the order constraint in the
sequence and calculate the probability Pr(vg|6(v;)), where
vx is the link in the walking sequence of v;. The objective
can be formulated as,

argemin—logPr ({vicw, .- > Vitw }O (@), (3)
where v; is a link in walking sequence {0;_y, ..., Ditw}, W 18
the window size, respectively. The learning process aims to
maximize the probability that adjacent links of v; are in the
walking sequence of a window size w; in this work, we set
the walk length to 30 and the window size to 10, which is the
combination that performed best in preliminary experiments.
Thus, links with common neighbors are expected to have
similar embeddings.

Next, we use K-Means clustering to group the links
into M classes based on their embeddings. Since spatially
neighboring links shall be assigned to the same class after
clustering, the original link sequences can be merged accord-
ing to the clustering labels. This is illustrated in Fig 4,
where links are colored according to the clustering result:
links with the same color are merged. The merged link is
denoted by V' = {v],05,...,0)}, whereas the original one
is V. = {v1,02,...,0,}, where d < n. This procedure can
be expressed as {v;, vi41,...,0;} — v’, and the number of
original links merged in " is denoted as |v’|. Note that the
number of original links contained in each merged link may
vary, as does the length of the merged link sequence. The link
features are aggregated by the following rules:

1
Vratio = Il Zvratio, (4a)
1
v;tatus = m sztatus, (4b)
W ,
Z)len = 7 ( C)

The link ratio and status are averaged. v, is designed to
represent the weight of o’ in the whole link sequence V. lgus
are categorical attributes including the five different type of
link status in the definition. We encode vggarus to B by one-
hot. Finally, we concatenate {0/ ., Vsiass Vlen) a8 link feature
and obtain a merged link feature sequence L’ of shape R4*7.

2) Temporal Feature Representation: With link sequences
being merged according to their spatial neighborhood, we can
obtain preliminary spatio-temporal information. However,
empirical results indicate that direct and exclusive use of these
features produced poor results for ETA. Owing to the GRU

design, which is based on temporal state propagation that can
handle sequences with variable length [39], we employ this
structure to further extract high-dimensional spatio-temporal
correlations.

GRU is a practical variant of RNN with a straightforward
structure. By employing reset and update gates, GRU over-
comes the gradient vanishing problem inherent in conventional
RNN when processing long sequences and has a more straight-
forward structure compared to LSTM [40], [41]. Reset and
update gates are gated units that determine whether to save
or remove previous step information in the next state. Given
a sequence x as input, the hidden state at time step ¢ can be
calculated by

= oWy [hirx]). (s
2 =0W. - [hi—1,x]), (5b)
h; = tanh(W - [re % hi1, x:]), (5¢)
hy = zo %y 4+ (1 — 20) % he_y, (3d)

where r; and z; are the reset and update gates, h;_; is the
previous hidden state, ﬁ, is the current candidate state, W are
trainable weights that can be updated via backpropagation,
o is the sigmoid activation function, and * denotes the
Hadamard product. As the traffic status on adjacent links
are mutually influencing, the correlation between links are
bidirectional. In this study, we follow the design of previous
ETA studies [13], [42] that utilize bidirectional recurrent layers
as the feature extraction component and stack two GRU layers
to capture both forward and backward data propagation in
time [43]. In the proposed model, we feed the merged link
sequence v’ = {v},v},...,0,} to a BiGRU module. The
forward and backward hidden states at time ¢ are denoted by
— «— — «—

h; and h;, respectively. States h; and h; are concatenated as
the output hidden state #; = h, || h;. The hidden size of the
BiGRU cells is empirically set to 256.

B. Attributes Embedding Component

In aforementioned spatio-temporal learning component,
fine-grained spatio-temporal features are learned from link
sequences. Next, we focus on analyzing and mining other trip
attributes.

As shown in Fig. 2, travel time follows a skewed dis-
tribution; that is, while the majority of trips take less than
40 min, there are some particularly long ones. A common
approach in existing work is to normalize travel time and then
train a regression model for prediction. Neither z-score nor
min-max normalization, however, are capable of adequately
normalizing such a skewed distribution. Thus, we propose to
convert travel time to categorical values and solve the ETA
task in a classification manner. Besides the above features,
we utilize a statistical value, which is denoted as Route-ETA.
Route-ETA is a simple accumulation of the average travel time
for each link in a trip, calculated by the distance of the link
divided by the historical speed at the trip departure time.
Although Route-ETA ignores the dynamic changes in traffic
and can cause an accumulation of errors, it can still be used
as an additional information source. If we divide travel time
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Fig. 5. Example of dividing travel time into 10 classes, where the blue curve
is the distribution of travel time during a weekday and red vertical lines are
the class thresholds. Since the number of trips in each class is the same, the
thresholds are not equally spaced.

into C classes, we get the mathematical expression for class
thresholds:

Bit1 1
/ fdt =—, Viell,C], (6)
Bi ¢

where f(¢) is the probability density function of travel time
in the train set and f; is the threshold of class i, respectively.
As illustrated in Fig. 5, with the number of classes C set to 10,
trips are divided into ten classes by multiple thresholds (red
vertical lines). Subject to Eq. 6, the trip counts in all classes
are equal. Therefore, the thresholds are more tight between
8min and 16 min as individual trip time more likely falls into
this range, and is more sparsely spaced otherwise where there
are less long and short trips. The label ¢; of class i is defined
as the average travel time for all trips within the class.

Since all trips in a class are represented by a single
categorical label, there is a bias between the assigned label and
the ground truth, which in turn may compromise prediction
accuracy. We assess the bias in categorical labeling by using
all trips during a weekday and converting their respective
travel time to categorical values. Table I shows the average
Mean Absolute Percentage Error (MAPE) and Mean Absolute
Error (MAE) in an ideal situation, i.e., each class is correctly
classified. It is evident that dividing travel time into more
categories can reduce the bias of the prediction. However,
as the number of categories C increases, it becomes harder
to accurately classify each category in practice. Nevertheless,
the result also indicates that the accuracy is acceptable when
a sufficient number of bins is used though categorizing by
travel time inevitably renders information loss. There is a clear
trade-off between class number and prediction accuracy, and
detailed results of this categorical formulation will be shown
in Sec. V-F.

In addition, external attributes have a positive effect on
travel time estimation accuracy [1], [6], [44]. We consider
travel distance, weather condition, departure time, and day
of week in this work. The travel distance is normalized
by z-score, and the remaining three categorical attributes
are embedded into low-dimensional vectors using linear lin-
ear layers [1], [6], [44]. The linear layer is formulated as
y = AxT + b, where x is the one-hot encoded vector and
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TABLE I

BI1AS IN CATEGORICAL LABELING OVER NUMBER OF CLASSES.
IN AN IDEAL SITUATION WHERE EACH CATEGORY
Is CLASSIFIED CORRECTLY

# Class C 10 50 100
MAPE (%)  8.06 1.91 0.82
MAE 7743  21.07 11.33

A € RP*V is the weight matrix, V is the vocabulary size,
and D is the embedding dimension. In this study, the departure
time in a day is divided into 288 slices (5 min time window),
and the weather condition is recorded as five types, namely
rainstorm, heavy rain, moderate rain, showers, and cloudy.
We embed departure time to R®, day of week to R3, and
weather to R3.

Besides the above features, we utilize a statistical value,
which is denoted as Route-ETA. Route-ETA is a simple accu-
mulation of the average travel time for each link in a trip,
calculated by the distance of the link divided by the historical
speed at the trip departure time. Although Route-ETA ignores
the dynamic changes in traffic and can cause an accumulation
of errors, it can still be used as an additional information
source. Similar to the travel time, we convert Route-ETA into
categorical values using the same threshold . The embedding
of each attribute is concatenated as the output of the attributes
embedding component.

C. Prediction Component

After learning spatio-temporal features and embedding
external attributes, the fully connected (FC) layer is applied
to extract features further and make predictions, which is a
common practice in previous ETA models [1], [14]. As demon-
strated in Fig. 4, the prediction component is constructed by
three groups of consecutive FC layers, namely, FC-1ink,
FC-attr and FC-out. FC-1ink accepts the hidden vector
of last BIGRU cell as input, and FC-attr accepts as input the
concatenated attributes embedding. FC-1ink and FC-attr
both have the same hidden and output layer sizes, which are
empirically set to 1024 and 128, respectively. The outputs of
FC-1link and FC-attr are first concatenated and then fed
to FC-out. The hidden size of FC-out is empirically set
to 1024, while the output size depends on the number of
classes C. Except for the output layer in FC-out, we apply
the Rectified Linear Unit (ReLU) activation function to the
others. At training time, we apply dropout [45] with probabil-
ity 20% to all FC layers to prevent overfitting.

Following the three groups of FC layers, the output of
FC-out is processed by a softmax function which generates
probabilities over different classes:

el

C
i=1

@)

pi = softmax(z;) = ,
e

where C denotes total classes and p; is the probability that
the input belongs to class i. The loss function Ly is defined
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by the categorical cross entropy loss:

Ly == yilog(pi), ®)

where y; is the binary ground-truth value that the input belongs
to class i. £, can be minimized through gradient descent.

D. Categorical Approximating Estimation Approach

In previous subsections, we introduce the structure of three
components that learns spatio-temporal features from the link
sequence and embeds external factors. In addition, we divide
travel times into groups and train a classifier to solve the ETA
task. Nevertheless, as travel times are divided into groups,
using categorical labels directly as the final prediction may
undermine the model performance, particularly for trips with
travel times close to their assigned group’s thresholds. Thus,
we design a categorical approximating approach to reduce
bias in the model inference stage. Specifically, we take into
account the model confidence in classifying the input to
each class. we select those categories with relatively high
confidence and estimate travel time by the weighted average
of the corresponding categorical labels. This is based on the
hypothesis that if a trip has similar confidence in several
classes, its travel time is close to the threshold of these
categories. In this work, we use the output probabilities of the
softmax function as the classification confidence and choose
the classes with top-k probabilities as /C. Hyperparameter k
defines the degree of approximation by indicating the number
of categories for approximation. The weighted approximating
estimation can be formulated as:

A Pjcj
yi = == )
%C zjelC pj

where §; is the estimated travel time of trip i, p; is the
probabilistic output of the softmax activation function, c; is the
class label, and K is the set of classes with relatively high p;.

V. CASE STUDIES

In this section, we first evaluate the proposed CatETA on
a large-scale, real-world trajectory dataset and compare our
approach with established ETA baselines. We then investi-
gate the sensitivity of CatETA to hyperparameter variations.
Finally, we analyze the generality of CatETA by constructing
a link-based dataset from GPS trajectories.

A. Dataset

We perform our experiments on a real-world ride-hailing
dataset provided by the Didi Chuxing GAIA Project.! The
dataset contains approximately nine million trip records from
August 1st to August 31st, 2020. During pre-processing stage,
we remove abnormal records with very short travel time (less
than 3 min) and distance (less than 1km). There is a sparse
adjacency table that records the adjacent relationships between
links, which contains 882, 718 links. Each link has an average

IThis dataset can be downloaded (following approval of access request) at
https://outreach.didichuxing.com/research/opendata

of 2.6 neighbors. The travel times of each link in a trip are
unavailable in this dataset. Since the dataset is collected in
urban areas, the trained model may only be applicable for
prediction in urban scenarios. It is important to note that, while
there are several datasets available for ETA, they are based
on GPS trajectories alone and are relatively less practical for
use as per analyses in Sec. II-A. The selected dataset from
the GAIA Project is the only publicly accessible link-based
dataset for ETA at the current stage.

B. Experimental Settings

The following hyperparameters are used in the experiments:
o Link cluster number M: The default setting is M =
80, 000, which is about 10% of links in the network.
o Travel time class number C: We set C = 50 by default,
which means the travel time is divided into 50 categories.
« Categorical approximating k: The travel time is estimated
by weighting the class with the top-k softmax probabili-
ties. The default setting is k = 5.
For cross-validation, we select the last week in the dataset
as the test set. The rest of the dataset is sequentially divided
into training set and validation set with a ratio of 3 : 1. The
model is trained using the Adam optimizer [46] with an initial
learning rate of 0.001, while the batch size is set to 1024.
All models are implemented using PyTorch [47], and all case
studies are conducted on a server with an NVIDIA GeForce
RTX 2080Ti GPU.

C. Evaluation Metrics

We select the Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE), and Satisfaction Rate (SR) as the
measures of estimation accuracy; these metrics are commonly
used in ETA [6], [14]. They are defined as follows:

1 & |y — 50
MAPE(y, §) = NZ —5 | 100%, (10)
i
N
R 1 , (i
MAE(, §) = + > [y =39, (11)
i
y(i) _ 5,(1‘)

SR(y, ) =

N
1
— Y| < 15% ) x 100%,
v (5= )
(12)

where $© is the estimated travel time of trip i, y\) denotes
the ground truth, and N is the number of trips.

D. Baselines

We compare the proposed model with the following ETA

methods:

« Historical Average (HA): HA estimates travel time by
calculating the average speed during a specific time from
historical records. As the departure time is divided into
5-minute time slices in this dataset, we average the trips
in the same time slice.

o TEMP: TEMP [8] is a route-free baseline that estimates
travel time by querying and averaging all the neighboring
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TABLE 1I
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES. MAPE AND SR ARE REPORTED IN PERCENTAGE (%)

Total Short (< 10 min) Medium (10-20 min) Long (> 20 min)
MAPE MAE (s) SR MAPE  MAE (s) SR MAPE MAE (s) SR MAPE MAE (s) SR
HA 24.24 221.84 38.32 22.59 95.24 40.19 23.70 202.62 38.50 28.59 506.53 34.34
TEMP 20.58 136.85 48.65 23.01 92.27 45.74 18.06 148.67 52.21 19.73 312.99 47.16
XGBoost 17.76 142.87 52.19 21.35 84.65 45.27 15.71 132.58 56.72 15.50 276.63 55.30
Route ETA 16.12 140.31 53.78 16.31 67.66 54.07 15.71 133.70 54.56 16.67 292.81 51.52
DeepTTE (merge) 14.97 125.00 58.86 16.40 67.84 54.58 14.51 121.89 59.88 13.29 240.95 64.75
WDR 15.73 124.36 58.29 20.15 717.37 47.33 13.24 110.87 64.00 12.90 240.30 66.28
CatETA (no merge) 15.01 125.07 58.78 16.60 69.26 53.78 14.50 121.60 59.95 13.09 239.25 65.71
CatETA (regression) 15.09 122.57 59.65 17.81 71.19 52.16 13.38 113.42 64.37 13.68 240.97 63.49
CatETA 13.92 116.07 62.52 15.83 65.31 55.92 12.94 109.02 65.79 12.46 227.85 67.81
HA XGBoost —e— DeepTTE (merge) —e— CatETA (no merge) —e— CatETA
—eo— TEMP —e— Route ETA —e— WDR —e— CatETA (regression)
300
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Fig. 6. Performance comparison of different approaches. MAPE and SR are reported in percentage (%).

trips. Trips with the same or nearby starting and desti-
nation links are considered as neighboring trips. In this
work, we retrieve ten neighboring trips for each query
and average the travel time, which follows the setting in
previous study [14].

o« XGBoost: XGBoost [48] is an established ensembling
method. Since the input of XGBoost must have fixed
length, we aggregate the link sequence of each trip to
a fixed length and then concatenate it to the head part.
The length is set to 20, which is close to the average
length of the merged link sequences.

o RouteETA: RouteETA estimates travel time by adding
the average travel time of each link at the trip departure
time. The real-time travel time of each link is collected
via online map services. RouteETA is used as an external
attribute in the proposed methods. For a fair comparison,
RouteETA is used as input to all other baselines as
well.

o DeepTTE (merge): DeepTTE [1] is among the repre-
sentative trajectory-based studies. It leverages a neural
network to convert each raw GPS trajectory into a series
of features, before applying an RNN to capture spatio-
temporal dependencies. Since this model is not applicable
to link-based trip records, we replace the feature extrac-
tion layer with our proposed link merging method.

« WDR: WDR [6] is a widely deployed link-based
ETA method which combines wide, deep, and recurrent
neural networks, achieving highly competitive prediction
accuracy.

o CatETA (no merge): CatETA (no merge) is a simplified
version of the proposed model, in which link merging in
the spatio-temporal learning component is removed.

o CatETA (regression): CatETA (regression) is a regres-
sion version of CatETA that uses the same network
structure and link merging method. Unlike CatETA, the
loss function of the regression version is the mean square
error and travel time is normalized by z-score.

E. Performance Evaluation

We first evaluate the performance of the proposed CatETA
against the selected baselines. The results, summarized in
Table II and Fig. 6, clearly demonstrate that CatETA sig-
nificantly outperforms all other methods on the three eval-
vation metrics. Furthermore, both CatETA (no merge) and
CatETA (regression) achieve competitive results, illustrating
the efficacy of the proposed link merging and classification
approximation methods. It is worth noting that our classifica-
tion scheme (13.92%) outperforms the pure regression scheme
(15.09%) by 1.17% with the same model structure and link
merging method. Meanwhile, DeepTTE (merge) also provides
compelling results in favor of the superior performance of link
merging. While DeepTTE is designed for GPS trajectories,
it can still produce competitive results with minor modifi-
cations. In summary, the above results show that CatETA is
highly effective for link-based ETA and achieves state-of-the-
art results.

Table II also shows the performance of each method over
a range of trip lengths. We categorize trips into three groups
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Fig. 7. Performance comparison for trips with different departure times.

(short, medium, and long) based on their travel time, with
each group accounting for 37%, 43%, and 20% of the test
set. It appears that all methods perform well in the long trip
scenario, and the performance of the model degrades as the
trip duration decreases. However, CatETA shows significant
advantages for short trips over regression-based methods, i.e.,
CatETA (regression), XGBoost, DeepTTE, and WDR. This is
because our classification scheme eliminates the adverse effect
of extremely long trips in this skewed distribution. On the
other hand, the regression model is easily influenced by long
trips, undermining its performance for short trips. This result
indicates that our approach is more practical than the baselines
in real-world scenarios that involve a non-negligible amount
of short trips.

Due to the fact that the distribution of trip volume varies
throughout the day, we further investigate the performance
of CatETA at various time intervals. We divide the day into
eight three-hour time windows according to departure time
and examine the performance of different models during each
period. As shown in Fig. 7, increasing trip volume has a
detrimental effect on the performance of CatETA, which is
corroborated by the results of other models. The reason is that
increased trips also mean more vehicles on the road, causing
traffic congestion and therefore complexity that ultimately
impairs model performance. There are two peaks in a day,
9:00-12:00 and 18:00-21:00, which correspond to the peak
periods for commuting to and from work, respectively. Corre-
spondingly, performance during these periods is slightly lower
than during others. Nevertheless, CatETA can still produce
better estimates than the evaluated baselines for all time
windows throughout the day.

FE. Hyperparameter Sensitivity Test

In this section, we first investigate the impact of the
number of clusters M, which determines the performance
of model and computational requirements. Fig. 8 shows
the projection of the graph-embedded learning representation
within a region. We can observe that the graph embedding
approach is able to cluster links with similar embedding
representations in the road network. Recall that there are
882, 718 links in the entire network; we set the number of
clusters M € {160000, 80000, 16000, 8000}, which is approx-
imately {20%, 10%, 2%, 1%} of the original value, respec-
tively. We also provide the average number of merged links

(a) Network Topology with Graph (b) The link clusters produced by
Embedding. Graph Embedding

Fig. 8. Visualization of graph clustering. The same color indicates that the
links are in the same cluster. Links with similar embedding representations
can be clearly separated.

in each trip and the training time per epoch to demonstrate
how our scheme can significantly reduce computational costs.
As shown in Table III, we can see that the average length
of sequences (links in trips) and the epoch time decreases
with M. Compared to using the original sequence directly,
the link merging method improves the estimated MAPE from
15.01% to 13.92% while reducing the computation time by
half. This is because lengthy sequences introduce a lot of
extraneous noise. The main link state information can be
preserved by merging the links, thereby improving the model
accuracy. In addition, our link merging scheme is capable of
merging links with similar embedding representations. The
computational cost of BiGRU is proportional to sequence
length, thus significantly reducing the training cost. However,
the adage “smaller is better” is not true for M, as merging too
many links may discard too much link information. This can
also be verified from the results displayed in Table III, where
the average length and epoch time are reduced despite the fact
that accuracy decreases.

To quantify the impact of two critical hyperparameters in
the proposed categorical approximate approach, i.e., the travel
time class number C and the categorical approximating k,
we choose C € {10,50,100} and set k € {1,3,5}, k €
{1,5,10} and k € {1, 10, 20} for each C value, respectively.
The simulation results summarized in Table IV demonstrate
that both a large and a small C can affect model performance,
and that C = 50 is the best among the three settings. This
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Fig. 9. Normalized confusion matrix.
TABLE III TABLE V

PERFORMANCE OF THE PROPOSED MODEL OVER NUMBER OF CLUSTERS

# Cluster M # Links per Trip  Epoch Time (s) MAPE (%)
882,718 87.83 81.77 15.01
160,000 41.13 49.28 14.48
80,000 28.21 41.97 13.92
16,000 15.34 34.18 14.47

8,000 12.99 30.31 14.32
TABLE IV

PERFORMANCE OF THE PROPOSED MODEL OVER NUMBER
OF CLASSES C AND APPROXIMATING TOP-k

C k MAPE(%) MAE(s) SR(%) Acc(%)
1 16.51 146.10 54.19 46.19
10 3 15.86 135.86 56.90 87.04
5 15.98 135.18 56.97 97.27
1 14.30 119.91 61.31 13.76
50 5 13.92 116.07 62.52 49.25
10 14.11 115.28 62.61 70.73
1 15.32 126.71 57.85 6.84
100 10 14.86 122.31 59.42 43.03
20 14.97 121.55 59.58 69.79

is explained by a trade-off in categorizing travel time into
few classes, which can produce a coarse-grained approxima-
tion result, versus having too many classes that are hard to
classify, thus reducing the accuracy of the model. Indeed, one
may observe that as C increases, the corresponding accuracy
decreases. In addition, the value of k is also important since
a larger k approximates the ETA with more travel time
categories. However, MAPE and SR do not always improve as
k increases, indicating that using a k value that is too large may
introduce noise and thus reduce the approximation precision.
As such, it is recommended to choose a medium number of
classes, and we use k = 0.1 x C as a guideline following the
previous experiments.

Finally, we present the normalized confusion matrix when
categorizing travel time into different number of classes.
As shown in Fig. 9, the classifications of CatETA are typically
accurate with all tested number of classes C; as C increases,

PERFORMANCE COMPARISON OF DIFFERENT APPROACHES
ON KDD CUP 2020 DATASET. MAPE AND SR ARE
REPORTED IN PERCENTAGE (%)

MAPE MAE (s) SR
TEMP 22.60 145.64 44.94
XGBoost 21.43 134.37 46.32
Route ETA 22.49 151.15 4143
DeepTTE (merge) 16.77 112.74 56.38
WDR 18.45 134.66 51.58
CatETA 15.82 111.28 58.83

even if the top-1 prediction accuracy decreases, the prediction
is still likely to fall into neighboring labels of the ground truth.
Moreover, since neighboring categories tend to have similar
confidence, using top-k can greatly improve the prediction
accuracy. Therefore, we use top-k for approximation in order
to transform the class into a continuous numerical prediction
and maximize the reliability.

G. Generality of CatETA

As mentioned previously, the case studies are conducted
on the only public link-based ETA dataset. In this section,
we construct a link-based ETA dataset from GPS trajectories
to analyze the generality of CatETA. Specifically, the GPS tra-
jectories are from KDD CUP 2020 dataset® which is collected
by ride-sharing vehicles in Chengdu, China, from Nov lIst,
2016 to Nov 30th, 2016. It records approximately 20 thousand
trips and 30 million GPS points a day with a sampling interval
of 2-4 s. To project GPS trajectories onto the road network,
we first obtain the network topology from OpenStreeMap? and
then perform map matching by hidden Markov model [49].
With GPS trajectories matched to the map, consecutive GPS
points on the same road segment are merged as a traversed
link, and a trip can be represented by a sequence of links.

For performance evaluation, we choose TEMP, XGBoost,
RouteETA, DeepTTE (merge) and WDR as the baselines

2This dataset can be downloaded (following approval of access request) at
https://outreach.didichuxing.com/app-vue/KDD_CUP_2020
3https://www.openstreetmap‘org/
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(c.f. V-D). All the experimental settings are kept the same as in
Section V-B for a fair comparison. As summarized in Table V,
CatETA has the best performance on three evaluation metrics
compared to other baselines, which follows the same trend as
the results in Table II. The results indicate that CatETA can
be generalized broadly when applied to other datasets.

VI. CONCLUSION

In this paper, we propose a novel categorical approximate
approach for estimating the time of arrival based on a series
of traversed links. Concretely, we introduce CatETA to jointly
learn spatio-temporal features from link sequences and exter-
nal attributes in a set of global information. In the proposed
approach, to prevent the regression model from being skewed,
we formulate travel time as a categorical value and design a
categorical approximate approach. In particular, we estimate
the travel time via the weighted average of different classes to
eliminate bias in categorical labeling. Additionally, we merge
spatially adjacent links according to graph embedding, thereby
reducing the computational burden of long link sequences.

To evaluate the performance of CatETA, we conduct a series
of comprehensive case studies on a real-world link-based ETA
dataset. The simulation results demonstrate that the proposed
method significantly outperforms state-of-the-art baselines in
all scenarios. Subsequently, our hyperparameter sensitivity
tests show that categorical approximation effectively help
avoid skewing the regression model and that merging neigh-
boring links can considerably alleviate computational costs.
Furthermore, we construct a link-based dataset from GPS
trajectories which reveals the generality of our model on
other cities and datasets. In future work, we will explore ETA
models that can be adapted to special scenarios, such as in the
event of a traffic accident, that are closer to real applications.
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