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Knowledge graph (KG) embedding methods predict missing links by computing the similarities 
between entities. The existing embedding methods are designed with either shallow or deep 
architectures. Shallow methods are scalable to large KGs but are limited in capturing fine-grained 
semantics. Deep methods can capture rich semantic interactions, but they require numerous 
model parameters. This study proposes a novel embedding model that effectively combines the 
strengths of both shallow and deep models. In particular, the proposed model adopts the design 
principles of shallow models and incorporates an expressive compositional operator inspired by 
deep models. This approach maintains the scalability while significantly enhancing the expressive 
capacity of the proposed model. Moreover, the proposed model learns embeddings using the 
Poincaré ball model of hyperbolic geometry to preserve the hierarchies between entities. The 
experimental results demonstrated the effectiveness of learning Poincaré embeddings with an 
expressive compositional operator. Notably, a substantial improvement of 2.4% in the Mean 
Reciprocal Rank (MRR) and a 1.4% improvement in hit@1 was observed on the CoDEx-m and 
CoDEx-s datasets, respectively, when compared to the current state-of-the-art methods. The 
proposed model was implemented using PyTorch 1.8.1, and experiments were conducted on a 
server with an NVIDIA GeForce RTX 2080 Ti GPU.

1. Introduction

Knowledge graphs (KGs) represent factual information in the form of relationship triples, typically denoted as (subject entity, 
relation, object entity). For instance, consider that ‘Martin Scorsese produced Hugo’. In the context of the KG, this fact is encapsulated 
as a triple (Martin Scorsese, produced, Hugo). This triple encompasses the subject entity ‘Martin Scorsese’, the object entity ‘Hugo’, and 
the relation ‘produced’ that links the subject and object entities. A collection of such triples forms a KG, where nodes correspond to 
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entities and edges symbolize the relations between entities. This graph-based knowledge representation addresses various challenges 
in handling heterogeneous data with complex linked structures and supports numerous applications in dialogue generation, semantic 
search, recommendations, and question answering [47].

KG construction approaches typically focus on extracting triples from multiple knowledge sources. These approaches utilize 
ontological models to link the extracted triples into a graphical representation [1]. However, these triples are directly sourced from 
the available knowledge repositories, which are typically incomplete, resulting in incomplete KGs. Consequently, KG completion, 
also referred to as link prediction, has recently gained prominence as a significant research direction in knowledge representation 
learning. The primary objective of KG completion is to utilize existing triples to infer new unobserved triples and seamlessly integrate 
them into the KGs. This process maximizes the available knowledge within the KGs and enhances the performance of learning models 
across various downstream tasks.

Among existing solutions, embedding methods are widely recognized as state-of-the-art approaches for link prediction in KGs. 
These embedding methods consist of two key components: a mapping function and a scoring function. The first component maps 
entities and relations to low-dimensional vectors. The latter component utilizes compositional operators to compute composite vectors 
for entities, and matches them to compute the probabilities of triples as valid facts [44].

Embedding models can be broadly classified into two main categories: shallow models [31,46,30,42,23,17,7,22] and deep mod-
els [12,6,39,11,27,48,4]. Shallow models generate a single feature per embedding parameter and employ simple compositional 
operators, such as elementwise multiplication and addition to embeddings to model the interactions among entities. These meth-
ods require fewer parameters, which enables them to scale effectively to large KGs. However, their limited expressive power 
hinders their capability of capturing rich semantic relationships among entities, subsequently restricting their predictive perfor-
mance in link prediction tasks [11,33]. To enhance the expressiveness of shallow models, a common approach is to increase the 
dimensionality of the embeddings. This increment increase provides a greater capacity to capture rich semantic interactions. How-
ever, this also increases the memory and computational demands, leading to scalability challenges when dealing with large KGs 
[42,11,9].

To address the limitations of shallow models, deep models [11,4,38] employ more expressive compositional operators such 
as concatenation, convolution, and projection on embeddings. These operators are employed to generate multiple feature maps 
for learning more expressive embeddings. However, these deep models are more complex in terms of model parameters, because 
increasing the number of feature maps also increases the number of parameters, making deep methods less efficient for large KGs 
[33].

Another substantial problem with many existing methods is the generation of similar representations for entities in both the 
subject and object positions. This limitation hampers their ability to distinguish between valid and invalid triples, particularly in 
the case of asymmetric relations, which constitute a major proportion of real-world KGs. In semantic modelling tasks, it is crucial to 
represent an entity differently when it appears as a subject than when it appears as an object to effectively discern valid from invalid 
facts. For instance, in the case of an asymmetric relation such as 𝑤𝑜𝑛, the triples (Martin Scorsese, won, Academy Award) and (Academy 
Award, won, Martin Scorsese) are not semantically equivalent. However, they may receive nearly identical treatment when the same 
representations are used for entities in both the subject and object positions. To address this problem, several existing deep models 
[11,38,4] generate a composite vector solely for the subject entity from subject-relation embeddings to ensure that the subject vector 
remains different from the object vector. However, these models failed to capture the object-relation interactions before matching 
the object with the subject entity. By contrast, a few shallow models, such as Canonical Polyadic (CP) [14] and SIMPLE [17], address 
this problem by creating two separate embedding vectors for each entity, one for the subject position and the other for the object 
position. While this approach is effective in discerning valid from invalid triples, it doubles the number of entity parameters. In 
addition, both CP and SIMPLE focus solely on the positional information of entities and neglect the contextual aspects of relations. 
To address this issue, ContE [34] utilizes two distinct relational contexts for learning entity embeddings: entity representations at 
subject and object positions 1) within the same relation and 2) across different relations. This setting enabled ContE to capture the 
contextual information of entities in terms of their relationships. However, ContE employs similar compositional operators for both 
subject-relation and object-relation embeddings, potentially causing subject and object representations to converge closely in the 
latent space, thereby limiting predictive performance.

Based on the aforementioned observations, the majority of existing methods lack either an effective or efficient mechanism for 
representing the subject vector differently from the object vector within the scoring function. This distinction is vital to distinguish-
ing valid triples from their corresponding invalid counterparts. Additionally, deep methods tend to prioritize model expressivity, 
potentially sacrificing network scalability. In contrast, shallow methods tend to prioritize scalability but at the cost of losing model 
expressivity. Consequently, existing embedding methods lack a balanced trade-off between these two crucial properties for an accu-
rate and efficient link prediction.

To address these issues, this paper proposes a novel link prediction model that adopts design of the shallow models while 
incorporating an expressive compositional operator: concatenation with projection from deep models. This combination allows 
the proposed model to learn more expressive embeddings while retaining its scalability. In particular, the compositional operator, 
concatenation with projection, was utilized in the subject-relation embeddings to capture the rich semantic interactions between 
them into a composite vector. In addition, a simple compositional operator, addition, was utilized in the object-relation embeddings 
to create a composite vector for the object entity. Finally, the distance between these composite vectors was computed to measure 
the similarity score of a given triple. These distinct compositional operators enable the proposed method to distinguish between valid 
2

and invalid triples by generating distinct scores.
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Table 1

Major notations.

Notation Explanation

 knowledge graph
 , set of entities, set of relations
𝐄,𝐑 entity embedding matrix, relation embedding matrix
ℝ Euclidean space
𝔹 hyperbolic space
𝕋 tangent space
e𝑠,e𝑜, r subject, object, and relation embedding vectors (Euclidean)
h𝑠,h𝑜,q subject, object, and relation embedding vectors (Poincaré)
W projection matrix
𝑘 curvature
𝜎 nonlinear activation
◦ compositional operator
⋆ concatenation
∗ convolution
⊙ Multiplication; elementwise (𝑒𝑤), matrix-vector (𝑚𝑣)
𝜙 scoring function
⊕ Möbius addition
⊗ Möbius matrix-vector product

In addition, KGs are typically composed of many rich hierarchical structures, that is, sets of entities and relations that often 
include multiple hierarchies, each of which requires different geometric patterns for representation in the embedding space [9,3]. 
Recent research on hierarchical data, such as social networks [28], block-chain financial networks [24], protein-protein interaction 
networks [10], and multi-relational graphs [9,3], suggests that hyperbolic space can represent hierarchical structures more effectively 
than regular Euclidean space. In particular, the hyperbolic space is considered a continuous counterpart of discrete trees, making it 
naturally suitable for representing tree-like hierarchical structures [28]. In the case of tree-like structures, Euclidean space typically 
exhibits linear growth with respect to the radius of the circle, whereas hyperbolic space exhibits exponential growth [3,28]. This 
property makes hyperbolic space a natural fit for modelling tree-like structures, as standard trees grow exponentially. Motivated 
by these works, the proposed model was extended to hyperbolic space by conducting composition operations using the Poincaré 
ball model of hyperbolic geometry. This extension aims to capture hierarchical relations in KGs and learn more expressive KG 
embeddings.

Our specific contributions are summarized as follows:

• A novel Euclidean link prediction model called CoEE is proposed that incorporates an expressive compositional operator, con-
catenation with projection, into the design of shallow models. This integration aimed to merge the expressive capacity of deep 
models with the scalability of shallow models into a unified scoring function. Specifically, compositional operator concatenation 
with projection was defined on the subject-relation embeddings, and addition was employed on the object-relation embeddings. 
This approach constructs distinct composite vectors for an entity at both subject and object positions.

• An analogue of the proposed Euclidean model in the hyperbolic space, called CoPE, is introduced. CoPE performs composition 
operations using the Poincaré ball model of hyperbolic geometry to enrich the embeddings with hierarchical patterns present in 
the KGs.

• A detailed comparison with closely related models was performed in terms of compositional operators and parameter efficiency.

• Multiple experiments are conducted on three challenging datasets to validate the effectiveness of the proposed method.

The remainder of this paper is structured as follows: Section 2 discusses the background and preliminary concepts required to 
define the proposed model. Section 3 presents the proposed Euclidean and hyperbolic scoring functions and a detailed comparison 
with closely related methods. Section 4 discusses the experimental settings and presents the results of the link prediction task. Finally, 
Section 5 summarizes the study, provides concluding remarks, and outlines future directions.

2. Related background and preliminary concepts

This section provides a brief background on link prediction and existing compositional vector space models. Subsequently, it 
reviews the key concepts of hyperbolic geometry. The major notations used are listed in Table 1.

2.1. Link prediction

Let  = ( ,) represents a KG, where  denotes the set of entities/nodes, and  denotes the set of relations/edges. In KGs, 
3

entities and relations are linked in the form of relationship triples (𝑒𝑠, 𝑟, 𝑒𝑜) ∈  × ×  , where each triple depicts a knowledge 
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fact using a relation 𝑟 ∈ between the subject and object entities 𝑒𝑠, 𝑒𝑜 ∈  . The primary goal is to map the sets of entities  and 
relations  into a low-dimensional space, with E ∈ℝ||×𝑑 and R ∈ℝ||×𝑑 representing the entity and relation embedding matrices, 
respectively. In these matrices, each row corresponds to a 𝑑-dimensional embedding vector. Link prediction is a KG completion task 
that aims to predict missing subjects (?, 𝑟, 𝑒𝑜) or objects (𝑒𝑠, 𝑟, ?) to infer missing triples. To achieve this, embedding models conduct a 
lookup operation upon the embedding matrices E ∈ℝ||×𝑑 and R ∈ℝ||×𝑑 to retrieve the entity and relation embeddings e𝑠, e𝑜 ∈ℝ𝑑

and r ∈ ℝ𝑑 , respectively. Subsequently, a scoring function 𝜙 is defined over these embeddings to score each triple, indicating the 
probability that a triple represents a valid fact.

2.2. Link prediction models

This section reviews various shallow and deep link prediction models in terms of composite representations. The compositional 
operator is denoted as ◦. For example, the composite vector for the subject entity obtained from the subject-relation embeddings is 
denoted by e𝑠◦r. This composite vector is then matched with the object embedding vector e𝑜 using either a product or distance metric 
to measure the plausibility of a given triple [30]. Based on the compositional operators and similarity metrics, the existing models 
are categorized into product-, distance-, and neural network-based models. A summary of these methods is provided in Table 2.

2.2.1. Neural network-based models

Neural network-based models primarily compute subject-relation composite vectors through concatenation, convolution, and 
projection. Let ⋆ denotes the concatenation and * denotes the convolution. The subject-relation composite vector is then computed 
as e𝑠 ◦ r = 𝑣𝑒𝑐((e𝑠 ⋆ r) ∗ 𝜓)W, where 𝑣𝑒𝑐 represents matrix-to-vector reshaping, 𝜓 is the convolutional kernel, and W is a projection 
matrix. The projection matrix is adaptively learned in conjunction with entity and relation embeddings. ConvE [11] is the first 
state-of-the-art model based on this composition, and defines the scoring function as follows:

𝜙(𝑒𝑠, 𝑟, 𝑒𝑜) = 𝜎(𝑣𝑒𝑐(𝜎((e𝑠 ⋆ r) ∗ 𝜓))W)e𝑜, (1)

where 𝜎 denotes a nonlinear activation function. ConvE first reshapes the 1D subject and relation embeddings e𝑠 and r, into 2D-
shaped embeddings, e𝑠 and r, respectively, and subsequently concatenates them. It then applies convolutional filters 𝜓 to the 
concatenated embeddings, which results in multiple feature maps. The feature maps were reshaped into a vector and passed through 
the projection matrix W to capture further subject-relation interactions. The resulting composite representation was then matched 
with the object embedding vector e𝑜 to compute the similarity score for a given triple (see Fig. 1).

Despite its solid predictive performance, the use of 2D convolution in ConvE seems nonintuitive, given that word embeddings 
are inherently structured in 1D [4]. Following this general idea, Conv-TransE [38] and ConvKB [27] extended ConvE by employing 
1D convolution and enforcing the translational property of TransE in embeddings. ConvRot [19] extended ConvE with a complex 
space rotation to ensure that the model captures various relation patterns in the KGs. HypER [4] constructs 1D convolutional filters 
from relation embeddings, applies them to subject embeddings, and uses a projection matrix on the resulting embeddings to create 
a composite subject-relation vector. By contrast, CNN-ECFA [15] enhances the expressive capacity of deep networks such as ConvE 
by incorporating entity-specific standard features. Although these deep approaches are effective at capturing rich entity-relation 
interactions, the generation of multiple feature maps restricts the scalability of deep models to small KGs.

2.2.2. Distance-based models

Distance-based models create a subject-relation composite vector using the addition operator e𝑠 ◦ r = e𝑠 + r, and subsequently 
match this composite vector with the object embedding vector e𝑠 using a distance function distℝ to quantify the similarity between 
them. In these methods, the relation embedding vector r serves as a translation vector, shifting the subject embedding vector 
e𝑠 towards object embedding vector e𝑜. Many distance-based models have been built based on this general idea of vector space 
translation, including state-of-the-art models such as TransE [7], TransM [13], TransR [22], and TransD [16]. TransE defines a 
subject-relation composition-based scoring function as follows:

𝜙(𝑒𝑠, 𝑟, 𝑒𝑜) = −distℝ(e𝑠 + r,e𝑜). (2)

TransE is renowned for its parameter efficiency, which makes it suitable for large KGs. However, it is limited to modelling only 1-1 
relations. TransM [13] extends TransE by assigning relation-specific weights to each triple. These weights enable TransM to model 1-
N, N-1, and N-N relations by reducing the weight values to push e𝑜 away from e𝑠+r. To further extend TransE’s capability to handle 1-
N, N-1, and N-N relations, TransR introduces relation-specific transformations for subject and object entities by employing a relation-
specific transformation matrix M𝑟 ∈ ℝ𝑑×𝑑 . Following these transformations, a regular translational composition was performed to 
compute the score for a given triple.

TransD [16] defines the scoring function in a manner similar to TransR. However, it introduces two projection matrices, M𝑟1
and M𝑟2

, and decomposes each into a product of two vectors to create relation-specific projections for both the subject and object 
entities. These existing translational models demonstrate promising performances. However, they fall short of capturing the complex 
patterns present in KGs. To this end, RotatE [40] replaces the translation operation in TransE with a complex space rotation via an 
elementwise product between the subject and relation embeddings. This rotation operation enables RotatE to model various complex 
4

patterns, including asymmetric relationships. RotatE4D [20] extends RotatE by performing 4D rotations in quaternion space to model 
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Table 2

Summary of existing work.

Category Model Architecture Embedding space Compositional operator

Neural network-based models ConvE [11] Deep Real Concatenation, convolution, and projection
Conv-TransE [38] Deep Real Concatenation, convolution, and projection
ConvKB [27] Deep Real Concatenation, convolution, and projection
HypER [4] Deep Real Convolution and projection
ConvRot [19] Deep Complex Convolution and Complex rotation
CNN-ECFA [15] Deep Real Concatenation, convolution, and projection

Distance-based models TransE [7] Shallow Real Addition
TransM [13] Shallow Real Addition
TransR [22] Shallow Real Addition
TransD [16] Shallow Real Addition
RotatE [40] Shallow Complex Elementwise product
RotatE4D [20] Shallow Quaternion Rotation with quaternion
MuRP [3] Shallow Hyperbolic Elementwise product and Möbius addition

Product-based models RESCAL [31] Shallow Real Matrix-vector product
DistMult [46] Shallow Real Elementwise product
Hole [30] Shallow Real Circular correlation
ComplEx [42] Shallow Complex Hermitian product
QuatE [50] Shallow Quaternion Hamilton product
QIQE-KGC [21] Shallow Quaternion Hamilton product
ANALOGY [23] Shallow Real Matrix-vector product
CP [8] Shallow Real Elementwise product
SIMPLE [17] Shallow Real Elementwise product
CKRL [36] Shallow Real Concatenation, projection, and correlation

Note. The compositional operators listed in the table are used to create composite vectors for either subject-relation or object-relation embeddings, except 
for Hole, ConvKB, and CapsE. Hole employs circular correlation on subject and object embeddings, followed by computing the dot product with relation 
embeddings. ConvKB and CapsE combine both subject and object entities with relations in the convolution process.

highly complex and hierarchical relations. By contrast, MuRP [3] adopts a distinct approach by extending the translation operation 
to the hyperbolic space, enabling it to effectively model hierarchical patterns within KGs.

2.2.3. Product-based models

For a given triple, product-based models capture semantic interactions between the features of the subject and the relation by 
creating a composite vector through an elementwise/matrix-vector product1 denoted by e𝑠 ◦ r = e𝑠 ⊙ r. Subsequently, this composite 
vector is matched with the object embedding vector e𝑜 using a product metric prodℝ such as the generalized dot product2 to 
compute the similarity score for each triple. RESCAL [31] is a representative model of product composition. It embeds subject and 
object entities into vectors e𝑠 ∈ℝ𝑑 and e𝑜 ∈ℝ𝑑 , the relation into a matrix M𝑟 ∈ℝ𝑑×𝑑 , and computes the subject-relation composition 
using the matrix-vector (𝑚𝑣) product:

𝜙(𝑒𝑠, 𝑟, 𝑒𝑜) = prodℝ(e𝑠 ⊙𝑚𝑣 M𝑟,e𝑜). (3)

Although RESCAL is one of the most expressive methods with a shallow architecture, its main drawback is that the relation 
embedding matrix requires (𝑑2) parameters per relation. This large number of parameters demands increased memory and com-
putational power and may lead to overfitting, which limits predictive performance [46]. ANALOGY [23] implemented a scoring 
function similar to RESCAL but introduced normality and commutativity constraints on the relation matrices. These constraints are 
deployed to model analogical structures in KGs.

DistMult [46] extended the general idea of product composition in RESCAL and ANALOGY by replacing the relation embedding 
matrix with a relation embedding vector r, thereby reducing the number of relation parameters to (𝑑). However, this reduction 
in the number of relation parameters imposes symmetry on embeddings, limiting DistMult’s ability to asymmetric relations [42]. 
To model asymmetric relations, CP [17,14] extends DistMult by defining two embedding vectors for each node: one for the subject 
position and the other for the object position. SIMPLE [17] further extends the CP by including the reciprocal of its scoring function 
to generate triple scores. ComplEx [42] proposed an alternative approach for modelling asymmetric relations by extending DistMult 
into a complex space, where the subject and object embedding vectors are considered complex conjugates of each other. QuatE 
[50] extended ComplEx to the quaternion space, enabling more expressive entities and relation embeddings by allowing more 
interactions between them. QIQE-KGC [21] combines quantum embeddings with quaternion embeddings to enforce logical inferences 
for modelling deep dependencies between entities and relations. CKRL [36] adopts a sophisticated linear approach to embed the 
relationship strengths between entities using three levels of latent spaces: entity, relation, and canonical spaces. It is worth noting 
that these models are also referred to as bilinear, as they can capture entity-relation interactions in both directions.

1 The output of the elementwise/matrix-vector product is a vector.
5

2 The output of the dot product is a scalar value.
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Fig. 1. Illustration of TransE (a) and ConvE (b).

Fig. 2. Illustration of MuRP (c) and proposed CoPE (d).

In addition to the main categories mentioned above, other studies have conducted link prediction in KGs using different ap-
proaches. For example, SAttLE [2] utilizes a self-attention-based transformer as an encoder to generate context-aware latent entities 
and relation embeddings and then utilizes a regular KG embedding model as a decoder to predict missing links. SimRE [49]
introduced a contrastive learning approach to integrate the logical and textual features of entities to improve the model expres-
siveness.

2.3. Poincaré ball model of hyperbolic geometry

Hyperbolic space is a negatively curved space with a constant negative curvature. There are five hyperbolic geometry models, 
including the Poincaré ball model [8], hyperboloid model [35], and the Klein disk model [32]. In this work, we utilized the Poincaré 
ball model, which exhibits all the properties of hyperbolic space and is more suitable for gradient-based optimization than other 
models of hyperbolic geometry [3,28]. The 𝑑-dimensional Poincaré ball 𝔹𝑑,𝑘 with a radius of ( 1√

𝑘
, 𝑘 > 0) is defined by the manifold 

𝔹𝑑,𝑘 = {𝚡 ∈ℝ𝑑 ∶ ||𝚡||2 < 1
𝑘
}. Some basic mathematical operations in the Poincaré ball model are defined as follows:

• Möbius addition: Möbius addition [43] is the hyperbolic counterpart of standard Euclidean addition and is defined for two 
hyperbolic vectors x, y ∈ 𝔹𝑑,𝑘 as follows:

x⊕𝑘 y =
(1 + 2𝑘(x⊙𝑒𝑤 y) + 𝑘||y||2)x + (1 − 𝑘||x||2)y

1 + 2𝑘(x⊙𝑒𝑤 y) + 𝑘2||x||2||y||2 , (4)

where ||.|| represents the Euclidean norm and ⊙𝑒𝑤 represents elementwise multiplication in the Euclidean space.
• Poincaré distance: The Poincaré distance between two hyperbolic vectors x ∈ 𝔹𝑑,𝑘 and y ∈ 𝔹𝑑,𝑘 is commonly defined using 

Möbius addition:

dist𝔹(x,y) =
2√
𝑘
𝚝𝚊𝚗𝚑−1

(√
𝑘||− x⊕𝑘 y||), (5)

where dist𝔹 represents Poincaré distance.
• Logarithmic and exponential maps: Some fundamental mathematical operations, such as elementwise and matrix-vector 
6

products, are not well defined in hyperbolic geometry [3]. In hyperbolic geometry, these operations are performed in the 
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tangent space 𝕋 𝑘𝚡 , which is a 𝑑-dimensional Euclidean space associated with each hyperbolic model. The mapping between the 
hyperbolic and tangent spaces is achieved using logarithmic and exponential maps. In particular, the logarithmic map projects a 
point from hyperbolic space to the tangent space at 0, denoted as log𝑘0 ∶ 𝔹

𝑑,𝑘 → 𝕋 𝑘𝚡 , while the exponential map projects a point 
from the tangent space back to hyperbolic space at 0, denoted as exp𝑘0 ∶ 𝕋 𝑘𝚡 → 𝔹𝑑,𝑘. The mappings between the Poincaré ball 
and tangent space for vector x are defined as follows:

log𝑘0(x) = 𝚝𝚊𝚗𝚑−1
(√

𝑘||x||) x√
𝑘||x|| , (6)

exp𝑘0(x) = 𝚝𝚊𝚗𝚑
(√

𝑘||x||) x√
𝑘||x|| . (7)

• Möbius matrix-vector product: Möbius matrix-vector multiplication [24,10,43] between a vector x and a matrix M is com-
monly defined as follows:

M⊗𝑘 x = exp𝑘0(M(log𝑘0(x)), (8)

where the matrix M is defined in the tangent space. This process involves the following steps. The hyperbolic vector x∈ 𝔹𝑑,𝑘 is 
projected onto the tangent space by using the log𝑘0 map. Next, matrix-vector multiplication is performed between the projected 
vector and the tangent matrix within the tangent space. Finally, the resulting vector is projected back onto the Poincaré ball 
using the exp𝑘0 map.

3. Composition-based Poincaré embeddings

Having discussed the existing compositional vector space models and preliminaries, this section presents the proposed 
composition-based Poincaré embeddings (CoPE). This section begins by introducing the proposed method in the context of Eu-
clidean space, called CoEE. It then describes how the CoEE is extended to the Poincaré manifold. Subsequently, a detailed discussion 
of the training and optimization of the CoPE is provided. Finally, CoPE and closely related methods were compared to highlight their 
relationships.

3.1. Composite representations on Euclidean manifold

In the previous section, we described various compositional operators that create composite vectors for entity-relation embedding. 
For example, a matrix-vector product is an effective compositional operator that captures the semantic similarity between the entity 
and relation embeddings in RESCAL. Subsequently, the composite vector is matched with the object embedding vector via a dot 
product to compute the similarity score of a given triple. This study aims to extend entity-relation compositions to hyperbolic 
space. However, the hyperbolic space lacks a clear correspondence with the Euclidean dot product [3]. Moreover, performing 2D 
convolution in hyperbolic space is a challenging task that we defer to in future work.

In particular, this study leverages concatenation with projection and addition compositions to capture the interactions between 
subjects and relations and objects and relations, respectively. As mentioned previously, most existing models, such as TransE, ConvE, 
Conv-TransE, and HypER, construct only composite vectors for the subject entities. This approach is counterintuitive, because 
both the subject and object entities in a given triple belong to the same entity space and are associated with the same relation. 
Therefore, it is more intuitive to create composite vectors for both entities to capture their interactions before measuring their 
similarities.

3.1.1. Euclidean scoring function

The proposed hyperbolic model, CoPE, was built based on the existing Euclidean compositions. Hence, it was initially constructed 
in Euclidean space and is referred to as CoEE. Specifically, for a given triple (𝑒𝑠, 𝑟, 𝑒𝑜), the CoEE is constructed in the form of distance 
models [3], and its scoring function is defined as follows:

𝜙(𝑒𝑠, 𝑟, 𝑒𝑜) = −distℝ(e𝑊𝑠 ,e
𝑟
𝑜
)2 + 𝑏𝑠 + 𝑏𝑜,

= −distℝ(𝜎(W(e𝑠 ⋆ r𝑠)),e𝑜 + r𝑜)2 + 𝑏𝑠 + 𝑏𝑜, (9)

where e𝑠, e𝑜 ∈ ℝ𝑑 are the Euclidean embedding vectors and 𝑏𝑠, 𝑏𝑜 ∈ ℝ are scalar biases for the subject and object entities. r𝑠 ∈ ℝ𝑑

and r𝑜 ∈ ℝ𝑑 denote the relation embeddings to be composed with the embedding vectors of the subject and object entities. These 
vectors are obtained by dividing the Euclidean relation vector r ∈ ℝ𝑐 into two parts: the first 𝑐∕2 dimensions are assigned to r𝑠
and the remaining 𝑐∕2 dimensions are assigned to r𝑜, where 𝑐 = 2𝑑. distℝ denotes the Euclidean distance function, ⋆ denotes the 
concatenation operator, and W ∈ℝ2𝑑×𝑑 denotes the projection matrix. e𝑟

𝑜
denotes the composite vector of the object entity obtained 

by adding e𝑜 to r𝑜. e𝑊𝑠 denotes the composite vector of the subject entity. It is formed by concatenating e𝑠 with r𝑠 and subsequently 
applying a matrix-vector product with the projection matrix W ∈ℝ2𝑑×𝑑 , which adaptively learns the interactions between the subject 
and the relation.

To the best of our knowledge, learning subject-relation interactions using a projection matrix W in the design of shallow models 
7

is the novel contribution of this work. This innovation combined the expressiveness of deep models with the scalability of shallow 
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models using a unified scoring function. Furthermore, employing distinct compositional operators for subject- and object-relation 
embeddings allowed the proposed model to distinguish between valid and invalid triples. In Section 4.8, it is validated that utilizing 
the same compositional operators for both subject- and object-relation embeddings restricts the predictive performance.

3.2. Composite representations on Poincaré manifold

Although CoEE can capture rich entity-relation interactions, it is Euclidean with limited representation capabilities and cannot 
effectively capture the hierarchical relationships between KG nodes. In the case of hierarchical structures, the number of nodes grows 
exponentially with respect to the levels. However, in hyperbolic space, such structures can be easily modelled as the hyperbolic 
distance between two points increases exponentially when moving towards the boundary of the hypersphere [28,10]. In contrast, in 
Euclidean space, this growth is linear, making it unable to effectively represent increasingly complex hierarchies [3,28]. To handle 
the hierarchies between the KG nodes, the proposed Euclidean model, CoEE, defined in Eq. (9), is transformed into the Poincaré ball 
model of hyperbolic geometry and is called CoPE. This transformation involves three major steps: 1) mapping input embeddings from 
Euclidean to Poincaré’s ball, 2) creating a composite vector for the subject entity by concatenation and projection operation on the 
Poincaré’s manifold, and 3) creating a composite vector for the object entity using Möbius addition. Finally, the Poincaré distance 
between the composite vectors was computed, and the corresponding scalar biases were added to measure the similarity score for a 
given triple.

3.2.1. Euclidean to Poincaré ball mapping

Input embeddings are typically initialized in Euclidean space. Therefore, the input embedding vectors of the subject entity, object 
entity, and relation are first mapped from the Euclidean space to the Poincaré manifold using the exponential map as follows:

h𝑠,h𝑜,q = exp𝑘0(e𝑠),exp𝑘0(e𝑜),exp𝑘0(r), (10)

where h𝑠, h𝑜 ∈ 𝔹𝑑,𝑘 and q ∈ 𝔹𝑐,𝑘 denote the corresponding Poincaré embeddings of the input Euclidean embedding vectors e𝑠, e𝑜 ∈
ℝ𝑑 and r ∈ℝ𝑐 , respectively. Similar to r𝑠 and r𝑜 described in the previous section, q𝑠 ∈ 𝔹𝑑,𝑘 and q𝑜 ∈ 𝔹𝑑,𝑘 are created by splitting 
q ∈ 𝔹𝑐,𝑘 into two halves, with the first 𝑐∕2 dimensions assigned to q𝑠 and the remaining 𝑐∕2 dimensions allocated to q𝑜. This division 
of the relation q allows the proposed method to create composite vectors for both the subject and object entities. This process is 
illustrated in Fig. 2.

3.2.2. Concatenation and projection on Poincaré manifold

For the subject-relation composite vector e𝑊
𝑠

, defined in Eq. (9), the process initially involves concatenating the subject entity and 
the relation embedding vectors. This concatenated set of embeddings then conducts matrix-vector multiplication with the projection 
matrix W. Such a matrix-vector product on the Poincaré manifold is obtained using the Möbius matrix-vector product, which is the 
hyperbolic counterpart of the Euclidean matrix-vector product and is specifically performed within the tangent space 𝕋 𝑘

𝑥
associated 

with the Poincaré ball. To conduct Möbius matrix-vector multiplication, the projection matrix W ∈ ℝ2𝑑×𝑑 is defined within the 
tangent space. The logarithmic map log𝑘0 shown in Eq. (6) is applied to both the subject h𝑠 ∈ 𝔹𝑑,𝑘 and relation q𝑠 ∈ 𝔹𝑑,𝑘 embeddings 
to map them from the Poincaré ball to the associated tangent space. Subsequently, the subject and relation embedding vectors are 
concatenated within the tangent space with a subsequent projection by matrix-vector multiplication with W ∈ℝ2𝑑×𝑑 . Subsequently, 
a nonlinear activation function 𝜎 is applied to the resulting embeddings. Finally, these embeddings are mapped back to the Poincaré 
ball using the exponential map exp𝑘0 given as follows:

h𝑊
𝑠

= W⊗𝑘 (h𝑠 ⋆ q𝑠),

= exp𝑘0(𝜎(W(log𝑘0(h𝑠)⋆ log𝑘0(q𝑠)))). (11)

3.2.3. Addition on Poincaré manifold

For the object-relation composite vector e𝑟
𝑜

in the proposed Euclidean scoring function, the relation embedding vector is added 
to the object embedding vector. Such an addition between the Poincaré embeddings of the object and relation can be seamlessly 
performed on the Poincaré manifold using Möbius addition as follows:

h𝑞
𝑜
= h𝑜 ⊕

𝑘 q𝑜,

=
(1 + 2(h𝑜 ⊙𝑒𝑤 q𝑜⟩+ ||q𝑜||2)h𝑜 + (1 − ||h𝑜||2)q𝑜

1 + 2⟨h𝑜 ⊙𝑒𝑤 q𝑜⟩+ ||h𝑜||2||q𝑜||2 . (12)

3.2.4. Hyperbolic scoring function

Having introduced the input Euclidean to the Poincaré ball mapping in Eq. (10), and representing both the subject and object 
composite vectors on the Poincaré manifold in Eq. (11) and Eq. (12), we define the scoring function of CoPE. This scoring function 
is the hyperbolic counterpart of the proposed Euclidean scoring function

𝜙(𝑒𝑠, 𝑟, 𝑒𝑜) = −dist𝔹(h
𝑊
𝑠
,h𝑞
𝑜
)2 + 𝑏𝑠 + 𝑏𝑜,

𝑘 𝑘 2
8

= −dist𝔹(W⊗ (h𝑠 ⋆ q𝑠),h𝑜 ⊕ q𝑜) + 𝑏𝑠 + 𝑏𝑜, (13)
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Fig. 3. A toy example of link prediction in KGs. Circles represent nodes, and arrows represent edges between nodes. Solid arrows represent existing triples, and a 
dashed arrow represents a missing triple. Link prediction aims to derive the missing triple (Hugo, starring, Ben Kingsley) based on existing triples in the given KG.

where dist𝔹 denotes a hyperbolic distance function that computes the Poincaré distance between the composite vectors of the subject 
and object entities. Subsequently, the corresponding scalar biases were added to generate the final score 𝜙 for a given triple (𝑒𝑠, 𝑟, 𝑒𝑜). 
It is worth noting that the Möbius addition and Möbius matrix-vector product do not add any new parameters. Hence, their parameter 
complexities were similar to those of their Euclidean counterparts.

3.3. Training and optimization

Link prediction is the task of predicting the missing relationships between entities in a given KG, as illustrated in Fig. 3. For link 
prediction, CoPE utilizes a standard preprocessing procedure that includes data augmentation [11,3] and negative sampling [7,3]. 
In the data augmentation, a reciprocal triple 𝑧′ = (𝑒𝑜, 𝑟−1, 𝑒𝑠) is added to the training set for each triple 𝑧 = (𝑒𝑠, 𝑟, 𝑒𝑜). In negative 
sampling, either the object (𝑒𝑠, 𝑟, 𝑒′𝑜) or the subject (𝑒′

𝑠
, 𝑟, 𝑒𝑜) of each triple is replaced with a randomly chosen entity from the entity 

set  to generate negative/invalid triples 𝑧𝑛. This step is important for training a KG embedding model because KGs contain only 
valid triples.

In the first training step, the entity and relation embedding matrices E ∈ℝ||×𝑑 and R||×𝑐 are initialized in the Euclidean space, 
where each row represents a Euclidean embedding vector. Subsequently, mini-batch training was conducted. For each triple in input 
batch 𝐵, a lookup operation is performed on the embedding matrices to retrieve the initial Euclidean embedding vectors e𝑠, e𝑜 ∈ℝ𝑑

and r ∈ ℝ𝑐 . In the next step, the exponential map exp𝑘0 is used to project the initial embeddings from the Euclidean space to the 
corresponding Poincaré embeddings h𝑠, h𝑜 ∈ 𝔹𝑑,𝑘, and q ∈ 𝔹𝑐,𝑘. After splitting q into q𝑠 ∈ 𝔹𝑑,𝑘 and q𝑜 ∈ 𝔹𝑑,𝑘, these embeddings 
were given to the scoring function to produce a similarity score for a given triple. This score represents the probability of a triple 
being considered valid. Finally, the model was trained by minimizing the Bernoulli negative log-likelihood loss

(𝑣, 𝑢) = − 1||
||∑
𝑖=1

(𝑣𝑖 log(𝑢𝑖) + (1 − 𝑣𝑖) log(1 − 𝑢𝑖)), (14)

where ||, 𝑢, and 𝑣 denote the number of training triples, predicted probability, and binary label of the given triple, respectively.
As shown in Algorithm 1, the embedding parameters are typically initialized in Euclidean space. For optimization, one can choose 

between two established methods: tangent space optimization [10] and Riemannian optimization [28]. However, as mentioned in 
[10], Riemannian optimization is challenging and yields a slightly lower performance than tangent space optimization. Consequently, 
the CoPE was optimized using the tangent space optimization. In this approach, the embedding parameters are initialized in the 
tangent space, recovered through the exp𝑘0 map for hyperbolic operations, projected back to the tangent space via log𝑘0 map, and 
subsequently optimized using the Euclidean Adam [18].

3.4. Comparison with closely related models

This section compares CoPE with existing models that either learn two embedding vectors for each entity/relation or utilize 
distinct compositional operators for the subject- and object-relation embeddings. One such model is the Canonical Polyadic (CP) 
[17,14], which is a Euclidean model that creates two embedding vectors for each entity and defines a scoring function as follows:

𝜙(𝑒𝑠, 𝑟, 𝑒𝑜) = prodℝ(e𝑠𝑠 ⊙
𝑒𝑤 r,e𝑜

𝑜
). (15)

The scoring function of CP is similar to that of DistMult, with the only difference being the learning of two embedding vectors, e𝑠
𝑠

and e𝑜
𝑜
, for each entity. For instance, the embedding vector e𝑠

𝑠
is used when an entity appears as the subject of a triple and e𝑜

𝑜
is used 
9

when the same entity appears as an object in another triple. This construction enables the CP to differentiate between a valid triple 
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Algorithm 1 Training process of CoPE.
Input: Knowledge graph  = ( , ); entity embedding size 𝑑; relation embedding size 𝑐; batch size (bs); scoring function 𝜙; set of training triples  = [𝑧, 𝑧′ , 𝑧𝑛], where 
𝑧 = (𝑒𝑠, 𝑟, 𝑒𝑜), 𝑧′ = (𝑒𝑜, 𝑟−1, 𝑒𝑠), and 𝑧𝑛 represents negative/invalid triples.
Output: Embedding matrices E, R, biases 𝑏𝑠, 𝑏𝑜 , and projection matrix W.

1: Initialization:

E ← Xavier_Normal() ⊳ ∀ 𝑒𝑠, 𝑒𝑜 ∈ 

R ← Xavier_Normal() ⊳ ∀ 𝑟 ∈

𝑏𝑠, 𝑏𝑜 ← Zeros() ⊳ ∀ 𝑒𝑠, 𝑒𝑜 ∈ 

W ← Xavier_Normal() ⊳ Projection matrix
2: for 𝑒𝑝𝑜𝑐ℎ = 1, ..., 𝑛 do

3: 𝐵← Sample_batch(, 𝑏𝑠)
4: 𝑙𝑜𝑠𝑠 ← 0
5: for 𝑧 ∈ 𝐵 do

6: e𝑠, e𝑜, r ← Lookup
(
{E, R}, 𝑧)

7: h𝑠, h𝑜, q ←
(
exp𝑘0 (e𝑠), exp𝑘0 (e𝑜), exp𝑘0 (r)

)
8: q𝑠, q𝑜 = split(q)
9: 𝑢 ← Scoring_Function

(
h𝑠, q𝑠, h𝑜, q𝑜, W, 𝑏𝑠, 𝑏𝑜

)
⊳ CoPE in Eq. (13)

10: 𝑙𝑜𝑠𝑠 ←  (𝑢, 𝑣)
11: end for

12: Optimize and update E, R, W, 𝑏𝑠, 𝑏𝑜 using Euclidean Adam.
13: end for

and its corresponding invalid triple by scoring them differently, particularly for asymmetric relations. It is worth noting that the CP 
learns both embedding vectors independently.

SIMPLE [17] is an extension of the CP that introduces an additional embedding vector r−1 as the inverse of the relation embedding 
vector. SIMPLE defines the scoring function as

𝜙(𝑒𝑠, 𝑟, 𝑒𝑜) =
1
2
(prodℝ(e𝑠𝑠 ⊙

𝑒𝑤 r,e𝑜
𝑜
)

+ prodℝ(e𝑠𝑜 ⊙
𝑒𝑤 r−1,e𝑜

𝑠
)). (16)

By introducing an inverse relation, SIMPLE learns the average of CP scores for the relation (𝑒𝑠, 𝑟, 𝑒𝑜) and its reciprocal (𝑒𝑜, 𝑟−1, 𝑒𝑠). 
Despite their strong theoretical foundations, CP and SIMPLE do not outperform existing single-vector models on challenging datasets.

An effective solution to the problem of different representations has been efficiently addressed in the recent hyperbolic MuRP 
model [3], which creates distinct composite vectors for subject and object entities. The MuRP defines the scoring function as follows:

𝜙(𝑒𝑠, 𝑟, 𝑒𝑜) = −dist𝔹(R⊗𝑘 h𝑠,h𝑜 ⊕
𝑘 q)2 + 𝑏𝑠 + 𝑏𝑜, (17)

where R ∈ ℝ||×𝑑×𝑑 is a diagonal relation matrix that can be interpreted as a relation embedding vector. MuRP composes R with 
the subject embedding vector using elementwise multiplication, similar to methods such as DistMult, CP, and SIMPLE, which cap-
ture weaker interactions than the projection matrix W in the proposed model. A comparison of CoPE and MuRP in terms of their 
compositional operators is illustrated in Fig. 2.

4. Experiments

This section provides details of the experimental settings, datasets, evaluation metrics, and experimental results. The results of 
the proposed models are compared with those of several existing state-of-the-art embedding methods. Additionally, several ablation 
experiments were conducted by introducing variants of the proposed model to demonstrate the effectiveness of each component.

4.1. Datasets details

FB15k-237 [11], WN18RR [41], NELL-995 [45] are classical KG completion datasets extracted from open-source KGs: Freebase 
[5], WordNet [25], and the Never-Ending Language Learner (NELL) system [26], respectively. Recently, Safavi and Koutra [37] found 
that existing KG completion datasets contain many generic triples with similar contents that are difficult to interpret. Therefore, 
they introduced a new benchmark, CoDEx [37], which comprises datasets, including CoDEx-s and CoDEx-m. Both datasets were 
extracted from Wikipedia with the aim of introducing more diverse and interpretable content to make the KG completion task more 
realistic and challenging. In these datasets, knowledge facts are represented by triples with nodes representing words and edges 
denoting the lexical relationships between them. These triples cover diverse domains, including business, geography, literature, 
media, entertainment, medicine, music, politics, science, visual arts, and sports, making them more diverse than other existing 
datasets. In this study, CoDEx-s and CoDEx-m, along with a traditional dataset, the Nations,3 were employed to evaluate the predictive 
performance of CoPE. The statistics of these datasets are given in Table 3.
10

3 https://github .com /ZhenfengLei /KGDatasets.

https://github.com/ZhenfengLei/KGDatasets
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Table 3

Simulation Setup.

Parameters CoDEx-s CoDEx-m Nations Software/Hardware

|| 2034 17050 14|| 42 51 55|| 32,888 185,584 1592 Python 3.7.6,|| 1827 10,310 199 PyTorch 1.8.1,| | 1828 10,310 201 Ubuntu 18.04.5,
𝑏𝑠 128 128 128 CUDA version 11.1,
𝑑 200 400 200 Xeon(R) Silver 4210 CPU,
𝑐 400 800 400 256 GB DDR4 RAM,
𝑙𝑟 0.0001 0.0003 0.0001 NVIDIA GeForce RTX 2080 Ti GPU.
𝑛 50 50 10
𝑒𝑝 500 500 500

Table 4

Link prediction results.

Dataset CoDEx-m CoDEx-s Nations

Model MRR hit@1 hit10 MRR hit@1 hit@10 MRR hit@1 hit@10

ConvE [11] .318 .239 .464 .444 .343 .635 .830 .741 1.0

Conv-TransE [38] .307 .235 .443 .427 .327 .617 .832 .743 1.0

HypER [4] .316 .248 .443 .423 .326 .603 .776 .662 .995
CNN-ECFA (ConvE) [15] .292 .221 .426 .408 .308 .594 .812 .709 .997

TransE [7] .303 .223 .454 .354 .219 .634 .711 .587 .987
RESCAL [31] .317 .244 .456 .404 .293 .623 .609 .423 .973
DistMult [46] .307 .241 .432 .406 .301 .596 .749 .614 .990
ANALOGY [23] .314 .246 .441 .423 .326 .609 .825 .731 .995
CP [14] .296 .232 .412 .433 .345 .596 .641 .460 .982
SIMPLE [17] .255 .189 .376 .379 .276 .574 .755 .634 .995
ATTH [9] .315 .237 .464 .402 .286 .632 .785 .664 .995
MuRP [3] .306 .226 .456 .420 .311 .632 .818 .726 1.0

CoPE (ours) .326 .251 .466 .446 .350 .631 .835 .754 1.0

Note. The results of ConvE, RESCAL, and TransE are taken from [37]. The results of DistMult, ANALOGY, and CP are produced 
through the publically available code base [4]. For the remaining models, the results are produced using their original source codes.

4.2. Evaluation protocols

The performance of the KG embedding methods was evaluated using the MRR and hit@m metrics, where m ∈ {1, 10}. The MRR is 
computed by averaging the inverse ranks of all test triples, whereas hit@m is determined by computing the percentage of valid triples 
that appear in the top@m ranked triples. These metrics are computed under two settings: raw and filtered. This study specifically 
leverages the filtered setting, which is widely recommended because they remove all valid triples from the set of candidate triples. 
These candidate triples are derived by replacing either the subject or object of each test triple with each entity from the entity 
set  .

4.3. Simulation setup

Table 3 provides a comprehensive overview of the simulation setup. This includes details on the statistics of the datasets, the 
software and hardware used for implementation, and the optimal hyperparameters adopted in the proposed model. These hyperpa-
rameters are determined through a manual search on the following parameters: entity embedding dimensions (𝑑), relation embedding 
dimensions (𝑐), batch size (𝑏𝑠), learning rate (𝑙𝑟), the number of invalid triples (𝑛), and the number of training epochs (𝑒𝑝). The 
proposed model is trained using these hyperparameters on all three datasets, utilizing the default training, validation, and test splits 
denoted as ,  , and  , respectively.

4.4. Baselines

The effectiveness of the proposed model was assessed by comparing its experimental results with those of several state-of-the-art 
baseline methods. These baselines include both shallow models such as TransE [7], RESCAL [31], ANALOGY [23], DistMut [46], CP 
[14], SIMPLE [17], ATTH [9], and MuRP [3], and deep models such as ConvE [11], Conv-TransE [38], HypER [4], and CNN-ECFA 
11

(ConvE) [15].
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Table 5

Lower dimensions results on CoDEx-s.

Model Embedding size No. of parameters MRR hit@1 hit@10

DistMult 127.2 K .351 .234 .577
CP 249.3 K .389 .285 .590
ConvE 60 283.3 K .386 .279 .598
HypER 246.8 K .374 .268 .587
CoPE 143.4 K .407 .302 .611

DistMult 84.8 K .319 .210 .526
CP 166.2 K .364 .256 .573
ConvE 40 148.7 K .357 .248 .575
HypER 139.7 K .342 .242 .543
CoPE 95.4 K .380 .270 .591

DistMult 42.4 K .237 .152 .401
CP 83.1 K .314 .211 .509
ConvE 20 56.4 K .297 .194 .506
HypER 58.3 K .275 .182 .466
CoPE 48.9 K .351 .242 .573

4.5. Link prediction results and discussion

The objective of link prediction is to predict the entities that may be related to other entities within a KG. To achieve this, each 
test subject-relation pair is combined with each entity from the entity set  to generate a set of candidate triples. Subsequently, 
these candidate triples were fed into the trained model to obtain similarity scores. Once the candidate triples were scored, they were 
ranked based on these scores to compute the MRR and hit@m metrics.

Table 4 presents the results of the proposed model and compares them to the results of the reported baselines on the CoDEx-s, 
CoDEx-m, and nations datasets. The upper rows of the table contain the results of the deep models, while the lower rows include 
the results of the shallow models. Among the deep models, ConvE has the best results, primarily due to its 2D convolution, which 
captures more subject-relation interactions compared to the 1D convolution in HypER and Conv-TransE. ConvE outperforms HypER 
with improvements of 4.96% and 0.63% and Conv-TransE with improvements of 3.98% and 3.58% in MRR on the CoDEx-s and 
CoDEx-m datasets, respectively. For the shallow methods, the predictive performance of the models varies on both the CoDEx-s and 
CoDEx-m datasets. For instance, CP performs better on the CoDEx-s dataset, while RESCAL on the CoDEx-m dataset. However, despite 
their comparable performances, these shallow models substantially lag behind ConvE on both datasets. This comparison reveals that 
model expressivity is a crucial factor for achieving better performance in link prediction.

By contrast, CoPE combines significant features from both shallow and deep models, enabling it to outperform state-of-the-art 
methods in both categories. Specifically, CoPE surpassed the best-reported deep model, ConvE, with improvements of 4.8% and 
2% in hit@1 for the CoDEx-m and CoDEx-s datasets, respectively. This substantial performance gain of CoPE can be attributed to 
the effectiveness of using distinct compositional operators along with the utilization of Poincaré embeddings and the expressive 
compositional operator on subject-relation embeddings. In the following sections, a series of ablation experiments are conducted to 
assess the contribution of these elements to the predictive performance.

4.6. Ablation on embedding dimensionality and parameter efficiency

An interesting observation regarding KG embedding methods is the trade-off between the embedding size and predictive per-
formance. Euclidean models typically require high-dimensional embeddings to achieve considerable performance. In contrast, 
hyperbolic space can effectively embed complex relations with a smaller number of dimensions, as illustrated in [3]. In this sec-
tion, an ablation experiment is conducted to compare the low-dimensional performance and parameter efficiency of CoPE with a few 
Euclidean models on the CoDEx-s dataset with dimension sizes 𝑑 ∈ {20, 40, 60}. Table 5 shows that CoPE outperforms the Euclidean 
models by a more substantial margin in lower dimensions than in higher dimensions. Table 5 lists the required number of parameters 
for the given dimensions. Except for DistMult, CoPE required fewer parameters than the other reported Euclidean models. ConvE and 
HypER are deep models that produce multiple features per embedding parameter and thus require numerous parameters. CP, on the 
other hand, creates two embedding vectors for each entity, doubling the number of entity parameters.

4.7. Ablation on embedding space

To demonstrate the effectiveness of Poincaré embeddings, the proposed Euclidean model, CoEE, was evaluated on both the 
CoDEx-s and CoDEx-m datasets. From Fig. 4, it can be observed that except for hit@10 on CoDEx-s, CoPE outperformed CoEE across 
all metrics. This ablation experiment validated the capability of Poincaré embeddings to capture hierarchical relations, subsequently 
12

enhancing their predictive performance.
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Fig. 4. CoPE vs. CoEE on CoDEx-m and CoDEx-s datasets.

Fig. 5. CoPE vs. CoPE-A vs. CoPE-C on CoDEx-s dataset.

4.8. Ablation on similar compositions

To demonstrate the effectiveness of distinct composite representations, another ablation experiment was conducted in which two 
variants of CoPE were introduced, each employing similar compositional operators on both subject- and object-relation embeddings. 
The first variant utilizes the Möbius addition and is named CoPE-A:

𝜙(𝑒𝑠, 𝑟, 𝑒𝑜) = −dist𝔹(h𝑠 ⊕𝑘 q𝑠,h𝑜 ⊕
𝑘 q𝑜)2 + 𝑏𝑠 + 𝑏𝑜. (18)

The second variant utilizes concatenation with projection and is named CoPE-C:

𝜙(𝑒𝑠, 𝑟, 𝑒𝑜) = −dist𝔹(W⊗𝑘 (h𝑠 ⋆ q𝑠),W⊗𝑘 (h𝑜 ⋆ q𝑜))2 + 𝑏𝑠 + 𝑏𝑜. (19)

Both of these variants are evaluated on the test set of the CoDEx-s dataset. As shown in Fig. 5, both variants experienced a sub-
stantial decrease in the MRR, hit@1, and hit@10 values. This ablation experiment provides valuable insights into the importance of 
employing distinct composite representations for entities in both subject and object positions.

4.9. Ablation on Möbius addition

In the previous section, we demonstrated the significance of generating distinct composite vectors for subject and object entities 
to enhance link prediction performance. CoPE uses a simple compositional operator to construct composite vectors for object entities. 
This choice was motivated by multiple compelling factors. First, addition views a relation as a translation operation between the 
subject and object entities, which has shown promising performance in various downstream tasks, including triple classification, 
entity alignment, and relation prediction [7,3]. Second, it can be easily implemented in hyperbolic space through its hyperbolic 
counterpart, the Möbius addition, compared to other compositional operators, such as the elementwise product. The elementwise 
product is performed in the tangent space and requires mapping between the hyperbolic and tangent spaces. Finally, the addition 
involves a minimal number of parameter computations, preserving the scalability of the proposed model.

To assess the performance of the addition operator, another ablation experiment was conducted, in which the Möbius addition 
was replaced with tangent-space elementwise product for object-relation embeddings. This variant was named CoPE-M. CoPE-M was 
evaluated on the test set of the CoDEx-s dataset, and it resulted in decreases of 7.5%, 8.3%, and 7.7% in the MRR, hit@1, and hit@10 
values, respectively, compared with CoPE (see Fig. 6). This ablation experiment demonstrated that the object-relation composition 
13

using Möbius addition delivered superior results compared with the elementwise product.
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Fig. 6. CoPE vs. CoPE-M on CoDEx-s dataset.

5. Conclusions

This paper proposes CoPE as an effective link predictor for KGs based on hyperbolic geometry. CoPE implements an expres-
sive compositional operator, concatenation with projection, with the design principles of shallow models. This unique approach 
enables the CoPE to merge the strengths of both shallow and deep models. Specifically, CoPE enhances the model expressivity for 
capturing complex patterns while maintaining scalability to large KGs. Furthermore, CoPE generates distinct compositional vec-
tors for each entity in both the subject and object positions on the Poincaré manifold. This allows it to effectively handle both 
asymmetric and hierarchical relations within the KGs. Comprehensive experiments were conducted on three challenging datasets, 
demonstrating that CoPE outperforms many state-of-the-art shallow and deep methods in both higher and lower dimensions. No-
tably, CoPE achieves superior performance while requiring fewer model parameters than most existing competitors. Additionally, 
several ablation experiments were conducted to validate the parameter efficiency and performance contribution of each CoPE com-
ponent.

Although the Poincaré model is well suited for gradient-based optimization and exhibits significant performance gain, it suffers 
from the problem of numerical instabilities in the embeddings owing to the fraction in the Poincaré distance [29]. In the future, 
we intend to extend the CoPE from the Poincaré model to the Lorentz model [29] and the hyperboloid model [10,35] of hyperbolic 
geometry. These models avoid fractions and prevent numerical instabilities in embeddings.
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