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Abstract—Graphs provide a unique representation of real-
world data. However, recent studies found that inference attacks
can extract private property information of graph data from
trained graph neural networks (GNNs), which arouses privacy
concerns about graph data, especially in collaborative learning
systems where model information is more accessible. While
there has been a few research efforts on the property inference
attacks against GNNs, how to defend against such attacks has
seldom been studied. In this paper, we propose to leverage
the information bottleneck (IB) principle to defend against the
property inference attacks. Particularly, we involve a threat
model, where the attacker can extract graph property from
the graph embedding developed by GNNs. To defend against
the attacks, we use IB to construct new graph structures from
the original graphs. The change in graph structures enables the
new graphs to contain less information related to the property
information of the original graphs, making it harder for attackers
to infer property information of the original graphs from the
graph embeddings. Meantime, the IB principle enables task-
relevant information to be sufficiently contained in the new graph,
enabling GNNs to develop accurate predictions. The experimental
results demonstrate the efficacy of the proposed approach in
resisting property inference attacks and developing accurate
predictions.

Index Terms—Graph-structured data, graph neural networks,
inference attacks, information bottleneck.

I. INTRODUCTION

Graphs are ubiquitous in the real world, representing entities
and their relationships, such as social networks, e-commerce
networks, and traffic networks. However, the privacy of graph
data has been a big concern due to the risk of leakage,
especially in collaborative machine learning systems such
as federated learning and semantic communication [1], [2].
On the one hand, the communication transmission can be
eavesdropped and the data is thus theft. On the other hand,
the shareable data can be maliciously used. All of these
scenarios can cause leakage of private information. Leakage of
graph data will result in serious consequences. For example,
exposure of a social network of COVID-19 patients naturally
goes against the patients as such disease histories belong to
their private information [3].

Moreover, recent studies indicated that graph neural net-
works (GNNs) are vulnerable to inference attacks [3]–[5].
Training data samples leave footprints on the GNNs, which
are recorded by the model gradients or learned embeddings.
The attacker can easily trace relevant information of the
training graph data using these footprints. It is often assumed

that attackers would like to steal graph structures and nodal
attributes as they are the fundamental components of a graph
[5]. However, some statistical properties of the graph data,
such as the number of nodes and the graph density, can
also be private. The data curators may not intend to share
these properties since they may reveal sensitive information
such as business transaction frequency. Also, these properties
imply intellectual property since collecting them is laborious.
Therefore, the privacy of graph properties is an integral part to
the privacy of graph data, which is worthy of in-depth study.

Stealing graph property information from graph embeddings
is a realistic assumption — local graph embeddings can be
shared to other parties for broad use, which gives access to
man-in-the-middle [6] attackers. The paradigm of property
inference attacks based on graph embeddings can be referred
to [4]. The attack model mainly focuses on extracting infor-
mation from the graph embeddings queried from the GNNs.
Inference attacks on graph property are easy to carry out and
have a high success rate compared to inference attacks on
other targets. Thus, studying the defenses to property inference
attacks against GNNs is essential, which has not been given
much attention yet [2], [7], [8].

Differential privacy (DP) has been recognized as an effec-
tive measure of countering membership inference attacks as
this type of attack focuses on the privacy of individual records
[9]. DP adds controlled noise to target models’ gradients or
outputs, which can effectively impede the inference. However,
graph properties, e.g., graph density and number of edges, are
global. Previous studies have shown that DP-based defenses
are not similarly effective to such property inference attacks
[10]. Furthermore, the nature of adding noises makes DP cause
inevitable loss on data utility [5], [11]. This situation motivates
us to find an effective way to defend against such attacks
targeting global properties.

A possible solution is using compressive privacy, which
compresses the data to juice out the private parts [12]. In-
formation bottleneck (IB) [13] is a key technique of CP,
which compresses the data by squeezing out task-irrelevant
information while retaining task-relevant information, and it
provides a tradeoff between the two parts. This technique
drives us to wonder: How about using the IB principle to
squeeze out relevant information about the graph properties
but include sufficient predictive information to achieve the
privacy-utility tradeoff of graph data?



In this paper, we propose to leverage the IB principle
to defend against the property inference attacks on graph
embeddings. Specifically, we leverage IB to construct new
graphs, which are predictive yet distorted from the original
graph structures. The graph embeddings developed from the
new graphs have less information corresponding to the original
graph structures, making property inference attackers hard to
extract the accurate graph property from them.

The highlights of this paper are summarized below:
• We propose an information bottleneck-based approach to

defend against the property inference attacks on graph
embeddings. So far as we know, we are among the early
works dedicated to countering property inference attacks
against GNNs.

• We demonstrate that the information related to the origi-
nal graph property in the new graph structure is lessened
through the information bottleneck. Such a change makes
it more difficult for attackers to accurately infer the
accurate information about the original graph.

• We conduct comprehensive case studies on three real-
world graph-structured datasets. The results show that
the proposed approach performs better than conventional
approaches regarding the tradeoff between data privacy
and utility.

The remainder of the paper is organized as follows. Section
II presents the definition of graph learning and information
bottleneck. We introduce the threat model in Section III. In
Section IV, we elaborate on the proposed approach. Experi-
mental results are shown in Section V. Section VI review the
related literature. Section VII draws the conclusion.

II. PRELIMINARIES

A. Graph Neural Networks for Graph Classification

Let G ∈ G = (X,A) be a graph with node set
V = {vi|i = 1, . . . , |V |} and edge set {E = (vi, vj)|i >
j; vi and vj is connected}, where X ∈ R|V |×d is the node
feature matrix with d dimension and A ∈ R|V |×|V | is the
adjacency matrix. Y ∈ Y denotes the label of the graph.
Let {(G1, Y1), . . . (G1, Y1)} be a set of N pairs of graphs.
A classifier is to be learned that can correctly map graph data
to the corresponding label: F : Gi → Yi.

GNNs learn a representation for each node in the graph
by aggregating the non-linear-transformed vectors of neighbor
nodes. Let N (v) be the set of 1-hop neighbor nodes of node
v, the canonical aggregation of GNNs is described as:

hl
N (v) = AGGREGATEl

({
hl−1
u ,∀u ∈ N (v)

})
,

hl
v = UPDATEl

(
hl
N (v)

)
,

(1)

where hl
u denotes the embedding of node u at layer l.

AGGREGATEl denotes the aggregator function. UPDATEl

represents a non-linear function, e.g., a multilayer perceptron
(MLP). Then, GNNs aggregate the embeddings of all nodes
in the graph to obtain a whole graph embedding:

HG = POOLING(hv,∀v ∈ V ). (2)

Fig. 1. Threat model: property inference attacks on graph embeddings.

Max pooling and mean pooling are two common graph pooling
operation. We consider GNNs using mean pooling in this
work. Finally, a multi-class classifier is used to predict the
label of the graph given the graph embedding HG.

B. Information Bottleneck

Given the input data X and the label Y , the information
bottleneck (IB) Principle seeks to find the latent representation
Z, which contains little information of X yet is maximally
informative concerning Y . Let I (X,Z) denote the Shannon
mutual information (MI) between the input X and the encoded
representation Z, and I (Y,Z) denote the Shannon MI between
Z and the class label Y . IB principle [13] aims to learn the
minimal suffficient representation Z:

argmin
Z

−I (Y,Z) + βI (X,Z) , (3)

where β is a Lagrange multiplier to control the compression
level of Z.

III. THREAT MODEL

In this paper, we propose a defense approach to property
inference attacks against GNNs. In terms of our adversary,
the property inference attacker, we generally follow the as-
sumption in [4].

Attacker’s Knowledge: We study a grey-box setting. The
attacker can obtain the graph embedding by querying the target
GNN model with an input graph. All other knowledge, such
as training graphs, architectures and parameters of the target
GNN model, is not accessible to the attacker.

Attacker’s Goal and Capabilities: The attacker aims to
extract the property information of the target graph from the
graph embedding. Graph embedding-based inference attacks
are very realistic since local graph embeddings have been
shared with other parties for further graph analysis or learning
tasks [14], where data leakage or theft can happen.

We focus on graph density inference in this work. To this
end, the attacker adopts an attack model A to input the graph
embedding. A is a MLP that predicts the graph density [4].
The procedure of the attack can be referred to in Figure 1.
There also exists an auxiliary dataset Daux that the attacker can
access to train the attack model. The graphs in the auxiliary
dataset are assumed to be from the same distribution as the
target graph. However, different from [4] which formed the



Fig. 2. Schematic of the proposed defense.

property inference into a classification problem, we treat the
property inference as a regression problem to evaluate more
fine-grained inference results.

Denoting the graph embedding as an intermediate state
output by the target GNN F as Fg , the attacker is optimizing
the following attack objective function, that is

argmin
A

E
Gaux∈Daux

[∑
L (A (HGaux

) , PGaux
)
]

(4)

where P is the true value of graph density.

IV. OUR INFORMATION BOTTLENECK-BASED DEFENSE

We propose a new defense approach that uses the infor-
mation bottleneck for graph data to reconstruct the graph
structures to mitigate property inference attacks. Figure 2
illustrates the pipeline of our defense approach. We first
leverage the IB principle to learn new graphs given the original
graphs. Then, we treat the new graphs as the input to train
the GNNs. The graph embeddings developed by the GNNs
trained on such new graphs will have less information about
the original properties of the graphs, which is the core to
resisting property inference attacks. We will elaborate on the
technical details and analyze the privacy and utility guarantee
of the proposed approach in the sequel.

A. Graph Representation Learning based on Information Bot-
tleneck

Graph information bottleneck extends the IB principle to
representation learning on graph data [15]–[17]. Given a graph
G ∈ G = (X,A) and its label Y , the IB-optimized graph is
formulated as

argmin
GIB

−I (Y,GIB) + βI (G,GIB) , (5)

where GIB is constituted of the task-relevant feature matrix
XIB and task-relevant adjacency matrix AIB.

Resorting to variational IB [18], we can derive a variational
bound which is tractable for Eq. (5), that is

I (Y,GIB)−βI (G,GIB) ≥

1

N

N∑
i=1

∫
p (GIB | Gi) log qϕ (Yi | GIB) dGIB

− βKL (p (GIB,i | Gi) | r(GIB)) ,

(6)

where KL(·) denotes the Kullback Leibler (KL) divergence,
r(GIB) is the variational approximation of p(GIB), and
qϕ (Y | GIB) and qϕ(GIB | G) are reparameterized variational
approximations to p (Y | GIB) and p (GIB | G), respectively.

However, it is hard to estimate I (G,GIB) as the irregular-
ity of graph data. Neural network-based mutual information
estimation has been demonstrated to be an available solution
to this problem. Denoting the neural network-estimated graph
representation as ZIB, we have I(G,GIB) ≥ I(G,ZIB) [19],
which is in favour of the IB optimization. Particularly, we use
the mutual information estimation adopted in [17] to optimize
the IB. Consequently, we obtain minimally sufficient ZIB by
optimizing this objective, which is less prone to overfitting
and thus delivers better performance on downstream tasks.
Interested readers can refer to [17] for the technical details.

B. Construct New Graph Structure
We then move forward to how to construct GIB from the

results of IB optimization. We leverage the notion of graph
auto-encoder (GAE) [20] to construct the new graph structure.
We first use MLP to get a latent representation of each node
feature by:

Z(v) = MLP(Xv). (7)

For any two nodes v and u, we have assignment probability
ψ to determine whether the edge (v, u) should be included or
not. We consider that two nodes with closing representation
are more likely to have an edge. Therefore, we calculate ψ by
applying the logistic sigmoid function to the inner product of
Z(v) and store the values in the adjacency matrix form, which
is formulated as:

Aassign = ψ(v, u) = sigmoid(Z(v)Z(u)T ) (8)

Subsequently, we follow [15] by employing Gumbel-softmax
to make Aassign differentiable from Bernoulli distribution.
Finally, we can determine the binary adjacency matrix AIB =
{au,v} by conducting a Bernoulli sampling from Aassign.
We construct GIB according to AIB. We first identify the
largest connected component (LCC) in AIB as the new graph
structure. For the node feature matrix XIB, we keep the node
feature of the nodes included in the new graph structure and
discard others.



So far, new graph structure GIB can be either used for
neural mutual estimation to further optimize IB (as described
in Section IV-A), or developing the corresponding graph
embedding HGIB

for downstream tasks by forwarding GIB

to GNN embedders. We consider graph embeddings HGIB
are

more privacy-guaranteed than the original ones when exposed
to the threat model. We will justify our hypothesis in Section
IV-C and our experiments.

C. Privacy and Utility Guarantee by the Information Bottle-
neck

For the target graph property PG, the information transmis-
sion among PG, G, and GIB can be described by the Markov
chain:

PG −→ G −→ GIB −→ P̂G, (9)

where P̂G = A(HGIB
) denotes the graph property predicted

by the attacker using HGIB
. We can ensure that property

inference attackers cannot derive more information from GIB

than G from Eq. (11) since 1) G subsumes GIB and 2) GIB

is optimized to maximumly squeeze the mutual information
with G. According to [19], we know that this assurance also
holds for the graph embedding HG and HGIB

since the amount
of information loss from GIB to HGIB

is close to the one
from G to HG when using the same embedder. Eq. (11) also
implies that information transmission is diminishing, and we
can obtain:

I (G,PG) ≥ I (GIB, PG) . (10)

Therefore, it is easy to derive that the upper bound of property
inference attacks using HGIB equivalent to the attacks using
G. On this basis, we can conclude that, HGIB

, which is from
GIB, will be much less informative in terms of the property
inference.

For the label Y , the information transmission among Y , G,
and GIB in Eq. 5 can be described by the Markov chain:

Y −→ G −→ GIB −→ Ŷ . (11)

We assume that GIRR is the component of G, which is
irrelevant to the target Y . We can derive an upper bound for
mutual information between GIB and GIRR from [16], that is

I (GIRR, GIB) ≤ I (G,GIB)− I (Y,GIB) . (12)

Consequently, optimizing Eq. (5) amounts to minimizing
I (GIRR, GIB), making the optimized GIB with less irrelevant
information to target Y .

V. EXPERIMENTAL EVALUATION

A. Experiments Preparation

Dataset: In our experiments, we employ three real-world
graph-structured social network datasets in terms of graph
classification tasks, namely, IMDB-B, IMDB-M, and COL-
LAB [21]. The statistical information of the three datasets is
summarized in Table I. Following [4], the ratios of the training
set (for the training of target GNN), auxiliary set (for the
training of attack model), testing set (for testing of both target

TABLE I
STATISTICAL SUMMARY OF GRAPH CLASSIFICATION DATASETS.

Dataset # Graphs Avg. Nodes Avg. Edges # Classes

IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3
COLLAB 5000 74.49 2457.21 3

GNN and attack model), and testing sets are 40%, 40%, and
20%, respectively. Additionally, we apply data augmentation
to the auxiliary set by adding random edges to ensure sufficient
training samples for the attack model.

Model and Hyperparameters: We incorporate two GNN
models in our case studies: Graph Convolution Network
(GCN) [22] and Graph Attention Network (GAT) [23]. We
empirically set them to 2-layer and with embedding size 16.
Unless other stated, we adopt the following settings. To train
the attack model, we set the epoch number to 50 and the
mini-batch size to 20. To train target GNN models, we set the
epoch number to 200 and the mini-batch size to 100. For the
proposed approach, the Lagrange multiplier β is an important
hyperparameter to control the distortion level of the new graph
structure. We set β = 1×10−5 as default and conduct a related
hyperparameter test later. The learning rates for training GNNs
and the attack model are all set to 1× 10−3.

Baseline: Since we are among the pioneering work
focusing on the defenses against property inference attacks,
there are no baselines dedicated to this problem. We denote the
proposed approach as IB. We first consider the Original case,
i.e., the one without any defense mechanism. Furthermore, we
identify that differential privacy (DP) is the most widely-
adopted defense strategy against inference attacks in the ex-
isting works [4], [5], [14]. Therefore, we mainly compare our
proposed approach with DP. Specifically, we apply DP-based
noises to the target graph embedding to defend the property
inference attacks by H̃G = HG+Lap(0, sϵ ), where the noises
are from the Laplacian distribution Lap(0, sϵ ) with mean 0 and
scale s

ϵ . ϵ and S denote the privacy budget and sensitivity,
respectively. We set s = 1 with different ϵ = {1, 5, 10} to
evaluate the performance with difference scales. In general,
smaller values of ϵ provide more privacy preservation and vice
versa.

Metrics: To evaluate the resistance to property inference
attacks, root mean square error (RMSE), mean absolute error
(MAE), and mean absolute percentage error (MAPE) are used
as the metrics to evaluate the accuracy of inference. The
lower accuracy indicates a better resistance of the approach;
otherwise, worse. In particular, according to common practice,
MAPE is considered preferable. To measure the data’s utility,
we consider the graph classification accuracy of the GNN
model. Higher classification accuracy indicates a better utility
of the learned graph embeddings.

B. Results

1) Resistance to Property Inference Attacks: We first com-
pare the proposed approach and baselines’ resistance to
property inference attacks. The results are shown in Table



TABLE II
COMPARISON OF PROPERTY INFERENCE ACCURACY.

Inference Accuracy
COLLAB IMDB-B IMDB-M

RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)

GCN

Original 10.26 9.07 13.91 18.92 15.87 13.17 112.91 110.46 29.24
DP (ϵ = 1) 16.56 15.93 27.46 35.22 32.99 29.20 116.92 111.57 30.39
DP (ϵ = 5) 15.92 15.33 26.24 33.13 29.79 26.36 114.81 110.97 30.27
DP (ϵ = 10) 15.84 15.69 25.68 32.43 28.87 25.23 114.22 110.96 30.18
IB (Ours) 19.19 18.91 26.24 26.77 26.54 25.99 122.26 121.22 35.28

GAT

Original 11.19 8.81 12.54 17.54 14.42 11.91 112.20 110.43 29.97
DP (ϵ = 1) 17.24 15.81 23.07 30.28 28.77 25.61 18.33 16.73 23.96
DP (ϵ = 5) 17.46 15.73 23.16 26.76 24.10 20.52 18.60 17.73 25.87
DP (ϵ = 10) 16.37 14.28 20.63 24.63 21.87 18.39 18.07 16.58 25.07
IB (Ours) 18.52 18.43 27.58 30.24 29.94 27.99 122.90 121.24 35.21
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Fig. 3. Comparison of graph classification accuracy.

II where the best ones are highlighted in bold. Obviously,
the proposed approach is effective in resistance to property
inference attacks against GNNs. Compared with the original
setting where no defense strategy is adopted, the inference
accuracy (MAPE) is dropped from 5.24% to 16.08% in
different configurations. Additionally, we recognize that the
effectiveness of the proposed approach varies under different
GNN models and datasets. This is due to that the attack
model performs differently on the graph embeddings from
these different settings. The proposed approach outperforms
DP-based defenses in most cases, even compared with DP with
small values of ϵ. Particularly, for those DP-based defenses
with good resistance performance, the data utility suffers an
obvious loss meantimes, which will be discussed later.

2) Prediction Accuracy on Downstream Tasks: The predic-
tion accuracy developed by the GNN is a significant metric of
the data (graph embeddings) utility guarantee provided by the
defense approaches. We compare the graph classification accu-
racy between different baselines as shown in Figure 3. We find
that the proposed approach obtains satisfactory classification
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Fig. 4. Sensitivity of β to graph classification accuracy and property inference
attack accuracy on IMDB-B and COLLAB datasets with GCN model.

accuracy — reaches and even outperforms the results of the
original setting. It means that the new structure is informative
of prediction. Compared with DP-based approaches, especially
the ones with small ϵ, the proposed approach shows superior-
ity. As aforementioned, DP-based defenses are successful in
protecting privacy in smaller ϵ settings, but at the expense of
data utility.

In a nutshell, we can conclude that the IB principle enables
the proposed approach to achieve the tradeoff between privacy
and data utility to a great extent.

3) Hypereparameter Study on β: Tradeoff between Utility
and Privacy: Moreover, we investigate the sentivity of the pro-
posed approach to the Lagrange multiplier β as it is a pivotal
hyperparameter for the proposed approach in controlling the
distortion of learned graph structures, which is shown in Figure
4. In terms of classification accuracy, we observe that large β
usually develops inferior performance. This is due to large β



can lead to over-distorted new graph structures, rendering the
loss of predictive information. In terms of the resistance to
attacks, we find different result patterns on the two datasets.
For IMDB-B, there is a slight uptrend of the attack accuracy
with larger β; however, it shows a decline on COLLAB. There
may exist some non-trivial influence on the attack model’s
performance due to the difference in graph size, topology, etc.
We will conduct further investigation into this phenomenon in
the future.

VI. RELATED WORK

Recent years have witnessed increasing research attention
on inference attacks against GNNs [7], including membership
inference attacks [24], reconstruction attacks [5], property
inference attacks [4], and model extraction attacks [25]. For
example, Olatunji et al. [3] focused on membership inference
attacks and proposed to identify if a node is in training set
for GNNs. Zhang et al. [4] concentrated on reconstruction
attacks and proposed to reconstruct a graph structure from the
leaked gradient information. Shen et al. [26] systematically
categorized the different levels of model extraction attacks
according to the attackers’ capabilities. Zhang et al. [4] recog-
nized the significance of the privacy of graph properties and
proposed a threat model of property inference attacks against
GNNs. However, the defenses (countermeasures) against these
attacks (threats) are not well-studied. While some conventional
strategies, such as differential privacy, were involved in this
literature, the results indicated the limitation of these conven-
tional approaches in most cases.

VII. SUMMARY AND FUTURE WORK

In this paper, we propose a novel defense approach to
property inference attacks against GNNs. The proposed ap-
proach leverages information bottleneck principle to develop
new graphs from the original graphs. The information of
the original graph are lessened in the new graphs, which
makes the inference attackers harder extract accurate property
information about the original graph. However, the task-
relevant information in the new graph is maximally contained
its utility in downstream tasks. The case studies indicate that
the proposed approach achieves the tradeoff between privacy
preservation and prediction utility of graph data. In the future,
we will apply the proposed approach the scenarios of more
graph tasks and GNNs to further evaluate the generalizability.
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