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a b s t r a c t

Accurate traffic speed prediction is critical to modern internet of things-based intelligent transportation
systems. It serves as the foundation of advanced traffic management systems and travel services.
Nonetheless, the large number of roads and sensors impose great computational burden to existing
forecast approaches, most of which can only handle one or few roads at a time. In this paper, a
novel data-driven deep learning-based approach is proposed for citywide traffic speed prediction. The
proposed approach is grounded on recent developments of geometric deep learning techniques to fully
utilize the topological information of road networks in the learning process. Specifically, the approach
captures the geometric traffic data dependency with graph convolution and attention mechanisms,
and the temporal data correlation is extracted and expanded using the encoder–decoder architecture
within a generative adversarial learning framework. Comprehensive case studies are conducted with
real-world urban road networks and respective data to evaluate its performance, where consistent
improvements can be observed over baseline approaches. Lastly, an architectural study is carried out
to discover the best-performing structure of the proposed approach, whose sensitivity to data noise
and sample frequency is also assessed.

© 2020 Elsevier B.V. All rights reserved.
1. Introduction

Predicting traffic speed information timely with high accuracy
s a fundamental challenge in modern intelligent transportation
ystems (ITS) [1], which are widely recognized as an essential
omponent in smart cities. With the adoption of physical device
nter-connections, commonly referred to as Internet of Things
IoT), a massive volume of real-time traffic data are streamlined
o the advanced traffic management systems (ATMS) for traffic
ontrol and prediction, which greatly help the system operator
nd road users obtain the traffic dynamics in order to make travel
ecision, prevent traffic congestions, and improve transporta-
ion throughput [2,3], etc. For instance, online routing service
dopts citywide current and future traffic speed data to provide
sers with real-time routes that avoid traffic jams, which in turn
educes driving time and increases transportation network capac-
ty [4]. The predictions are considered indispensable in deploying
odern ITS [5,6].
Due to the importance of speed predictions, a plethora of

esearch effort has been dedicated in devising algorithms for
roviding such functionality [7]. Thanks to traditional and emerg-
ng sensor sources, e.g., inductive loop, surveillance video cam-
ra, radar sensors, and global positioning system, modern traffic
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management is empowered with big data. Correspondingly, data-
driven techniques received wide attention in making speed and
flow predictions in recent years. In general, these techniques
can be classified into three categories: naïve (e.g., history aver-
age), parametric (e.g., auto-regressive integrated moving average
(ARIMA) variants [8,9], Kalman filter [10]), and non-parametric
models (e.g., Bayesian networks [11,12], neural networks [1,13,
14]). These classes of techniques have their own merits, and their
recent derived approaches can achieve satisfactory prediction
accuracy [5]. In addition to the data-centric techniques, traffic
simulation models are also commonly adopted to make speed
predictions. Different from previous approaches, such techniques
simulate the traffic in microscopic, mesoscopic, or macroscopic
view with multi-agent systems to model a wide variety of traffic
phenomena [15,16]. Due to the model transparency characteris-
tic, they are better to be adopted in what–if reasoning, decision
influence assessment and dynamics research. Nonetheless, data-
driven approaches are generally considered more robust to noise
and performant with sufficient past data [17].

In recent years, traffic speed and flow predictions are wit-
nessing the emerge of a new data learning technique, i.e., deep
learning [1,18]. As a branch of non-parametric models and neu-
ral networks, deep learning models fully utilize the enormous
volume of historical traffic data with its multi-layer architecture
to extract latent raw data correlations. Furthermore, the highly
complicated and somehow stochastic traffic flow process can
etric deep learning approach, Knowledge-Based Systems (2020) 106592,
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e emulated or learnt by these models without prior domain-
pecific knowledge thanks to their huge model capacity. These
roperties make deep learning a good solution for transportation
esearch, and existing results have demonstrated its outstanding
erformance [1,14,19–23].
Nonetheless, there exists a research gap in traffic speed pre-

iction when considering modern urban road networks. Existing
ethods mostly predict speed data for a specific road by learning

ts traffic speed dynamics in historical data with parametric or
on-parametric learning techniques, see [1,10] for some recent
xamples. While temporal data correlation is critical in predic-
ions, road network topology can help improve the forecasting
ccuracy by incorporating spatial (geometric) data correlation
mong adjacent roads. Furthermore, these approaches are de-
ised considering only one or few roads in the road network. As
TMS requires detailed traffic speed predictions to most, if not all,
f the roads in the urban area, such approaches incur significant
omputational burden: a large number of individual models need
o be developed for online data prediction, which drastically
ncreases both offline training and online inference time. Few
ecent results demonstrate the possibility of producing predicted
peed values in bulk by considering the spatial properties of
oad networks, see [13,14] for examples. Yet merely topology
mages or random walked traffic diffusion data are employed in
he prediction, rendering a principal description to topologies—
djacency matrix—under-utilized. The presented results discuss
he application of these approaches on small data sets that only
over several roads in traffic networks. Their applicability to
itywide predictions with thousands of distinct roads remains
nknown. While there exists efforts on employing graph neural
etwork variants in handling the forecast task, e.g., [24,25], the
espective feature extraction model exploits spatial and temporal
orrelations sequentially and independently. This may also lead to
otential information loss and in turn performance degradation.
To fill the research gap, we propose a new data-driven city-

ide traffic speed prediction approach based on recent advance-
ents in geometric deep learning theories. The proposed novel
enerative Adversarial Graph Attention (GA2) model specifically
onsiders the practical scenarios in which accurate speed pre-
ictions for each road in an urban road network are required
y the traffic management system. Different from existing work,
A2 learns the geometric characteristics from the historical traffic
ata by utilizing the topology information and extracts spatial
nd temporal correlation simultaneously, which greatly improves
he forecast accuracy. The proposed model incorporates the graph
onvolution principle from graph convolutional network (GCN)
or geometric feature extraction, and the geometric attention
echanism from graph attention network (GAT) for model capac-

ty augmentation. Additionally, the generative adversarial learn-
ng design paradigm is adopted to guide the design of GA2. As
ar as we are concerned, this is among the pioneer work on
eal-time citywide traffic speed prediction based on geometric
eep learning and attention mechanism. When evaluated on real-
orld data sets, GA2 consistently outperforms state-of-the-art
ata-driven traffic forecasting baselines. To summarize:

• We propose a novel GA2 model as a general-purpose time-
series regression technique for non-Euclidean-structured
data. The proposed model is capable of exploiting spatio-
temporal data correlation in one go.

• We employ GA2 to address the real-time citywide traffic
speed prediction problem with tailor-made feature design
and training approach. The incorporated attention mecha-
nism significantly improves the model capability for han-
dling large transportation networks.

• We conduct comprehensive case studies on three large-scale
real-world road networks to investigate the efficacy of GA2.
 b
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The rest of this paper is organized as follows. In Section 2,
we give the mathematical formulation of the citywide traffic
speed prediction problem and discuss recent related literature. In
Section 3, we present the constituting component and model ar-
chitecture of GA2 with discussion on its uniqueness. In Section 4,
e discuss the implementation details and improvements of GA2

in addressing the speed prediction problem. Section 5 presents
the case studies and discussions, and this paper is concluded in
Section 6.

2. Citywide traffic speed prediction

In this section, we first introduce the urban road network
model employed in this work with a brief formulation of the city-
wide traffic speed prediction problem. Existing related research is
then summarized and presented.

2.1. Urban road network model

We consider the entire urban road network as a directed graph
G(N , E), where N is the set of road intersections and E is the set
of roads. Let V 0

e ∈ N and V ∗
e ∈ N be the starting and ending nodes

of road e ∈ E . Given the topology of an urban road network, graph
G can be easily constructed by first creating a node for each road
intersection in the topology, then creating arcs between nodes in
accordance with the roads.

When predicting traffic speed data, we split the continuous
time horizon into discrete time instances of length ∆. Sym-
bols T −

= {· · · , −2, −1, 0} and T +
= {1, 2, . . .} denote the

past/future discrete time horizon until/from the current time
instance (t = 0), respectively. For each time instance t ∈ T −

∪T +,
symbol ve,t represents the average traffic speed of road e ∈ E
uring the time instance. Besides its traffic speed, each road is
lso described by a set of time-invariant attributes (e.g., speed
imit and road width) denoted by Se.

The objective of citywide traffic speed prediction is to obtain
redictions to the future averaged traffic speed data {ve,t |∀e ∈

, t ∈ T +
} by a speed predictor P(· · ·), which takes the past speed

nformation and road attributes as inputs:

ˆt = P({Vt ′ |∀t ′ < t}, {Se|∀e ∈ E}), ∀t ∈ T +, (1)

here Vt = {ve,t |∀e ∈ E}, and V̂t = {v̂e,t |∀e ∈ E} is the
prediction of Vt by P. The aim of this work is to develop a
geometric deep learning-based model to implement this speed
predictor with high prediction accuracy. As accurate speed pre-
diction data can greatly facilitate subsequent ITS applications, the
fitness of the prediction is correspondingly measured by three
common metrics, i.e., mean absolute error (MAE), mean absolute
percentage error (MAPE), and root mean square error (RMSE) for
time instance t ∈ T +:

MAE =
1
|E|

∑
e∈E

|ve,t − v̂e,t |, (2a)

MAPE =
1
|E|

∑
e∈E

|ve,t − v̂e,t |

ve,t + ε
, (2b)

RMSE = (
1
|E|

∑
e∈E

|ve,t − v̂e,t |
2)

1
2 , (2c)

where ε = 10−6 is a small positive value preventing the divide-
y-zero issue when v = 0.
e,t
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.2. Related research

We follow the introduction in Section 1 and discuss the three
ypes of traffic speed and flow prediction techniques, i.e., naïve,
arametric, and non-parametric [5]. Naïve models are the sim-
lest ones, which use basic statistical assumptions to make the
rediction. Among them, the instantaneous travel times (ITT) ap-
roach—use the measured value as the prediction to the next—
nd historical average (HA) are most widely adopted in real-
orld applications [26]. However, as no external properties of
he traffic can be utilized to reduce the forecasting uncertainty,
hey are generally considered inferior than the other two types
f approaches in terms of accuracy.
Parametric models emulate the traffic dynamics with a finite

et of known parameters about the traffic data distribution. Time-
eries models such as ARIMA variants are arguably the most
opular techniques besides traffic simulation and Kalman filter.
RIMA utilizes historical traffic data for regression with scalar-
ased models by considering data points in time-series depend
n its previous values with additive noise. Ref. [8] is among the
irst attempts to adopt ARIMA in traffic speed prediction, in which
ata statistical stationarity and seasonality are employed to de-
ermine the model order and parameters. After that, results are
ublished to extend the approach considering the strong seasonal
haracteristics of data [27], the spatial–temporal correlation [28,
9], or with Kohonen self-organizing map [9]. Another ARIMA
ariant extends the original model with explanatory variables to
orm a vector ARIMA, which follows the principle of multivari-
te regression models to include other independent variables in
he forecast [30]. While much effort has been devoted to this
ype of approaches in predicting the speed, it suffers from the
nternal linearized model and intrinsic difficulty in incorporating
nvironmental data sources [5,26].
In recent years, machine learning and neural network tech-

iques have drawn the attention of researchers [1]. Various mod-
ls are utilized to construct learning approaches in the litera-
ure, e.g., stacked auto-encoder [1], convolutional long short-term
emory (LSTM) network [13], diffusion convolutional recurrent
etwork [14], etc. While these approaches demonstrate satisfac-
ory prediction accuracy on single or few roads, they still cannot
ulfill the requirements of citywide traffic speed prediction. A
umber of studies have been published very recently on em-
loying graph neural networks or geometric features in traffic
peed prediction. To name a few, Ref. [31] proposed a graph-
onvolution-only neural network for speed prediction within an
rea. However, the lack of recurrent units in the proposed ap-
roach weakens its capability of temporal feature extraction as
he unique gating mechanism in modern recurrent neural net-
orks are critical in the prediction [32]. Reference [33] devised
convolutional neural networks (CNN) and LSTM-based deep

earning model to exploit the local geometrical features of a
ransportation network for speed forecast. Similarly, Ref. [24]
roposed a GCN-gated-recurrent-unit network to capture first the
patial features and then the temporal ones from the historical
raffic data. Nonetheless, such two-step feature extraction may
ot capture the exact spatiotemporal data characteristics which
escribes features in both domains simultaneously. While [32]
nd [34] are capable of doing so, the models are primarily de-
igned for medium-sized transportation networks with several
undreds of sampling locations.
To fully address the citywide traffic speed prediction problem,

e propose a novel GA2 model that employs a new graph atten-
ion convolutional recurrent layer for latent feature extraction
rom historical traffic data. By integrating the graph convolu-
ion operation into the recurrent units instead of after them
s did in the literature, the proposed model is capable of ex-

racting the spatiotemporal data characteristics. Additionally, the

3

incorporation of attention mechanism [35] enables the model
to distinguish the critical/influential neighbors of network nodes
from others, allowing it to handle large and complex transporta-
tion networks. Finally, the generative adversarial architecture im-
proves the training efficacy of the model for further performance
boost.

3. Generative adversarial Graph Attention (GA2) network

In this section, we propose a new generative adversarial graph
attention network for graph-based data prediction tasks. We first
present some brief preliminaries on the deep learning principles
employed in GA2, then propose a graph attention convolutional
recurrent layer (GAL) as the basic building block of GA2. Finally,
the network architecture of GA2 is presented with discussion.

3.1. Preliminaries

The structural design of GAL borrows the data-flow design
principle of GCN, which aims to extract latent information from
non-Euclidean-structured data. GCN follows the idea of CNN and
performs neighborhood information mixing on the source data.
Nonetheless, different from conventional CNN which has a uni-
form Euclidean-space receptive field, GCN utilizes the connectiv-
ity structure of the input graph for information convolution [36].
Specifically, the convolution in GCN evolves from the graph con-
volution operation first given in [37]:

x1 ∗ x2 = U((UTx1) ◦ (UTx2)), (3)

where x1 and x2 are two signals defined on graph nodes. In
the traffic prediction context, these nodal signals refer to the
sensor data (speed, flow, etc.) gathered from the sensing locations
in a transportation network. In (3), symbol U is the matrix of
eigenvectors of graph Laplacian matrix L, which represents the
topology and connectivity of transportation network data sensing
locations. Operator ◦ is element-wise multiplication. By convolu-
tion theorem [38], (3) can be extended to manipulate a single data
source (nodal signal) x as:

x′
= UΘUTx, (4)

where x′ is the output signal, Θ = Θ(Λ) is a diagonal matrix
of learnable filters, and Λ is the eigenvalues of L. Adopting this
nodal signal convolution operation, an lth graph convolutional
layer with different filters can be defined as

xl+1
j = ρ(

F l∑
i=1

UΘ l
i,jU

Txli), ∀j = 1, . . . , F l+1, (5)

where xlj is the jth hidden representation for all nodes in the
graph, ρ(·) is a non-linear activation function, F l is the number
of dimensions (filters) in layer l, and Θ l

i,j is the learnable filter
parameter.

However, there is a fundamental limitation for this convo-
lution, i.e., the full eigenvectors of the Laplacian matrix Λ are
required per each forward and backward pass, rendering O(N2)
complexity [39]. This limits the scalability of the model. GCN
addresses the issue by first adopting a polynomial filter and then
transform the filter with Chebyshev expansion:

Θ(Λ) =

K−1∑
k=0

θkΛ
k
=

K−1∑
k=0

θkTk(Λ̃), (6)

where K is the polynomial order, θk is a new learnable param-
eters, Λ̃ = 2Λ/max{Λ} − I are the re-scaled eigenvalues, and

Tk(·) is the Chebyshev polynomial of order k. Consequently, by
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ollows [36]:

l+1
j = ρ(

F l∑
i=1

K−1∑
k=0

θkUTk(Λ̃)UTxli) = ρ(
F l∑
i=1

K−1∑
k=0

θkTk(L̃)xli)

≈ ρ(
∑
i∈N(j)

[D̃(i, i)D̃(j, j)]−
1
2 Θ lxli), (7)

where L̃ = 2L/max{Λ} − I, D̃ = D + I, D is the diagonal degree
matrix of adjacency matrix A of the graph, and N(i) returns the
neighborhood nodes of node i in the graph.

Based on GCN, GAL incorporates the attention mechanism [40]
on graphs as proposed in GAT [35]. One of the most promising
benefit of attention is that it enable the neural networks to deal
with variable sized inputs and to focus on the most relevant
ones instead of treating them equally [35]. This is achieved by
modifying the convolution in (7) and introduce an additional
attention term as follows:

xl+1
j = ρ(

∑
i∈N(j)

αl
ijΘ

lxli), (8)

where the attention αl
ij is defined as

alij =
exp(LeakyReLU(aT[Θ lxlj∥Θ lxli]))∑

k∈N(j) exp(LeakyReLU(aT[Θ lxlk∥Θ lxli]))
, (9)

in which LeakyReLU(x) = max{0, x} − 0.2max{0, −x} [39], a is
the attention parameter, and [·∥·] is the concatenation operation.
From (7) to (8), the information presented by D is retained by N(j)
(topology information) and αl

ij (nodal data dependency).
This attention mechanism has two properties that are criti-

cal in citywide traffic speed prediction. Computationally, GAT is
highly efficient due to its full parallelizability across all edges
and nodes. No eigen-decompositions or expensive matrix com-
putations are required. Furthermore, the model allows neural
networks to assign different importance to nodes of a same
neighborhood, rendering a massive model capacity improvement.
This also accords with the intuition in transportation that specific
incoming and outgoing flows are more influential to traffic than
others.

3.2. Graph attention convolutional recurrent layer

As introduced in Section 3.1, GCN and GAT are capable for fea-
ture extraction from non-Euclidean-structured data, e.g., graphs.
While this property fits well in urban transportation networks,
traffic speed data are typically time series which require ad-
ditional data processing mechanisms for temporally-correlated
feature extraction. To achieve this, we follow the state-of-the-
art time-series learning technique in deep learning, i.e., LSTM,
to design GAL for simultaneous non-Euclidean-spatially- and
temporally-correlated feature extraction. Specifically, each time-
series is divided into multiple graphs, each of which corresponds
to one time instance. These graph data are input into GAL se-
quentially, and the layer holds an internal state that stores latent
time-series information from all graph data already processed.
Finally, GAL outputs processed data features based on the final
state information.

To construct this special finite state machine [41], we first
formulate an internal cell state for GAL as follows1:

Ct = ft ◦ Ct−1 + it ◦ C̃t , (10a)

1 We discuss the propagation rule of the lth layer in a neural network. The
uperscript ‘‘l’’ is omitted when there is no ambiguity.
 e

4

Fig. 1. Data flow of the proposed GAL cell state. Dotted line denotes the data
flow between input data of consecutive time instances. Attentions, weights, and
biases are remove to reduce visual distraction.

Fig. 2. Data flow of the proposed GAL and its unrolled form.

here ft and it control the information fusion from the previous
tate and new input data, respectively:

ft = ReLU(Aαf [Ωf xt + Υf ht−1] + bf ), (10b)

it = ReLU(Aαi[Ωixt + Υiht−1] + bi), (10c)
˜ t = tanh(Aαc[Ωcxt + Υcht−1] + bc), (10d)

here xt is the input graph data at time instance t , ht−1 is the
utput graph feature at time instance t − 1, α matrices are the
earnable attention term αij defined in (9), Ω and Υ matrices are
ew learnable weight parameters, and b vectors are learnable bias
arameters. With the cell state being updated by new input data,
he output can be correspondingly produced as follows:

t = ot ◦ tanh(Ct ), (10e)

ot = ReLU(Aαo[Ωoxt + Υoht−1] + bo), (10f)

here ot controls the information output from the new state.
omparing with the LSTM propagation rules [42], (10) uses the
ttention mechanism given in (8) to substitute the original linear
ransformation counterparts in the form of Wx. This is how GAT
nd LSTM are integrated to construct the proposed GAL.
In Fig. 1 we present the data flow of GAL cell, which is a sum-

ary of Eq. (10). When some data are input into a GAL cell, data
lows along the arrows in the figure until the output is produced
nd cell state is updated. Then the new information is looped
ack to the beginning of the flow, and the process proceeds to the
ext time instance. GAL is formulated by encapsulating a GAL cell
s shown in the figure and transferring the inter-time-instance
ata. Fig. 2 illustrates a typical GAL and its unrolled form on the
iscrete time horizon. In this figure, the left-hand-side stacked
lock of cells refers to the structure presented in Fig. 1. When
nrolling GAL, the same set of parameters (α, Ω , Υ , Θ , etc.) is
mployed to process the sequence of input data.
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.3. GA2 network architecture

In Section 3.2, we propose GAL to model the temporal depen-
dency in graph-structured data. While it is possible and straight-
forward to directly employ time-series citywide traffic speed data
as the input xt and enforce GAL to output speed predictions of
the next time instances ht , such formulation cannot fully enjoy
he benefits of deep neural network structures. By including
dequately more layers to a same neural network and employing
dvanced network design principle, the model capacity can be
urther boosted, resulting in generally better latent information
xtraction capability.
We start with the task of generating future graph-data pre-

ictions based on historical information. In this multi-step data
rediction, we leverage the sequence-to-sequence (seq2seq) ar-
hitecture firstly proposed in [44], and stack multiple GALs to
ncrease network depth as shown in Fig. 3. Specifically, the pre-
ictor is composed of two neural networks, namely, an encoder
nd a decoder. Both networks are recurrent neural networks
ith GAL as the recurrent unit to fully consider time-series data
ependencies. To construct the encoder, five (1+ 4 in the figure)
esidual-link-enabled GAL layers with 32 filters each (Res-GAL,
o be introduced next) are stacked first. Subsequently, a final
tandard GAL is employed to aggregate the extracted latent in-
ormation and output the encoder state to initialize the decoder
nputs. Batch normalization [45] is adopted between every two
ayers. The decoder shares a similar architecture with the en-
oder, except that the first Res-GAL layer accepts 32+ F features
nstead of F in the encoder, where F is the number of node
eatures in the input graph. In addition, the final GAL layer in the
ecoder has F filters, which is different from the encoder’s 32.
In this encoder–decoder design, residual links— first proposed

n deep residual networks [43]—are intensively employed to
nable the networks to skip certain layers if deemed necessary
y training. For GAL, a residual link can be included into (10) by
eplacing (10e) with the following equation:

t = ot ◦ tanh(Ct ) + xt . (11)

he principle of introducing such links is that the new structure
s typically easier to be optimized using the current neural net-
ork training algorithms than the original one, since the solution
pace is smoothened by the identity mappings achieved by resid-
al functions [43]. Therefore, the convergence will be possibly
mproved when training neural networks with deeper architec-
ures, and overfitting issue can be alleviated. This hypothesis is
upported by the case studies to be demonstrated in Section 5.3.
The data flow of the decoder is also different from that of

he encoder, which takes the available time-series in the past
s input. The output encoder state is later utilized to construct
he input data to the decoder, which generates predictions given
ata in the previous time instance. When training the predictor,
n available ground truth time-series is divided into two parts.
he first sub-series is input into the encoder to develop the final
tate. Then the data in each time instance within the second
round-truth sub-series is concatenated with the final encoder
tate along the filter axis, which is used as the decoder input. At
nference time when the network is well-trained and ready for
aking predictions, the available ground truth is input into the
ncoder. Then, instead of the ground truth of future time which
s unavailable, the previous predictions generated by the network
tself is combined with the encoder state. Finally, the decoder
utputs the predicted time-series.
In a typical seq2seq model, the network is trained by max-

imizing the likelihood of the predicted data with ground truth,
see [14,44] for some examples. Nonetheless, as will be demon-

strated in the case studies, this training objective generally leads H

5

to unstable convergence due to its sensitivity to data noise in
both predicted data and ground truth. To overcome this issue, we
follow the principle of generative adversarial learning [46] and
include a discriminator for better network tuning and name the
whole network GA2. The layered architecture of GA2 is presented
in Fig. 4, in which the encoder and decoder structures are the
rolled form of the respective ones in Fig. 2 with y-axis transposed
o x-axis in Fig. 4.

In GA2, both the encoder–decoder sub-network and the dis-
riminator sub-network form a two-player minimax game for a
etter parameter learning efficiency. In this game, the encoder–
ecoder develops new predicted time-series on T + based on the
nformation during T −, as illustrated previously. The discrimina-
or tries to evaluate the ‘‘authenticity’’2 of the new time-series,
nd distinguish them from the available ground truth ones of T −.
hen the model is well-trained, the encoder–decoder is capable
f making predictions that can compromise the discriminator. We
onstruct the discriminator by adopting a GAL with 16 filters and
tack four fully-connected layers on top of it, each with 256, 256,
2, and one neurons. The propagation rule of the layers is defined
y

= ReLU(Wx + b), (12)

here x and h are input and output data, W and b are learnable
ayer parameters.

This adversarial training purpose is achieved by a tailor-made
raining objective function. Let C(·, ΘC), D(·, ΘD) be the aggre-
ated propagation rules of the encoder–decoder and the discrim-
nator, respectively, where the Θ terms are their respective learn-
ble parameters. Given a time-series x, GA2 adopts the following
bjective function for the minimax game:

min
ΘC

max
ΘD

EPx [logD(x, ΘD)]+

EPx [log(1 − D(x∥C(x, ΘC), ΘD))], (13)

here Px is the intrinsic data distribution of x. When optimizing
he learnable parameters ΘC and ΘD, the optimizer first tunes
he encoder–decoder (minΘC ) to generate predictions (C(x, ΘC))
nd compromise the discriminator (D(x∥C(x, ΘC), ΘD) → 1).
ubsequently, the discriminator is adjusted (maxΘD ) so that the
enerated predictions and ground truth time-series can be dis-
inguished, i.e., D(x, ΘD) → 1 and D(x∥C(x, ΘC), ΘD) → 0,
espectively. This process imitates the two participating players
n a minimax game.

. GA2-based citywide traffic speed prediction

In the previous section, we introduced a new GA2 model for
on-Euclidean-structured data prediction task. In the meantime,
itywide traffic speed prediction, due to its own characteristics,
annot directly employ GA2. In this section we discuss the im-
lementation of GA2 in road network speed prediction and the
espective training method.

One may note that in GA2, data features concentrate on the
raph nodes. The edges mostly provide only unweighted con-
ectivity information of nodes, which does not accord with the
roperties of speed prediction. This issue can be easily resolved
y transforming G(N , E) into a new undirected road-connectivity
raph H(E, C), where3

= {(e1, e2) ∈ E × E|{V 0
e1 , V

∗

e1} ∪ {V 0
e2 , V

∗

e2} ̸= Ø}. (14)

2 We use 1 to denote ground truth and 0 to denote generated data, both
sserted by the discriminator. This definition will be reviewed in Section 4.
3 Note that bi-directional roads are considered as two nodes in the new graph
.
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Fig. 3. Data flow of the proposed seq2seq-based graph-data predictor. Circled plus symbol denotes identity mapping [43], and circled double vertical line symbol
denotes concatenation operation along the time axis.
Fig. 4. Layered architecture of the proposed GA2 .
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his transformation is inspired by the nature of traffic flow in
oad networks, where the speed of an arbitrary road is closely
orrelated with its connecting roads. In addition, the attention
echanism on the connectivity of H(E, C) is capable of further

dentifying the more influential roads among all neighborhoods,
hich also accords with the intuition [47].
To construct the input data features for urban road networks,

e follow a previous work [17] and employ six road features to
onstruct xt , namely, (1) averaged road traffic speed, (2) traffic
peed limit, (3) road length, (4) road width, (5) number of lanes,
nd (6) number of point-of-interests (PoI) nearby. The latter five
roperties of road e can be summarized with the previously
efined symbol Se. Consequently, xt = {Vt}∥{Se|∀e ∈ E}.
With the constructed input time-series, GA2 can be trained

sing typical neural network optimizers, e.g., RMSProp. In tradi-
ional generative adversarial models like [46], the discriminator
s activated by a sigmoid function at the end to limit the output
o (0, 1). Nonetheless, such activation typically leads to model
ollapse due to the intrinsic gradient vanishing problem with
espect to ΘG [48]. In addition, the convergence of sigmoid-
ctivated adversarial model cannot be easily observed. In this
ork, we adopt the design principle of Wasserstein generative
dversarial network (W-GAN) [48] to reformulate the adversar-
al training objective (13) so as to overcome these issues. In
articular, the original design of GAN tries to optimize both
ullback–Leibler divergence and Jensen–Shannon divergence at
he same time [48], which may not converge with imperfect
iscriminator. As an alternative, the Wasserstein (or Earth-Mover)
istance can be employed to re-construct the training objective
unction as follows [48]:

(Px, Ph) = inf
γ∼

∏
(Px,Ph)

E(x,h∼γ )∥x − h∥, (15)

here Ph is the data distribution of the predicted data by the
ncoder–decoder. By Kantorovich–Rubinstein duality theorem
6

[49], the intractable infimum term can be transformed into

W (Px, Ph) =
1
K

sup
∥F∥L<K

Ex∼PxF(x) − Eh∼PhF(h), (16)

where F(·) is a Lipschitz continuous function with constant K ,
i.e., |F(x1) − F(x2)| ≤ K |x1 − x2|. If we relax the limit of dis-
criminator output from (0, 1) and let D(·, ΘD) satisfies 1-Lipschitz
ontinuity, we have

(Px, Ph) = max
∥D∥L<1

Ex∼PxD(x, ΘD) − Eh∼PhD(h, ΘD). (17)

ubstituting h with C, we have the Wasserstein distance objective
unction for GA2:

min
ΘG

max
∥D∥L<1

Ex∼PxD(x, ΘD)−

Ex∼PxD(C(x, ΘG), ΘD). (18)

In order to utilize (18) as the objective function, D must be
-Lipschitz continuous. According to spectral normalized GAN
SN-GAN) [50], a neural network propagation rule satisfies this
ontinuity if all learnable parameters are normalized by their
espective spectral norm

√
λ1, i.e., the square root of largest

eigenvalue of WTW for parameter matrix W. By power iteration,
√

λ1 can be approximated by ũTWṽ, where ũ and ṽ can be
obtained iteratively by [50]

ṽ =
WTũ

∥WTũ∥2
, ũ =

WTṽ

∥WTṽ∥2
. (19)

With a randomly initialized ũ0,
√

λ1 can be updated iteratively.
We combine this iteration with the update of all parameters in
both C and D during the training process to reduce computation
complexity. This means that whenever any learnable parameter
in GA2 is updated, (19) is calculated once and the new

√
λ1 value

is used to normalize the respective learnable parameter.
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Fig. 5. Urban road network for downtown Beijing, Shanghai, and Guangzhou, with the average traffic speed at 8:00 January 2nd, 2019 plotted. Green stands for
high traffic speed, yellow stands for low traffic speed, and red stands for congestion (≤5kmh−1). Roads in gray are those without data. (For interpretation of the
eferences to colour in this figure legend, the reader is referred to the web version of this article.)
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Given a collection of historical road network speed time-
eries, the learnable parameter tuning is conducted offline. Each
ime-series of length T = |T −

|, i.e., x = {V1−T , . . . ,V−1,V0} is
mployed to create T − 1 training samples. For the ith sample
i < T ) among them, sub-series {V1−T , . . . ,Vi−T } is fed into the
ncoder–decoder network to generate predictions {V̂i−T+1, . . . ,
ˆ0}. Subsequently, the ground truth and predicted time-series are
oth input into the discriminator to calculate

D({V1−T , . . . ,V0}, ΘD)

D({V1−T , . . . ,Vi−T , V̂i−T+1, . . . , V̂0}, ΘD) (20a)

ccording to (18). Similarly, the following expression is evaluated
or later updating the encoder–decoder parameters:∑

t∈T −

∥Vt − V̂t∥
2
2

D({V1−T , . . . ,Vi−T , V̂i−T+1, . . . , V̂0}, ΘD), (20b)

n which the first term is the L2-norm of the prediction er-
or. The second term of (20b) is used to penalize the objective
unction considering discriminator output: if the prediction is
egarded as authentic ground truth by the discriminator, the
rediction is more realistic and this penalty term is minimized.
his design follows the principle of adversarial training [46].
or every 16 samples (mini-batch size), (20) is evaluated and
veraged over the population, and we employ the RMSProp op-
imizer (maximize (20a), minimize (20b)) and updated

√
λ1 to

pdate all learnable network parameters. This calculation iterates
ith new samples until all time-series in the training data set

s utilized, which is recorded as an epoch. The whole process
erminates when the objective value of (20a) at the end of each
poch converges, and the parameters are frozen for online speed
rediction.
With a well-trained GA2, the online speed prediction only

mploys the encoder–decoder network as shown in Fig. 3. Sim-
lar to the training process, the available road network speed
ime-series is sequentially input into the network to develop the
rediction of the next immediate time instance. Recall that the
ecoder actually outputs all six road features instead of only
he speed. We replace the other five predicted road features
ith their ground truth in Se, and the new data is subsequently

ed into the network. This iteration can produce data on the
nfinite prediction horizon, and system operator may decide the
ermination considering requirements in practice.
7

5. Case studies

In this work, we propose GA2 to predict citywide traffic speed
ased on historical data. To fully evaluate the performance of the
roposed model, we carry out three comprehensive case studies
ith real world urban road networks and their historical data.

n particular, we first assess the speed prediction accuracy and
ystem computation time, and compare the performance with a
ide range of existing generative models and tailor-made tech-
iques. Then, we perform a model structure search to examine
he influence of architectural changes on the system performance,
nd identify the best performing structure. Finally, we investigate
he performance on historical data points with sampling noise
nd different sampling frequencies. All case studies are performed
n a DGX-2 instance equipped with Nvidia Tesla V100 GPUs for
arallel computing acceleration, and GA2 is implemented with
yTorch [51]

.1. Data sets and settings

We adopt the real-world traffic data at three major cities
n China for investigation, namely, Beijing (BJ), Shanghai (SH),
nd Guangzhou (GZ). Two types of data – urban road network
opology and traffic speed data – are collected and fused to
onstruct the citywide traffic speed data set. In particular, road
opologies of the three cities are developed from OpenStreetMap,
hose downtown networks are presented in Fig. 5. The traffic
peed data are obtained from NavInfo Traffic Data platform,4 and
he data from 8:00 AM January 1st, 2019 to 7:55 AM February
st, 2019 (referred to as data time horizon in the sequel) are
mployed in this work. The data comprise averaged traffic speed
f approximately 1400, 1500, and 1000 roads in the respective
hree cities, and the sampling interval is 5min. Consequently,
here are 8928 time instances in the data set, each of which
orresponds to urban road speed maps of the three cities. These
ata are the ground truths in the case studies. When fed into
A2, speed values are normalized using Z-score normalization.
s not all roads in the three cities are observed in the data set,
he respectively missing speed values are encoded by zeros after
nput data normalization, which is a common practice in missing
ata recovery with deep learning techniques [17,52].
Based on the ground truths, we further construct the training

nd testing samples for GA2. As the model accepts variable-length
ime-series of graph-structured data as inputs, these samples can

4 http://nitrafficindex.com/.

http://nitrafficindex.com/
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e developed with a rolling manner. Starting from the first time
nstance in the time horizon, i.e., 8:00 AM January 1st, 48 time-
eries samples are created with the same starting and different
topping times. For the ith sample, 2i time instances are included.
he first i time instances are considered as T −, and the remainder
s T + in this sample. This process repeats for all possible starting
ime instance until 7:55 AM February 1st, and samples with time
nstances not included in the data set are discarded. As a result,
26 240 samples are generated for each city.
For cross validation, the samples are grouped into two non-

verlapping sets, i.e., a training set and a testing set. All samples
ith the starting time before 8:00 AM January 15th, 2019 and
fter 7:55 AM January 23th, 2019 are utilized to train GA2, totally
17 952 samples. The rest 108 288 are employed to test the
ystem performance after the model is well trained. When testing
he system, no matter how large T − is for each sample, speed
predictions of |T +

| = 48 future time instances are developed in
order to evaluate the impact of input time-series length on the
performance.

5.2. Prediction accuracy

The accuracy of predicted citywide traffic speed data com-
pared with the ground truths is among the principal performance
metrics in investigating the efficacy of traffic speed prediction
techniques. In this test, we train three independent GA2 models
using the training data of the three cities, and compare the
accuracy with other speed prediction techniques in terms of MAE,
MAPE, and RMSE.

We first compare GA2 with widely-adopted time-series re-
gression techniques and state-of-the-art traffic speed prediction
models as follows:

• History Average (HA): HA models traffic speed dynamics as
a seasonal process. Weighted average of data in previous
seasons are utilized as the prediction. In this test, we adopt
a season with four weeks, and the time period is one week.
For instance, to predict the speed of road A at 8:00 AM on
an arbitrary Monday, the speed values at the same time of
four previous Mondays are averaged as the prediction.

• ARIMA with Kalman filter (AK): AK considers a stationary
regression-type time-series and makes use of the depen-
dent relationship between a data point and some number
of lagged ones. In this test, we consider three lagged data
points in the time-series, zero degree of differencing, and
the moving average window size is one.

• Linear support vector regression (SVR): SVR maps time-
series data into higher dimensional kernel-induced feature
spaces for subsequent linear regression. In this test, we
employ a penalty term C = 0.1 for SVR, and the number
of historical data points is 5. Gaussian kernel function is
adopted.

• Bayesian-connected LSTM (B-LSTM) [53]: B-LSTM is an
encoder–decoder framework similar to Fig. 3 constructed
with only LSTM cells. Both encoder and decoder have two
LSTM layers, which are fully-connected in all time-steps. The
model is trained with mini-batch size 128 and loss function
MAE. Other settings of B-LSTM follows the literature.

• Diffusion convolutional recurrent neural network (DCRNN)
[14]: DCRNN extracts the spatial data-correlation with
bi-directional random-walk on the road network, and the
temporal correlation with scheduling sampling and encoder–
decoder structure for time-series prediction.

• Temporal Graph Convolutional Network (T-GCN) [24]: T-
GCN employs gated recurrent units and GCN to capture both
the temporal and spatial data characteristics for traffic speed
prediction.
8

• Attention Temporal Graph Convolutional Network (A3T-
GCN) [54]: A3T-GCN is among the latest state-of-the-art
approach for traffic prediction, which introduces the at-
tention mechanism into GCN to adjust the importance of
timestamps and incorporate global temporal information to
improve prediction accuracy.

For the baseline approaches, we adopt publicly available
source code for DCRNN, T-GCN, and A3T-GCN with minuscule
noncritical adaptive changes. Other baselines are implemented
with Python. The baselines are selected as they are either the
best-performing naïve and parametric ones, or are the state-of-
the-art deep learning-based non-parametric models. The same
data is employed for all models in accordance with Section 5.1.
As HA makes use of the speed data before data time horizon,
additional data from December 2018 is included for this specific
technique. In addition, all compared models except for DCRNN,
T-GCN, and A3T-GCN can only deal with one road each time. To
avoid excessive computation, we randomly select 50 roads from
each of the three cities and test the prediction performance on
them. Consequently, 50 independent AK, SVR and B-LSTM models
are trained for each city and the performance is evaluated based
on their averaged metrics. All other case study configurations are
kept identical.

Table 1 presents the comparison of different speed prediction
approaches for 5min, 15min, 1 h, and 4h ahead forecasting on
all three investigating cities using the three accuracy metrics in
(2) with the 108 288 testing samples. The best performing results
are in bold font. The performance comparison clearly indicates
that GA2 outperforms other techniques in the majority of test
cases. The only exception is 4h ahead forecasting in Shanghai and
Guangzhou where HA slightly overmatch others. This is due to
the characteristics of HA which directly produces raw data points
based on historical data samples instead of a time-series, there-
fore relaxing the technique from accumulating prediction errors
during forecasting. Nonetheless, this relaxation is a double-edged
sword: the short-term prediction accuracy (≤1h) is sacrificed
as HA cannot utilize immediate data in the recent past. In this
context, GA2 greatly benefits from its spatial–temporal feature
extraction capability to develop more precise predictions than
others. Furthermore, the comparison between GA2 and B-LSTM
also indicates the importance of network topologies in traffic
speed prediction problem. The major difference between these
two approaches is that GA2 uses graph neural networks, in partic-
ular graph attention mechanism, to replace the Bayesian network
counterpart in B-LSTM. The performance improvement can be
credited to the inclusion of topological information into the com-
putation process, i.e., (10). While DCRNN, T-GCN, and A3T-GCN
approaches GA2 in the comparison, the unique generative model
design and residual links improve the model capacity of the deep
learning architecture GA2 employs. From these comparisons, we
derive rules of thumb to guide future speed prediction model
design:

• Statistical learning-based approaches work better for near-
future prediction, while long-term prediction still relies on
time-invariant forecasts – namely, HA and variants – until
prediction error accumulation issue were resolved for learn-
ing approaches. This is a promising future research direction.

• When designing short-term prediction models, generative
models work better than other current model design
paradigm of deep learning. This will be further justified in
Section 5.3. The inclusion of transportation network topol-
ogy information is another significant prediction accuracy
booster.



J.J.Q. Yu Knowledge-Based Systems xxx (xxxx) xxx

T
P

able 1
erformance comparison for citywide traffic speed prediction.

MAE MAPE RMSE

5min 15min 1h 4h 5min 15min 1h 4h 5min 15min 1h 4h

BJ

GA2 2.040 2.384 3.175 4.465 6.0% 6.9% 9.2% 12.7% 2.866 3.629 4.434 6.661
HA 4.730 4.730 4.730 4.730 13.7% 13.7% 13.7% 13.7% 6.670 6.670 6.670 6.670
AK 3.603 4.171 5.626 8.294 10.4% 12.3% 16.3% 24.3% 5.032 5.866 8.048 11.405
SVR 3.302 3.937 5.294 7.711 9.6% 11.3% 15.3% 22.4% 4.596 5.673 7.676 10.734
B-LSTM 2.757 3.126 3.886 4.986 8.0% 9.1% 11.4% 15.0% 3.891 4.270 5.461 6.730
DCRNN 2.410 2.769 3.760 4.590 7.0% 8.1% 10.7% 13.3% 3.431 3.781 5.218 6.465
T-GCN 2.552 2.713 3.824 4.840 7.4% 8.0% 10.9% 14.5% 3.497 3.636 5.277 6.618
A3T-GCN 2.250 2.589 3.669 4.547 7.0% 7.6% 10.6% 14.0% 3.060 3.539 5.121 6.506

SH

GA2 2.159 2.586 3.450 4.710 6.4% 7.5% 10.2% 13.4% 2.954 3.566 4.761 6.703
HA 4.548 4.548 4.548 4.548 13.4% 13.4% 13.4% 13.4% 6.065 6.065 6.065 6.065
AK 3.354 4.424 5.737 8.410 9.9% 12.8% 16.9% 24.4% 4.585 6.160 7.752 12.399
SVR 3.429 4.222 4.897 7.561 10.0% 12.2% 14.6% 21.9% 4.832 5.876 6.738 10.678
B-LSTM 3.023 3.197 4.300 5.258 8.9% 9.4% 12.4% 15.4% 4.128 4.391 6.194 7.140
DCRNN 2.632 2.856 3.830 5.251 7.7% 8.3% 11.1% 15.0% 3.598 4.012 5.447 7.419
T-GCN 2.584 2.798 3.740 4.917 7.5% 8.2% 10.8% 13.9% 3.382 3.884 5.132 6.614
A3T-GCN 2.397 2.642 3.706 4.746 7.3% 8.0% 10.5% 13.7% 3.194 3.592 5.065 6.454

GZ

GA2 2.144 2.426 3.169 4.665 6.3% 7.2% 9.3% 13.6% 2.983 3.271 4.478 6.447
HA 4.314 4.314 4.314 4.314 12.8% 12.8% 12.8% 12.8% 5.883 5.883 5.883 5.883
AK 3.407 4.283 5.748 8.083 10.0% 12.3% 16.4% 23.3% 4.750 6.368 8.298 11.168
SVR 3.108 3.965 5.180 7.428 9.0% 11.6% 15.3% 21.6% 4.413 5.462 7.064 10.112
B-LSTM 2.965 2.977 3.932 5.120 8.6% 8.8% 11.6% 14.9% 4.154 4.032 5.395 7.364
DCRNN 2.464 2.745 3.802 4.765 7.2% 8.1% 11.2% 14.0% 3.351 3.817 5.271 6.605
T-GCN 2.333 2.681 3.547 4.715 6.9% 8.0% 10.4% 13.8% 3.133 3.654 4.899 6.427
A3T-GCN 2.254 2.704 3.324 4.635 6.9% 7.7% 10.5% 13.7% 3.115 3.548 5.090 6.305
Fig. 6. 5min and 4h ahead predicted speed time-series of West Chang’an Avenue in Beijing by GA2 , DCRNN, and HA.
• Similar to related research, including residual links drives
the neural network to train smoothly without pre-maturely
getting trapped in local optimum of parameter searching
space [22,43]. This is especially helpful for traffic prediction
with the ever-increasing size of deep learning-based models
in term of trainable network parameters.

To better illustrate the characteristics of this model, we vi-
sualize the traffic speed prediction result of West Chang’an Av-
enue in Beijing with GA2 in Fig. 6, and compare the predictions
with DCRNN, HA, and the ground truth data. Both 5min and 4h
ahead predictions are presented. Generally speaking, both GA2

and DCRNN demonstrate better forecasting accuracy when the
ahead time is small. At the same time, HA is independent of
the time, thus shows the same result in either scenarios. A care-
ful investigation in the predicted traffic speed data by GA2 and
DCRNN reveals more insights. Compared with GA2, DCRNN fails
to capture the local speed fluctuations within the prediction time
9

horizon. This indicates that GA2 is more likely to accurately pre-
dict sudden changes, and DCRNN provides a smoothened speed
profile like moving average. This is because that GA2 explicitly
makes use of the network adjacency information in the learning
process, which contributes to more accurate predictions. The il-
lustration demonstrates the importance of accurate road network
topology on traffic speed prediction problem, as DCRNN embeds
adjacency information through a random-walk process, which
cannot explicitly presents the topological information. Further-
more, it can be observed from the ground truth plot in Fig. 6 that
the traffic speed is highly unstable and stochastic within short
periods (<1h), which is possibly contributed by local meteorol-
ogy, dynamic traffic events, etc. Without such data, it is unlikely
that prediction approaches can perfectly fit all speed fluctuations.
Properly integrating these information into deep learning models
to better calibrate the prediction is a possible future research
topic.
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Fig. 7. Impact of |T −
| and |T +

| on prediction MAPE.
able 2
raining and prediction time of GA2 .

Time consumed

Training Prediction (5min) Prediction (4h)

BJ 20.12h 0.0152 s 0.0700 s
SH 31.49h 0.0192 s 0.0955 s
GZ 12.14h 0.0095 s 0.0414 s

Table 3
Accuracy MAPE comparison of GA2 variants.

5min 15min 1h 4h

GA2 6.0% 6.9% 9.2% 12.7%
GA2-GC 6.7% 7.5% 9.6% 13.1%
GA2-NR 7.2% 8.2% 10.4% 14.3%
GA2-ED 7.4% 8.1% 10.3% 13.9%
GA2-ND 6.5% 7.3% 9.9% 13.4%
GAL 7.7% 8.4% 10.5% 14.7%

Fig. 7 summarizes the impact of |T −
| and |T +

| on MAPE of
the forecast. The former represents the real-time data available
in the immediate past, and the latter is the length of predic-
tion horizon. A general rule of thumb can be obtained from
the figure, i.e., larger |T −

| results in better MAPE in the near
future, and the performance degrades when the prediction hori-
zon length increases. The reason is intuitive: larger |T +

| renders
more historical information, which can better resemble the evolv-
ing dynamics of road traffic. At the same time, it is inevitable
that errors are made during the data prediction process, which
accumulates with a larger |T −

|, resulting in worst prediction
performance. This also accords with the statistics presented in
Table 1 and general intuition.

Last but not least, the training and prediction time required
by GA2 on a single Tesla V100 are presented in Table 2. While
training the parameters in GA2 requires a significant amount of
time, the process is typically conducted in an offline manner.
The fine-tuned parameters are then utilized in the swift online
prediction. Considering that the predictions are made with a
granularity of five minutes, the less than 0.1 s forecasting time
can be safely regarded as real-time. As a reference, DCRNN re-
quires approximately eleven hours to get trained on BJ data, and
develops a prediction with less than 0.1 s. Although GA2 requires
almost twice the training time, the offline nature of training
makes it still acceptable considering the fast online prediction.

When comparing with the other prediction techniques, GA2

demonstrates unique merits. In contrast to HA, AK, SVR, and B-
LSTM which handles one road for each model, GA2 develops data
for all roads in one pass. This drastically reduces the prediction
time, as others require more than 1000 independent regressors
to achieve the same objective. While DCRNN, T-GCN, and A3T-
GCN can also handle all roads with one model, the intensive
10
Table 4
Hyper-parameter configurations of GA2 variants.

Res-GAL (seq2seq) Discriminator

Layers Filters GAL filters Fully-connected

GA2 5 32 16 256 + 256 + 32
GA2-A 3 32 16 256 + 256 + 32
GA2-B 7 32 16 256 + 256 + 32
GA2-C 5 16 16 256 + 256 + 32
GA2-D 5 64 16 256 + 256 + 32
GA2-E 5 32 8 256 + 256 + 32
GA2-F 5 32 32 256 + 256 + 32
GA2-G 5 32 16 256 + 64 + 32
GA2-H 5 32 16 256+256+128

Table 5
Accuracy MAPE and training time of GA2 variants.

Time ahead Training time

5min 15min 1h 4h

GA2 6.0% 6.9% 9.2% 12.7% 20.12h
GA2-A 6.2% 7.2% 10.3% 14.5% 18.63h
GA2-B 6.1% 6.9% 9.3% 12.9% 37.12h
GA2-C 6.0% 7.2% 9.7% 14.1% 14.60 h
GA2-D 6.0% 6.9% 9.3% 13.1% 57.21h
GA2-E 6.1% 7.0% 9.8% 13.7% 22.19h
GA2-F 6.0% 6.9% 9.2% 12.7% 35.32h
GA2-G 6.1% 7.0% 9.4% 12.9% 20.23h
GA2-H 6.0% 6.9% 9.3% 12.7% 22.51h

computational requirement leads to more than 50h of training
time, doubling that of GA2. To conclude, GA2 can develop accurate
citywide traffic speed predictions in real-time, and outperforms
compared techniques.

5.3. GA2 architecture

In this work, the encoder–decoder architecture is adopted,
in which the graph attention mechanism and residual links are
among the fundamental components. In addition, GA2 utilizes
a generative adversarial model for adversarial training, and the
discriminator is expected to contribute to performance improve-
ment. In this sub-section, we first investigate the influence of
these components to the overall prediction accuracy. Four new
GA2 variants are constructed as follows:

• GA2-GC: The typical GCN is adopted to replace the graph at-
tention mechanism in Fig. 4. Other components remain un-
changed, as is the hyper-parameters, e.g., number of layers
and neurons, etc.

• GA2-NR: All residual links are removed from Fig. 4.
• GA2-ED: The decoder is removed from Fig. 4. The last layer

in the encoder has F filters instead of 32.
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• GA2-ND: The discriminator is removed from Fig. 4. The new
network is trained by minimizing the L1 loss.

• GAL: Only one layer of GAL is employed to perform the
prediction.

Table 3 presents the MAPE of prediction accuracy with the
three GA2 variants on the Beijing data set. The result implies a
straightforward conclusion—graph attention mechanism, resid-
ual links, seq2seq structure, and adversarial training all contribute
positively to data forecasting accuracy in the tested scenario.
Compared with GCN, GAL employs the attention mechanism to
explicitly assign an independent weight to each of connected
roads, which follows the intuition that multiple incoming and
outgoing flows should have different impact on the traffic speed.
In addition, the residual links help the network to skip layers
deemed unnecessary for specific samples in the architecture. This
greatly reduces the training difficulty for convergency, thus in
turn leads to a better performance. The decoder is critical in
interpreting the encoded message developed by the encoder, and
removing this data processing block significantly reduces the
deep learning model capacity, rendering inferior results. Finally,
discarding the discriminator indicates that instead of learning the
statistical distribution of ground truth geometry data, data points
in samples are directly learnt, rendering a network sensitive to
noise and outliers.

Besides the constituting components, the hyper-parameters of
GA2 are other critical factors that impact the system performance.
We specifically assess the influence of layer and neuron numbers
by considering hyper-parameter configurations as demonstrated
in Table 4. All GA2 variants are trained with the same data set
of Beijing. The MAPE of prediction accuracy and training time is
presented in Table 5. From the results, a series of conclusions
can be made. First, while removing Res-GAL from seq2seq has a
negative impact on the accuracy, including more layers requires
significantly more training time without better performance. This
can be observed by comparing GA2 with GA2-A and GA2-B, and
the result suggests an adequate number of layers in the encoder
and decoder to make a trade-off between training speed and
system performance. Furthermore, it seems that reducing the
number of filters leads to under-performing architectures (GA2-C
and GA2-E), and increasing the number cannot further improve
the performance (GA2-D). Finally, alternating the discriminator
configurations does not have significant influence on the forecast
accuracy. The training time, though, may drastically increase with
the GAL filter size if it is more than 16. Comparing Tables 1 and 5,
we have an observation that while hyper-parameter setting has
influence on GA2 performance, the deviation is not as significant
as the improvement over baseline approaches. This indicate that
hyper-parameter optimization is recommended but not essential
in developing GA2 to make it supersede existing approaches.

5.4. Data noise and sample frequency

In the previous case studies, the real-world data samples of
urban networks are employed. While the data may contain sam-
pling errors, the ground truth values are not available. Nonethe-
less, as noise is inevitable during the sampling process, we are
interested in how the proposed GA2 perform with only noisy data
input. In this case study, we manually introduce different levels
of noise based on the Beijing data set. The new sets are employed
to train GA2, whose corresponding predictions are compared
with the original data set for performance evaluation. Specifi-
cally, we assume that the sampling noise is Additive white Gaus-
sian noise (AWGN).5 New sets with Gaussian standard errors of

5 Other noise distributions are tested offline where similar performance of
A2 is observed.
11
Fig. 8. MAPE of GA2 models with various levels of sampling error.

able 6
ccuracy MAPE comparison on different sampling intervals.

Number of time instances ahead

1 3 12 48

BJ (5min) 6.0% 6.9% 9.2% 12.7%
BJ-10 m 5.9% 6.8% 9.1% 12.6%
BJ-15 m 5.9% 6.8% 9.1% 12.5%
BJ-30 m 5.7% 6.7% 9.0% 12.7%
BJ-1 h 5.4% 6.5% 9.1% 12.6%

1%, 2%, 3%, . . . , 10% on the original Beijing data are constructed,
whose average deviations are therefore 0.5%, 1%, 1.5%, . . . , 5% of
the ground truth, respectively. Ten GA2 models are trained inde-
pendently with the new noisy sets, and the accuracy MAPE results
are depicted in Fig. 8. The results follow the intuition that increas-
ing noise level generally leads to larger MAPE, as noise patterns
cannot be learnt by GA2 unlike noise probability distributions.
In the meantime, an interesting conclusion can be achieved that
compared with short-term predictions (<1h), long-term forecast
accuracy are less influenced by sampling errors. The observation
is credited with the fact that long-term forecast errors are notably
larger than short-term ones, rendering the impact of noise easily
‘‘hidden’’ in the existing errors. This also explains another piece of
information conveyed by the results that the MAPE increase rate
attenuates with the standard error— relatively larger prediction
errors hide the noise better.

Last but not least, we investigate whether GA2 depends on the
5min sampling interval of the original data set. By removing data
points of selected time instances, the original Beijing data set is
down-sampled by averaging to new ones with 10min, 15min,
30min, 1 h sampling interval, label by BJ-10m, BJ-15m, BJ-30m,
BJ-1h, respectively. The same GA2 architecture is employed to
train the new data sets individually, and the prediction accuracy
is presented in Table 6. In this case study, the number of time
instances ahead from which GA2 makes prediction is employed
for a fair comparison. For instance, up to 48 time instances (8h)
data is used for making predictions in the future 48 time instances
(8 h) in BJ-10 m data set, which is identical to all other data
sets except for the absolute length of time. From the results
it can be concluded that increasing the sampling interval can
improve the prediction accuracy, though the magnitude is not
significant. This is because that down-sampling the original data
set renders notably smoother and regular speed data dynamics as
shown by an example in Fig. 9. Consequently, we can conclude
that GA2 develops stable (approx. 0.5% MAPE difference) forecast
performance when handling data sets with different sampling
frequencies.

6. Conclusions

In this paper, we propose a new geometric deep learning
approach for citywide traffic speed prediction in modern in-
telligent transportation systems. Different from previous work,
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Fig. 9. Traffic speed time-series of West Chang’an Avenue in Beijing with
different sampling intervals.

the proposed approach extensively utilizes the road network
topology in the learning process to forecast data for every road
within the transportation network in one go. The proposed ap-
proach employs a tailor-made deep neural network architecture
to learn from both the geometric and temporal data characteris-
tics of historical information. The architecture incorporates design
principle of recent theoretical advancement in geometric deep
learning and attention mechanism, and the adversarial training
with spectral normalized design is adopted to further improve
the system performance and robustness. To evaluate the efficacy
of the proposed approach, a series of comprehensive case studies
are conducted based on three data sets of real-world urban road
networks in China. The results demonstrate outstanding data
prediction accuracy compared with classical and recent statistical
learning prediction techniques. Furthermore, we investigate the
structural design of the proposed approach via experiments to
reveal the best-performing architecture. Finally, we study the
sensitivity to data sampling error and interval of the proposed
approach.
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