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Abstract— Estimated time of arrival (ETA) is one of the1

critical services offered by navigation and hailing providers. The2

majority of existing solutions approach ETA as a regression3

problem and leverage GPS trajectories for estimation. However,4

the travel time fluctuates greatly between different trips, making5

simple regression methods skewed. Additionally, these methods6

are incapable of conducting estimation in practice because the7

trajectories of future trips are unknown. To jointly tackle these8

problems, we propose a novel Categorical approximate method9

to Estimate Time of Arrival (CatETA). Specifically, we formulate10

the ETA problem as a classification problem and label it with the11

average time of each category. To eliminate bias in categorical12

labeling, we approximate travel time using the weighted average13

of different classes in the testing stage. Then, we design a14

network structure that extracts the spatio-temporal features15

of link sequences and integrates a set of global information.16

Furthermore, we merge link sequences according to network17

topology and graph embedding to alleviate the computational18

burden associated with large-scale link networks. Comprehensive19

experiments on real-world datasets demonstrate that CatETA20

considerably improves the estimation performance and signifi-21

cantly reduces computational effort.22

Index Terms— Estimated time of arrival, traffic prediction,23

spatio-temporal data mining.24

I. INTRODUCTION25

ESTIMATED time of arrival (ETA) or travel times esti-26

mation that estimates the travel time between a pair of27

origin and destination, is a critical component of modern28

intelligent transportation systems (ITS). It empowers online29

ride-hailing and navigation platforms to improve the quality30

of their services [1], [2], [3].31

For instance, accurate ETA can assist businesses like Didi32

Chuxing, Uber, and Google Maps in determining optimal33

routes in a manner that not only satisfies operational objectives34

but also promotes customer satisfaction (see Fig. 1 for an35

illustration). Therefore, ETA is essential for these online36

transportation service providers to be successful [4], [5], [6].37
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Fig. 1. Example of obtaining the estimated time of arrival (ETA) for a given
origin-destination pair. The mobile app initiates an ETA query to the service
provider, who then leverages the city map to determine the best route, before
finally returning the trip details and ETA.

The problem of ETA has been extensively studied in recent 38

years. A straightforward approach is to calculate the aver- 39

age travel time from origin to destination using historical 40

data [7], [8], [9], [10], [11], [12]. However, these methods fall 41

short when confronted with unknown or sparse routes (e.g., 42

some routes do not belong to or are only rarely recorded in 43

the historical database). Meanwhile, historical-based methods 44

ignore external factors such as departure time or weather 45

conditions, resulting in low ETA accuracy. In addition, history- 46

based methods often fail to meet route planning targets, 47

such as in cases where multiple routes connect the same 48

origin-destination pair [5], thereby necessitating the use of 49

advanced ETA solutions. 50

Given that global positioning system (GPS) trajectories 51

contain rich temporal and spatial information, a body of 52

research formulates the ETA problem as a regression problem 53

subsequently modelled via deep learning algorithms [1], [2], 54

[13], [14], [15], [16]. Some solutions divide the road network 55

into links, i.e., road segments, which are defined as routes that 56

connect two junctions and have no junctions in the middle. 57

In this way, trips can be represented as a sequence of traversed 58

links without requiring GPS-specific information [5], [6], [17], 59

[18], [19]. By incorporating external features that have a 60

significantly impact on the ETA problem (e.g., route state, 61

distance, and departure time) they achieve highly competitive 62

results [13], [20]. Taking Fig. 1 as an example, when users 63

send an ETA query, the service provider only knows the start 64

and end points of the user’s trip. And the service provider 65

therefore needs to determine the best path based on this query 66

and return a sequence of links for this trip. Nonetheless, 67

existing work has not yet addressed the following limitations: 68

• GPS trajectories exhibit diverse spatio-temporal correla- 69

tions that are challenging to capture. In addition, GPS 70
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Fig. 2. Probability distribution function (PDF) and cumulative distribution
function (CDF) of travel time and trip distance during a weekday. Most travel
times are within 40 min, while the longest is 195 min; most trip distance are
within 20 km, while the longest is 144 km. Each trip traverses an average of
87 links and a maximum of 757 links.

data are inextricably linked to privacy concerns, limiting71

large-scale data collection in real-world applications [21],72

[22]. Arguably most significantly, predicting future GPS73

coordinates for a given trip is unrealistic, rendering end-74

to-end inference impractical.75

• Road traffic is dynamic, with complex spatial and tempo-76

ral correlations among road network links [23]. Extracting77

and computing features for each link requires substantial78

computational resources that may not be available in79

time-critical use cases [18].80

• Because the travel time distribution of trips is highly81

volatile, pure regression models may produce large errors82

in small-scale data. As depicted in Fig. 2, the majority of83

travel times during a weekday are within 40 min and most84

trip distance are within 20 km. This skewed distribution85

may cause a significant difference in model prediction86

among different travel time lengths.87

To bridge these gaps, we propose a categorical approximate88

approach for estimating time of arrival termed CatETA. The89

primary contributions of this work are summarized as follows:90

• We propose a travel time estimation method that takes as91

input a sequence of individual links. Unlike prior methods92

relying on GPS trajectories, the proposed method better93

suits mobile computing as it does not need to predict the94

GPS trajectories of travel trips on the client side.95

• We build a deep neural network consisting of three main96

components designed to extract spatio-temporal features97

in addition to a set of global attributes. We further98

improve computational efficiency by merging the input99

link sequence based on spatial proximity.100

• We propose an approximate categorical approach that101

groups travel time into classes and then estimates it using102

a weighted approximation of the various classes. Com-103

pared to regression methods, this approach can effectively104

reduce errors caused by skewed travel time distributions.105

• We conduct comprehensive case studies on a large real-106

world dataset. The result shows that CatETA significantly107

outperforms other baselines in multiple scenarios. Finally,108

the hyperparameter settings are investigated and analyzed109

to provide insights into their selection.110

The rest of this paper is organized as follows. Sec. II111

first reviews the literature on ETA, grouped into trajectory-112

and link-based methods. Then, Sec. III provides preliminary113

definitions and formalizes the problem to be addressed in this 114

work. Sec. IV elaborates on the proposed CatETA frame- 115

work and its constituting spatio-temporal learning, attributes 116

embedding, and prediction components. Next, Sec. V conducts 117

a series of experiments to assess the performance of CatETA 118

against competitive baselines, in addition to a hyperparameter 119

sensitivity test. Finally, Sec. VI concludes this paper. 120

II. RELATED WORK 121

A large number of studies have been conducted on estimat- 122

ing ETA. Besides the naïve history-based approaches (e.g., [7], 123

[8], [24], [25]), advanced ETA solutions can generally be 124

classified into the following two broad categories from a data- 125

driven perspective: GPS trajectories-based and link-based. 126

A. GPS Trajectories-Based ETA 127

With GPS sensors embedded in a multitude of modern smart 128

devices, acquiring GPS trajectories for ETA studies is now 129

easier than ever [4]. Wang et al. proposed an error feedback 130

recurrent convolutional neural network (eRCNN) to estimate 131

travel time and speed on sequential GPS points [26]. Although 132

the proposed method considered the spatial-temporal correla- 133

tion of trajectories and derived the estimated time based on 134

the speed of each constituting segment, simply accumulating 135

the travel time of each trajectory segment ultimately did not 136

produce remarkably accurate results. Therefore, Dong et al. 137

proposed schemes for directly estimating the arrival time of 138

the entire trip in a later research [1]. Specifically, they used 139

complex neural network models to capture fine-grained tra- 140

jectories features and combine them with other attributes such 141

as driver ID and departure time. Compared to the previous 142

trajectory segment prediction and accumulation approach, this 143

framework achieves higher accuracy. 144

To further improve the accuracy of ETA, Zhang et al. 145

mapped GPS trajectories to a grid and combined the 146

spatio-temporal information embedding with auxiliary features 147

like driving and traffic statuses (both short- and long-term) in 148

the grid to design an end-to-end ETA model [13]. Shen et al. 149

which adopts tensor decomposition and graph embedding [14]. 150

This scheme employed a non-negative tensor decomposition 151

method to recover the travel speed distribution and then 152

integrated a neural network model for representation learning. 153

In addition, it used graph embedding to generate represen- 154

tations of road network structures, achieving a high level 155

of estimation accuracy. Considering the impact of different 156

transportation modes on ETA, Xu et al. proposed a multi-task 157

learning model for ETA. This method is able to capture 158

the interaction between transportation modes and travel time, 159

which can recommend the appropriate transportation mode for 160

the user and then estimate the associated ETA [27]. 161

While GPS trajectories-based approaches have enabled sig- 162

nificant improvements in ETA, these solutions face serious 163

challenges: 1) These schemes utilize data consisting of real 164

GPS points, but it is very difficult to predict future GPS 165

points in real scenarios; 2) These schemes rely heavily on the 166

sampling frequency and accuracy of the GPS points, which 167
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is far from perfect for low-frequency sampling and long-term168

prediction.169

B. Link-Based ETA170

To address the aforementioned challenges, a few link-based171

methods were proposed lately. These methods view trips as a172

series of traversed links and consider their interactions, which173

resolves the dependence on GPS points and enables trip plan-174

ning for ETA prediction. Wang et al. combined the advantages175

of the wide linear model, the deep neural network, and the176

recurrent neural network to propose a wide depth recurrent177

(WDR) learning model for estimating the arrival time [6]. This178

scheme agglomerates multiple trip features, such as traffic,179

personalized, and global information to accurately predict the180

travel time for a given planned trip. Based on this concept,181

researchers introduced an auxiliary task to learn personal-182

ized driving information (driving preferences, driving speed,183

etc.) in a multi-task learning framework [28]. In addition,184

Sun et al. proposed a road network metric learning framework185

for learning representations of elements (such as links) in186

road networks. Besides performing ETA prediction, they also187

designed auxiliary learning tasks to improve the quality of188

embedding vectors and proposed a triangle loss function to189

improve the efficiency of metric learning [29]. Considering190

that previous work fail to capture the movement behavior of191

the embedding in the trip well, Fu and Lee proposed Deep192

Image-based Spatio-Temporal network (DeepIST) [19]. This193

framework represents the trip as a sequence of “generalized194

images” containing sub-paths and auxiliary information, and195

designed a novel two-dimensional convolutional (pathCNN)196

for spatio-temporal modeling along the trip.197

Since graph neural networks (GNN) have achieved remark-198

able success in modeling unstructured data, researchers have199

also attempted to model the spatial and temporal dependence200

of road traffic through spatio-temporal graph convolution [5],201

[30], [31]. Jin et al. proposed a spatio-temporal graph neural202

network framework for the ETA problem. Specifically, their203

approach adopts a multi-scale deep spatio-temporal graph204

convolutional network to capture structured spatio-temporal205

traffic conditions along with a transformer layer to extract206

long-term time dependencies. Finally, the two components207

are integrated into a real-time traffic condition representation208

to estimate arrival times by a gated fusion module [32].209

Hong et al. utilized heterogeneous information graphs to210

transform the roadmap into a multi-relational network in211

the ETA task, and introduced a network based on vehicle212

trajectories to jointly consider traffic behavior patterns to213

achieve accurate ETA predictions [5]. To further exploit the214

spatial and temporal correlation in the traffic road network,215

i.e., the contextual information and connectivity of links.216

Fang et al. employed a graph attention mechanism to cap-217

ture the relationship of spatio-temporal information. Then,218

convolution layers are applied to capture the contextual infor-219

mation in a local window [33]. Based on this network frame-220

work, they further proposed a self-supervised meta-learning221

scheme for en-route ETA, which can fast adapt to the user’s222

driving preferences and improve the time estimation for the223

Fig. 3. Illustration of graph representation of link network. Each link in the
road network is a node in the graph.

remaining links. Specifically, this scheme considers the 224

observed behaviors in the traveled links as training exam- 225

ples and the future behaviors in the remaining links as test 226

examples, and then utilizes self-supervised learning techniques 227

(equivalent to generating a large number of synthetic learn- 228

ing tasks) to further improve performance [34]. Moreover, 229

Yu proposed a Bayesian and geometric deep learning based 230

approach to estimate the travel time distribution of road 231

links in a citywide traffic network. The evaluation shows that 232

the probabilistic distribution describe the ETA better than 233

the deterministic model due to the uncertainty caused by 234

the unstable traffic [35]. 235

However, link-based approaches require feature extraction 236

using complex neural networks for each link, which inevitably 237

leads to a heavy computational burden [18]. On the other 238

hand, general regression models cannot accurately predict 239

arrival times due to the large variation in data distribution 240

across travel times and the number of links. Inspired by the 241

previous work, we propose a novel categorical approximate 242

method to estimate the time of arrival without relying on GPS 243

predictions, and use graph embedding to obtain the correlation 244

of road link, which can significantly reduce the computation 245

burden. 246

III. PROBLEM DEFINITION 247

Definition 1 (Link): A link represents a road segment, 248

which is defined as a tuple v = (vid, vratio, vstatus) with 249

three components, where vid is the id number of the link. 250

vratio indicates the ratio of this link traversed in a trip (Since 251

a trip may start or end at the middle of a link, for the first 252

and last links in a trip, vratio ∈ (0, 1], otherwise vratio = 1). 253

vstatus denoted as the status of the link at the trip departure 254

time. vstatus including five types: 0 — unknown, 1 — clear, 255

2 — slow, 3 — congestion, and 4 — gridlock. 256

Definition 2 (Link Network): The basic link network is rep- 257

resented as a directed graph of links G = (V,A), where V is 258

the set of graph nodes, that is, links in the traffic network. 259

Fig. 3 shows an example of graph representation where the 260

11 links in the link network are represented by 11 nodes in 261

the graph, and connectivity are represented by edges in the 262

graph. The connectivity between links is represented by A, 263

where Ai j = 1 denotes that link v j is the following one of 264

link vi , i.e., vehicles can travel from vi to v j . 265
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Fig. 4. Proposed CatETA consists of three core components: spatio-temporal learning, attribute embedding, and prediction. The prediction component
combines information from both the spatio-temporal learning and attribute embedding components and predicts the category to which the trip ETA belongs.

Definition 3 (Trip): A trip xi is defined as xi = {
si , oi ,266

di , V i
}
, where si is the departure time, oi is the origin267

location, di is the destination, V i = {v1, v2, . . . , vn} represents268

a sequence of links that the trip traverses on.269

Definition 4 (Estimated Travel Time): For a given query270

qi = [oi , di , si ], the goal of ETA is to predict the travel271

time ŷi using the formed trip and external attributes (such272

as week date, distance, weather conditions) of this query.273

We assume that V i in trip x i are designated by the user or274

generated by a routing algorithm of service providers, and275

this assumption was also adopted in previous literature and in276

practical navigation systems [1], [6], [13].277

IV. METHODOLOGY278

In this section, we give a detailed description of the pro-279

posed CatETA approach. As depicted in Fig. 4, the proposed280

model consists of three components: spatio-temporal learning281

component, attributes embedding component, and prediction282

component. The spatio-temporal learning component com-283

prises two steps for extracting spatio-temporal features from284

link sequences. We begin by merging spatially neighboring285

links according to the graph embedding of the link network.286

A bi-directional gated recurrent unit (BiGRU) is further287

applied to learn representations of fine-grained temporal fea-288

tures. The attributes embedding component converts travel289

times to categorical values and embeds external attributes290

such as departure time, date, distance, and weather conditions.291

Finally, the prediction component takes the outputs of the292

preceding components as inputs and uses categorical approx-293

imation to estimate the travel time. Following elaborates on294

the details of these components.295

A. Spatio-Temporal Learning Component296

1) Link Merging: As mentioned previously, a trip comprises297

a link sequence and a set of external attributes. Existing298

research extracts temporal dependencies from link sequences 299

via recurrent neural networks (RNN), such as long short-term 300

memory (LSTM) [1], [18]. In practice, however, a trip is 301

divided into short links of varying lengths, which results in 302

the link sequence length fluctuating between different trips, 303

with the shortest being less than 10 and the longest greater 304

than 500. Directly feeding such link sequences into an RNN 305

may incur massive computational costs [18]. To tackle this 306

drawback, we merge spatially adjacent links before extracting 307

the temporal features using RNN. This process reduces fluctu- 308

ations in link sequence length while also reducing subsequent 309

computational burden (See spatio-temporal learning compo- 310

nent in Fig. 4, where the input links are merged after link 311

embedding and merging, and the merged links with similar 312

properties have the same color). 313

Given that we have a link network G denoting adjacent 314

relationships. Graph embedding, which maps a graph to an 315

appropriate low-dimensional vector space, has been shown 316

to be a highly effective approach to characterizing spatial 317

relationships [14], [36], [37]. A general expression of graph 318

embedding is to learn a mapping function f : RN×N → R
N×h

319

that embeds a sparse network R
N×N into low-dimensional 320

representations R
N×h , where h � N . In this work, we utilize 321

DeepWalk to learn the representation of links as it exhibits sig- 322

nificant performance in various network embedding tasks [37]. 323

Recall that we have a link network G = (V,A), DeepWalk first 324

generates walk sequences starting from a specific link v in V 325

by random walks. The transition probability between link vi 326

and v j is defined as: 327

Pr(vi |v j ) = di j∑
vi∈N (v j )

di j
, vi ∈ N (v j ), (1) 328

where N (v j ) is the set of adjacent links of j , and di j is the 329

distance from link vi to v j . After generating walk sequences 330

by random walks, the objective is to estimate the probability 331

that the next link of the walking sequence {v0, v1, . . . , vi−1} 332
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is vi , which can be formulated as Pr(vi |{v0, v1, . . . , vi−1}).333

As graph embedding methods are designed to learn a dense334

representation of the sparse network, a mapping function θ :335

v ∈ V → R
|V×d | is introduced to embed links in the graph336

into latent vectors. In this work, θ is an empirical two-layer337

neural network whose input is the one-hot encoding of link vi ,338

and the output θ(vi ) ∈ R
d is the embedding vector. Thus, the339

problem can be formulated as,340

Pr (vi |{θ(v1), θ(v1), . . . , θ(vi−1)}) . (2)341

Instead of calculating Eq. 2, DeepWalk applies Skip-Gram [38]342

for relaxation, which ignores the order constraint in the343

sequence and calculate the probability Pr(vk |θ(vi )), where344

vk is the link in the walking sequence of vi . The objective345

can be formulated as,346

arg min
θ
− log Pr ({vi−w, . . . , vi+w}|θ(vi )) , (3)347

where vi is a link in walking sequence {vi−w, . . . , vi+w}, w is348

the window size, respectively. The learning process aims to349

maximize the probability that adjacent links of vi are in the350

walking sequence of a window size w; in this work, we set351

the walk length to 30 and the window size to 10, which is the352

combination that performed best in preliminary experiments.353

Thus, links with common neighbors are expected to have354

similar embeddings.355

Next, we use K-Means clustering to group the links356

into M classes based on their embeddings. Since spatially357

neighboring links shall be assigned to the same class after358

clustering, the original link sequences can be merged accord-359

ing to the clustering labels. This is illustrated in Fig 4,360

where links are colored according to the clustering result:361

links with the same color are merged. The merged link is362

denoted by V � = {v �1, v �2, . . . , v �d }, whereas the original one363

is V = {v1, v2, . . . , vn}, where d < n. This procedure can364

be expressed as {vi , vi+1, . . . , v j } → v �, and the number of365

original links merged in v � is denoted as |v �|. Note that the366

number of original links contained in each merged link may367

vary, as does the length of the merged link sequence. The link368

features are aggregated by the following rules:369

v �ratio =
1

|v �|
∑

vratio, (4a)370

v �status =
1

|v �|
∑

vstatus, (4b)371

v �len =
|v �|
n

. (4c)372

The link ratio and status are averaged. v �len is designed to373

represent the weight of v � in the whole link sequence V . lstatus374

are categorical attributes including the five different type of375

link status in the definition. We encode vstatus to B
5 by one-376

hot. Finally, we concatenate {v �ratio, v
�
status, v

�
len} as link feature377

and obtain a merged link feature sequence L � of shape R
d×7.378

2) Temporal Feature Representation: With link sequences379

being merged according to their spatial neighborhood, we can380

obtain preliminary spatio-temporal information. However,381

empirical results indicate that direct and exclusive use of these382

features produced poor results for ETA. Owing to the GRU383

design, which is based on temporal state propagation that can 384

handle sequences with variable length [39], we employ this 385

structure to further extract high-dimensional spatio-temporal 386

correlations. 387

GRU is a practical variant of RNN with a straightforward 388

structure. By employing reset and update gates, GRU over- 389

comes the gradient vanishing problem inherent in conventional 390

RNN when processing long sequences and has a more straight- 391

forward structure compared to LSTM [40], [41]. Reset and 392

update gates are gated units that determine whether to save 393

or remove previous step information in the next state. Given 394

a sequence x as input, the hidden state at time step t can be 395

calculated by 396

rt = σ(Wr ·
[
ht−1, xt

]
), (5a) 397

zt = σ(Wz ·
[
ht−1, xt

]
), (5b) 398

h̃t = tanh(W · [rt ∗ ht−1, xt
]
), (5c) 399

ht = zt ∗ h̃t + (1− zt ) ∗ ht−1, (5d) 400

where rt and zt are the reset and update gates, ht−1 is the 401

previous hidden state, h̃t is the current candidate state, W are 402

trainable weights that can be updated via backpropagation, 403

σ is the sigmoid activation function, and ∗ denotes the 404

Hadamard product. As the traffic status on adjacent links 405

are mutually influencing, the correlation between links are 406

bidirectional. In this study, we follow the design of previous 407

ETA studies [13], [42] that utilize bidirectional recurrent layers 408

as the feature extraction component and stack two GRU layers 409

to capture both forward and backward data propagation in 410

time [43]. In the proposed model, we feed the merged link 411

sequence v � = {v �1, v �2, . . . , v �d } to a BiGRU module. The 412

forward and backward hidden states at time t are denoted by 413−→
ht and

←−
ht , respectively. States

−→
ht and

←−
ht are concatenated as 414

the output hidden state ht = −→ht ||←−ht . The hidden size of the 415

BiGRU cells is empirically set to 256. 416

B. Attributes Embedding Component 417

In aforementioned spatio-temporal learning component, 418

fine-grained spatio-temporal features are learned from link 419

sequences. Next, we focus on analyzing and mining other trip 420

attributes. 421

As shown in Fig. 2, travel time follows a skewed dis- 422

tribution; that is, while the majority of trips take less than 423

40 min, there are some particularly long ones. A common 424

approach in existing work is to normalize travel time and then 425

train a regression model for prediction. Neither z-score nor 426

min-max normalization, however, are capable of adequately 427

normalizing such a skewed distribution. Thus, we propose to 428

convert travel time to categorical values and solve the ETA 429

task in a classification manner. Besides the above features, 430

we utilize a statistical value, which is denoted as Route-ETA. 431

Route-ETA is a simple accumulation of the average travel time 432

for each link in a trip, calculated by the distance of the link 433

divided by the historical speed at the trip departure time. 434

Although Route-ETA ignores the dynamic changes in traffic 435

and can cause an accumulation of errors, it can still be used 436

as an additional information source. If we divide travel time 437
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Fig. 5. Example of dividing travel time into 10 classes, where the blue curve
is the distribution of travel time during a weekday and red vertical lines are
the class thresholds. Since the number of trips in each class is the same, the
thresholds are not equally spaced.

into C classes, we get the mathematical expression for class438

thresholds:439 ∫ βi+1

βi

f (t)dt = 1

C
, ∀i ∈ [1, C], (6)440

where f (t) is the probability density function of travel time441

in the train set and βi is the threshold of class i , respectively.442

As illustrated in Fig. 5, with the number of classes C set to 10,443

trips are divided into ten classes by multiple thresholds (red444

vertical lines). Subject to Eq. 6, the trip counts in all classes445

are equal. Therefore, the thresholds are more tight between446

8 min and 16 min as individual trip time more likely falls into447

this range, and is more sparsely spaced otherwise where there448

are less long and short trips. The label ci of class i is defined449

as the average travel time for all trips within the class.450

Since all trips in a class are represented by a single451

categorical label, there is a bias between the assigned label and452

the ground truth, which in turn may compromise prediction453

accuracy. We assess the bias in categorical labeling by using454

all trips during a weekday and converting their respective455

travel time to categorical values. Table I shows the average456

Mean Absolute Percentage Error (MAPE) and Mean Absolute457

Error (MAE) in an ideal situation, i.e., each class is correctly458

classified. It is evident that dividing travel time into more459

categories can reduce the bias of the prediction. However,460

as the number of categories C increases, it becomes harder461

to accurately classify each category in practice. Nevertheless,462

the result also indicates that the accuracy is acceptable when463

a sufficient number of bins is used though categorizing by464

travel time inevitably renders information loss. There is a clear465

trade-off between class number and prediction accuracy, and466

detailed results of this categorical formulation will be shown467

in Sec. V-F.468

In addition, external attributes have a positive effect on469

travel time estimation accuracy [1], [6], [44]. We consider470

travel distance, weather condition, departure time, and day471

of week in this work. The travel distance is normalized472

by z-score, and the remaining three categorical attributes473

are embedded into low-dimensional vectors using linear lin-474

ear layers [1], [6], [44]. The linear layer is formulated as475

y = AxT + b, where x is the one-hot encoded vector and476

TABLE I

BIAS IN CATEGORICAL LABELING OVER NUMBER OF CLASSES.
IN AN IDEAL SITUATION WHERE EACH CATEGORY

IS CLASSIFIED CORRECTLY

A ∈ R
D×V is the weight matrix, V is the vocabulary size, 477

and D is the embedding dimension. In this study, the departure 478

time in a day is divided into 288 slices (5 min time window), 479

and the weather condition is recorded as five types, namely 480

rainstorm, heavy rain, moderate rain, showers, and cloudy. 481

We embed departure time to R
8, day of week to R

3, and 482

weather to R
3. 483

Besides the above features, we utilize a statistical value, 484

which is denoted as Route-ETA. Route-ETA is a simple accu- 485

mulation of the average travel time for each link in a trip, 486

calculated by the distance of the link divided by the historical 487

speed at the trip departure time. Although Route-ETA ignores 488

the dynamic changes in traffic and can cause an accumulation 489

of errors, it can still be used as an additional information 490

source. Similar to the travel time, we convert Route-ETA into 491

categorical values using the same threshold β. The embedding 492

of each attribute is concatenated as the output of the attributes 493

embedding component. 494

C. Prediction Component 495

After learning spatio-temporal features and embedding 496

external attributes, the fully connected (FC) layer is applied 497

to extract features further and make predictions, which is a 498

common practice in previous ETA models [1], [14]. As demon- 499

strated in Fig. 4, the prediction component is constructed by 500

three groups of consecutive FC layers, namely, FC-link, 501

FC-attr and FC-out. FC-link accepts the hidden vector 502

of last BiGRU cell as input, and FC-attr accepts as input the 503

concatenated attributes embedding. FC-link and FC-attr 504

both have the same hidden and output layer sizes, which are 505

empirically set to 1024 and 128, respectively. The outputs of 506

FC-link and FC-attr are first concatenated and then fed 507

to FC-out. The hidden size of FC-out is empirically set 508

to 1024, while the output size depends on the number of 509

classes C . Except for the output layer in FC-out, we apply 510

the Rectified Linear Unit (ReLU) activation function to the 511

others. At training time, we apply dropout [45] with probabil- 512

ity 20% to all FC layers to prevent overfitting. 513

Following the three groups of FC layers, the output of 514

FC-out is processed by a softmax function which generates 515

probabilities over different classes: 516

pi = softmax(zi ) = ezi∑C
i=1 ezi

, (7) 517

where C denotes total classes and pi is the probability that 518

the input belongs to class i . The loss function Ls is defined 519
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by the categorical cross entropy loss:520

Ls = −
∑

i

yi log(pi ), (8)521

where yi is the binary ground-truth value that the input belongs522

to class i . Ls can be minimized through gradient descent.523

D. Categorical Approximating Estimation Approach524

In previous subsections, we introduce the structure of three525

components that learns spatio-temporal features from the link526

sequence and embeds external factors. In addition, we divide527

travel times into groups and train a classifier to solve the ETA528

task. Nevertheless, as travel times are divided into groups,529

using categorical labels directly as the final prediction may530

undermine the model performance, particularly for trips with531

travel times close to their assigned group’s thresholds. Thus,532

we design a categorical approximating approach to reduce533

bias in the model inference stage. Specifically, we take into534

account the model confidence in classifying the input to535

each class. we select those categories with relatively high536

confidence and estimate travel time by the weighted average537

of the corresponding categorical labels. This is based on the538

hypothesis that if a trip has similar confidence in several539

classes, its travel time is close to the threshold of these540

categories. In this work, we use the output probabilities of the541

softmax function as the classification confidence and choose542

the classes with top-k probabilities as K. Hyperparameter k543

defines the degree of approximation by indicating the number544

of categories for approximation. The weighted approximating545

estimation can be formulated as:546

ŷi =
∑
j∈K

p j c j∑
j∈K p j

, (9)547

where ŷi is the estimated travel time of trip i , p j is the548

probabilistic output of the softmax activation function, c j is the549

class label, and K is the set of classes with relatively high p j .550

V. CASE STUDIES551

In this section, we first evaluate the proposed CatETA on552

a large-scale, real-world trajectory dataset and compare our553

approach with established ETA baselines. We then investi-554

gate the sensitivity of CatETA to hyperparameter variations.555

Finally, we analyze the generality of CatETA by constructing556

a link-based dataset from GPS trajectories.557

A. Dataset558

We perform our experiments on a real-world ride-hailing559

dataset provided by the Didi Chuxing GAIA Project.1 The560

dataset contains approximately nine million trip records from561

August 1st to August 31st, 2020. During pre-processing stage,562

we remove abnormal records with very short travel time (less563

than 3 min) and distance (less than 1 km). There is a sparse564

adjacency table that records the adjacent relationships between565

links, which contains 882, 718 links. Each link has an average566

1This dataset can be downloaded (following approval of access request) at
https://outreach.didichuxing.com/research/opendata

of 2.6 neighbors. The travel times of each link in a trip are 567

unavailable in this dataset. Since the dataset is collected in 568

urban areas, the trained model may only be applicable for 569

prediction in urban scenarios. It is important to note that, while 570

there are several datasets available for ETA, they are based 571

on GPS trajectories alone and are relatively less practical for 572

use as per analyses in Sec. II-A. The selected dataset from 573

the GAIA Project is the only publicly accessible link-based 574

dataset for ETA at the current stage. 575

B. Experimental Settings 576

The following hyperparameters are used in the experiments: 577

• Link cluster number M: The default setting is M = 578

80, 000, which is about 10% of links in the network. 579

• Travel time class number C: We set C = 50 by default, 580

which means the travel time is divided into 50 categories. 581

• Categorical approximating k: The travel time is estimated 582

by weighting the class with the top-k softmax probabili- 583

ties. The default setting is k = 5. 584

For cross-validation, we select the last week in the dataset 585

as the test set. The rest of the dataset is sequentially divided 586

into training set and validation set with a ratio of 3 : 1. The 587

model is trained using the Adam optimizer [46] with an initial 588

learning rate of 0.001, while the batch size is set to 1024. 589

All models are implemented using PyTorch [47], and all case 590

studies are conducted on a server with an NVIDIA GeForce 591

RTX 2080Ti GPU. 592

C. Evaluation Metrics 593

We select the Mean Absolute Percentage Error (MAPE), 594

Mean Absolute Error (MAE), and Satisfaction Rate (SR) as the 595

measures of estimation accuracy; these metrics are commonly 596

used in ETA [6], [14]. They are defined as follows: 597

MAPE(y, ŷ) = 1

N

N∑
i

∣∣∣∣∣ y(i) − ŷ(i)

y(i)

∣∣∣∣∣× 100%, (10) 598

MAE(y, ŷ) = 1

N

N∑
i

∣∣∣y(i) − ŷ(i)
∣∣∣ , (11) 599

SR(y, ŷ) = 1

N

N∑
i

(∣∣∣∣∣ y(i) − ŷ(i)

y(i)

∣∣∣∣∣ ≤ 15%

)
× 100%, 600

(12) 601

where ŷ(i) is the estimated travel time of trip i , y(i) denotes 602

the ground truth, and N is the number of trips. 603

D. Baselines 604

We compare the proposed model with the following ETA 605

methods: 606

• Historical Average (HA): HA estimates travel time by 607

calculating the average speed during a specific time from 608

historical records. As the departure time is divided into 609

5-minute time slices in this dataset, we average the trips 610

in the same time slice. 611

• TEMP: TEMP [8] is a route-free baseline that estimates 612

travel time by querying and averaging all the neighboring 613
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TABLE II

PERFORMANCE COMPARISON OF DIFFERENT APPROACHES. MAPE AND SR ARE REPORTED IN PERCENTAGE (%)

Fig. 6. Performance comparison of different approaches. MAPE and SR are reported in percentage (%).

trips. Trips with the same or nearby starting and desti-614

nation links are considered as neighboring trips. In this615

work, we retrieve ten neighboring trips for each query616

and average the travel time, which follows the setting in617

previous study [14].618

• XGBoost: XGBoost [48] is an established ensembling619

method. Since the input of XGBoost must have fixed620

length, we aggregate the link sequence of each trip to621

a fixed length and then concatenate it to the head part.622

The length is set to 20, which is close to the average623

length of the merged link sequences.624

• RouteETA: RouteETA estimates travel time by adding625

the average travel time of each link at the trip departure626

time. The real-time travel time of each link is collected627

via online map services. RouteETA is used as an external628

attribute in the proposed methods. For a fair comparison,629

RouteETA is used as input to all other baselines as630

well.631

• DeepTTE (merge): DeepTTE [1] is among the repre-632

sentative trajectory-based studies. It leverages a neural633

network to convert each raw GPS trajectory into a series634

of features, before applying an RNN to capture spatio-635

temporal dependencies. Since this model is not applicable636

to link-based trip records, we replace the feature extrac-637

tion layer with our proposed link merging method.638

• WDR: WDR [6] is a widely deployed link-based639

ETA method which combines wide, deep, and recurrent640

neural networks, achieving highly competitive prediction641

accuracy.642

• CatETA (no merge): CatETA (no merge) is a simplified 643

version of the proposed model, in which link merging in 644

the spatio-temporal learning component is removed. 645

• CatETA (regression): CatETA (regression) is a regres- 646

sion version of CatETA that uses the same network 647

structure and link merging method. Unlike CatETA, the 648

loss function of the regression version is the mean square 649

error and travel time is normalized by z-score. 650

E. Performance Evaluation 651

We first evaluate the performance of the proposed CatETA 652

against the selected baselines. The results, summarized in 653

Table II and Fig. 6, clearly demonstrate that CatETA sig- 654

nificantly outperforms all other methods on the three eval- 655

uation metrics. Furthermore, both CatETA (no merge) and 656

CatETA (regression) achieve competitive results, illustrating 657

the efficacy of the proposed link merging and classification 658

approximation methods. It is worth noting that our classifica- 659

tion scheme (13.92%) outperforms the pure regression scheme 660

(15.09%) by 1.17% with the same model structure and link 661

merging method. Meanwhile, DeepTTE (merge) also provides 662

compelling results in favor of the superior performance of link 663

merging. While DeepTTE is designed for GPS trajectories, 664

it can still produce competitive results with minor modifi- 665

cations. In summary, the above results show that CatETA is 666

highly effective for link-based ETA and achieves state-of-the- 667

art results. 668

Table II also shows the performance of each method over 669

a range of trip lengths. We categorize trips into three groups 670
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Fig. 7. Performance comparison for trips with different departure times.

(short, medium, and long) based on their travel time, with671

each group accounting for 37%, 43%, and 20% of the test672

set. It appears that all methods perform well in the long trip673

scenario, and the performance of the model degrades as the674

trip duration decreases. However, CatETA shows significant675

advantages for short trips over regression-based methods, i.e.,676

CatETA (regression), XGBoost, DeepTTE, and WDR. This is677

because our classification scheme eliminates the adverse effect678

of extremely long trips in this skewed distribution. On the679

other hand, the regression model is easily influenced by long680

trips, undermining its performance for short trips. This result681

indicates that our approach is more practical than the baselines682

in real-world scenarios that involve a non-negligible amount683

of short trips.684

Due to the fact that the distribution of trip volume varies685

throughout the day, we further investigate the performance686

of CatETA at various time intervals. We divide the day into687

eight three-hour time windows according to departure time688

and examine the performance of different models during each689

period. As shown in Fig. 7, increasing trip volume has a690

detrimental effect on the performance of CatETA, which is691

corroborated by the results of other models. The reason is that692

increased trips also mean more vehicles on the road, causing693

traffic congestion and therefore complexity that ultimately694

impairs model performance. There are two peaks in a day,695

9:00–12:00 and 18:00–21:00, which correspond to the peak696

periods for commuting to and from work, respectively. Corre-697

spondingly, performance during these periods is slightly lower698

than during others. Nevertheless, CatETA can still produce699

better estimates than the evaluated baselines for all time700

windows throughout the day.701

F. Hyperparameter Sensitivity Test702

In this section, we first investigate the impact of the703

number of clusters M , which determines the performance704

of model and computational requirements. Fig. 8 shows705

the projection of the graph-embedded learning representation706

within a region. We can observe that the graph embedding707

approach is able to cluster links with similar embedding708

representations in the road network. Recall that there are709

882, 718 links in the entire network; we set the number of710

clusters M ∈ {160000, 80000, 16000, 8000}, which is approx-711

imately {20%, 10%, 2%, 1%} of the original value, respec-712

tively. We also provide the average number of merged links713

Fig. 8. Visualization of graph clustering. The same color indicates that the
links are in the same cluster. Links with similar embedding representations
can be clearly separated.

in each trip and the training time per epoch to demonstrate 714

how our scheme can significantly reduce computational costs. 715

As shown in Table III, we can see that the average length 716

of sequences (links in trips) and the epoch time decreases 717

with M . Compared to using the original sequence directly, 718

the link merging method improves the estimated MAPE from 719

15.01% to 13.92% while reducing the computation time by 720

half. This is because lengthy sequences introduce a lot of 721

extraneous noise. The main link state information can be 722

preserved by merging the links, thereby improving the model 723

accuracy. In addition, our link merging scheme is capable of 724

merging links with similar embedding representations. The 725

computational cost of BiGRU is proportional to sequence 726

length, thus significantly reducing the training cost. However, 727

the adage “smaller is better” is not true for M , as merging too 728

many links may discard too much link information. This can 729

also be verified from the results displayed in Table III, where 730

the average length and epoch time are reduced despite the fact 731

that accuracy decreases. 732

To quantify the impact of two critical hyperparameters in 733

the proposed categorical approximate approach, i.e., the travel 734

time class number C and the categorical approximating k, 735

we choose C ∈ {10, 50, 100} and set k ∈ {1, 3, 5}, k ∈ 736

{1, 5, 10} and k ∈ {1, 10, 20} for each C value, respectively. 737

The simulation results summarized in Table IV demonstrate 738

that both a large and a small C can affect model performance, 739

and that C = 50 is the best among the three settings. This 740
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Fig. 9. Normalized confusion matrix.

TABLE III

PERFORMANCE OF THE PROPOSED MODEL OVER NUMBER OF CLUSTERS

TABLE IV

PERFORMANCE OF THE PROPOSED MODEL OVER NUMBER

OF CLASSES C AND APPROXIMATING TOP-k

is explained by a trade-off in categorizing travel time into741

few classes, which can produce a coarse-grained approxima-742

tion result, versus having too many classes that are hard to743

classify, thus reducing the accuracy of the model. Indeed, one744

may observe that as C increases, the corresponding accuracy745

decreases. In addition, the value of k is also important since746

a larger k approximates the ETA with more travel time747

categories. However, MAPE and SR do not always improve as748

k increases, indicating that using a k value that is too large may749

introduce noise and thus reduce the approximation precision.750

As such, it is recommended to choose a medium number of751

classes, and we use k = 0.1× C as a guideline following the752

previous experiments.753

Finally, we present the normalized confusion matrix when754

categorizing travel time into different number of classes.755

As shown in Fig. 9, the classifications of CatETA are typically756

accurate with all tested number of classes C; as C increases,757

TABLE V

PERFORMANCE COMPARISON OF DIFFERENT APPROACHES

ON KDD CUP 2020 DATASET. MAPE AND SR ARE
REPORTED IN PERCENTAGE (%)

even if the top-1 prediction accuracy decreases, the prediction 758

is still likely to fall into neighboring labels of the ground truth. 759

Moreover, since neighboring categories tend to have similar 760

confidence, using top-k can greatly improve the prediction 761

accuracy. Therefore, we use top-k for approximation in order 762

to transform the class into a continuous numerical prediction 763

and maximize the reliability. 764

G. Generality of CatETA 765

As mentioned previously, the case studies are conducted 766

on the only public link-based ETA dataset. In this section, 767

we construct a link-based ETA dataset from GPS trajectories 768

to analyze the generality of CatETA. Specifically, the GPS tra- 769

jectories are from KDD CUP 2020 dataset2 which is collected 770

by ride-sharing vehicles in Chengdu, China, from Nov 1st, 771

2016 to Nov 30th, 2016. It records approximately 20 thousand 772

trips and 30 million GPS points a day with a sampling interval 773

of 2–4 s. To project GPS trajectories onto the road network, 774

we first obtain the network topology from OpenStreeMap3 and 775

then perform map matching by hidden Markov model [49]. 776

With GPS trajectories matched to the map, consecutive GPS 777

points on the same road segment are merged as a traversed 778

link, and a trip can be represented by a sequence of links. 779

For performance evaluation, we choose TEMP, XGBoost, 780

RouteETA, DeepTTE (merge) and WDR as the baselines 781

2This dataset can be downloaded (following approval of access request) at
https://outreach.didichuxing.com/app-vue/KDD_CUP_2020

3https://www.openstreetmap.org/
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(c.f. V-D). All the experimental settings are kept the same as in782

Section V-B for a fair comparison. As summarized in Table V,783

CatETA has the best performance on three evaluation metrics784

compared to other baselines, which follows the same trend as785

the results in Table II. The results indicate that CatETA can786

be generalized broadly when applied to other datasets.787

VI. CONCLUSION788

In this paper, we propose a novel categorical approximate789

approach for estimating the time of arrival based on a series790

of traversed links. Concretely, we introduce CatETA to jointly791

learn spatio-temporal features from link sequences and exter-792

nal attributes in a set of global information. In the proposed793

approach, to prevent the regression model from being skewed,794

we formulate travel time as a categorical value and design a795

categorical approximate approach. In particular, we estimate796

the travel time via the weighted average of different classes to797

eliminate bias in categorical labeling. Additionally, we merge798

spatially adjacent links according to graph embedding, thereby799

reducing the computational burden of long link sequences.800

To evaluate the performance of CatETA, we conduct a series801

of comprehensive case studies on a real-world link-based ETA802

dataset. The simulation results demonstrate that the proposed803

method significantly outperforms state-of-the-art baselines in804

all scenarios. Subsequently, our hyperparameter sensitivity805

tests show that categorical approximation effectively help806

avoid skewing the regression model and that merging neigh-807

boring links can considerably alleviate computational costs.808

Furthermore, we construct a link-based dataset from GPS809

trajectories which reveals the generality of our model on810

other cities and datasets. In future work, we will explore ETA811

models that can be adapted to special scenarios, such as in the812

event of a traffic accident, that are closer to real applications.813
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