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Abstract—With the technological advancements, the au-
tonomous vehicle (AV) is expected to play an active role in the
future transportation system. An AV-based public transportation
system was recently proposed to unleash the full capability of
AVs to provide effective and flexible transportation services. It
establishes a new public transportation market which can ac-
commodate multiple vehicle operators. Such multi-tenant system
encourages market competition for better quality of service. The
pricing process in the original proposal was designed based on
the Vickrey-Clarke-Groves mechanism, but it is vulnerable to the
problems of payoff reduction and shill-bidding. In this paper, we
re-investigate the pricing process to address these vulnerabilities.
We formulate it as core-selecting reverse combinatorial auctions
and investigate the properties of the “core”. We establish a core-
selecting mechanism which can maximize customer’s utility and
prevent shill-bidding. We analyze the theoretical properties of the
formulated auctions and the core-selecting mechanism. We verify
the results with extensive simulations. The simulation results
show that the core-selecting mechanism can result in lower service
charge, and suppress untruthfulness, shill-bidding, and coalition
formation. It can produce auction results in linear computation
time, making it scalable and practical.

Index Terms—Autonomous vehicle, reverse combinatorial auc-
tion, public transportation system, core-selecting auction.

I. INTRODUCTION

The smart city is believed to be an important urban devel-
opment vision toward improving quality of life based on the
Internet of Things backbone [1]. It can facilitate intelligent
resource utilization and it is a promising solution to many
problems due to large-scale urbanization, e.g., serious traffic
congestion and air pollution [2]-[5]. Among those empow-
ering technologies, intelligent transportation system (ITS) is
one of the essential components for accommodating a massive
volume of transportation demand with limited damage to the
environment. One may envision that ITS can help enhance the
current transportation system with high capacity and safety
through improving the transport carriers and backend man-
agement system. Driven by the technological advancements
and consumer preference, carriers undergo a gradual transition
from internal combustion engine to electric vehicles, and from
manned to autonomous cars [6]. However, the supporting
management system demands more research effort to achieve
the visions of smart city.
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The autonomous vehicle (AV), known for its driverless
and environmentally friendly characteristics, is gaining much
attention of the public and the research community. On the one
hand, an AV can adapt to road conditions and determine an
optimal driving pattern [7]], [8]]. This feature brings significant
advantages, including fewer traffic collisions and effective
transportation. On the other hand, AVs are usually connected
and can communicate with each other to acquire various sys-
tem information [9]. A central control center can be employed
to collectively decide the routes and schedules of AVs to
improve social welfare. This grants AVs higher controllability
than the traditional vehicles [9]. This full-fledged controllabil-
ity improves traffic flow [[10], without heavily relying on the
traffic assistant facilities (e.g., road signage and traffic light
[11]). Reduced traffic congestion and faster pilot speed can
also result in better fuel efficiency and lower carbon footprint.

Recently, a new AV-based public transportation system,
called Autonomous Vehicle Public Transportation System
(AVPTS) has been developed, where AVs serve as transporta-
tion carriers [6]], [12]. In this system, a control center is
established to manage a fleet of AVs to provide on-demand
point-to-point transportation services. Customers can place
transportation requests with specific pickup locations and
destinations via e-hailing. The control center checks the admis-
sibility of requests and allocates appropriate AVs to serve the
passengers. Through coordinated routing and scheduling, we
can maximize operational profit and transportation capacity.
Contributed by AVs, AVPTS is expected to provide a precise,
safe, effective, intelligent, and economically favorable way to
cater point-to-point transportation services with optional ride
sharing [12].

While the control center is dedicated to the coordination
and administrative tasks in AVPTS, it is possible to have
more than one service operator managing the vehicles. In
fact, adequate market competition may lead to better service
charge and quality, and thus it is beneficial to the future
smart city to recruit multiple AV operators to form an AV
public transportation market. Such a market requires a proper
pricing mechanism for the services, which should be fair
for all governed operators and at the same time maximize
the utility of the customers. [13]] proposed a Vickrey-Clarke-
Groves (VCG) [14]-[16] auction-based pricing scheme for
AVPTS. In this design, the control center is responsible for
hosting the auction. Upon receiving a transportation request,
the AV operators evaluate their own operational costs for the
service and propose the corresponding service charges to the
control center. After gathering all the bids, the control center
determines the winners of the auction and then set their actual
service charges using the VCG mechanism, which is further
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discussed in Appendix [A]

VCG is widely known as the only auction mechanism to
be both truthful and efficient [17]], but it suffers from some
problems including payoff reduction and shill-bidding. This
mechanism tends to generating lower payoff for the auctioneer,
which, in our case, stands for a higher customer service charge.
It is also susceptible to a form of strategic bidding, known
as “shill-bidding” or “false-name bidding”, where a bidder
impersonates multiple bidders to unilaterally increase its own
utility and undermine the social welfare [[18]]. An alternative
implementation of shill-bidding is that several bidders can
collude to form a coalition for profit. This vulnerability is
further illustrated in the example given in Appendix [A]

As an alternative, the core-selecting auction is considered
as a promising pricing mechanism to overcome those vul-
nerabilities brought by VCG while maintaining the bidders’
truthfulness [19], [20]. With proper design, the core-selecting-
based pricing mechanism can eliminate the participants’ mo-
tivations of seceding and forming a coalition for their own
profit. Core-selecting auctions have been applied to several
engineering disciplines. For example, [21]] employs the core-
selecting auctions in a cognitive radio system to allocate radio
spectrums to users, and [22] uses the mechanism in cloud
computing to sell computing power to customers. There are
also real-world implementations. For example, core-selecting
auctions were employed in primary spectrum markets of
the United Kingdom and other countries [23]. However, all
these only focus on the ordinary auction where the bidders
buy items from the auctioneer. However, the service charge
determination of this work fits into a reverse auction where
the bidders sell items to the auctioneer. So the mechanism
needs to be re-investigated for AVPTS.

In this work, we formulate several reverse combinatorial
auctions for the multi-tenant AVPTS, in which each AV in
the system is considered as a bidder. We employ the core-
selecting auction mechanism and prove its robustness against
shills and coalitions in the reverse combinatorial auctions.
We further design a quadratic core-selecting charging rule
to maximize the bidders’ incentive for truth-telling and the
benefit of customers. The contributions of this work include
the following:

o We design a core-selecting auction for the multi-tenant

AVPTS [6], [12], and study its theoretical properties.

o We propose an implementation of the quadratic pricing
rule to maximize the operators’ incentive to report bids
truthfully.

o We conduct comprehensive case studies to verify our an-
alytical results and evaluate the efficacy of core-selecting
auctions.

This paper is outlined as follows. We introduce the system
model of AVPTS and its multi-tenant variant, and provide the
formulations of AV public transportation reverse combinatorial
auctions in Section [} In Section we present our core-
selecting auction design and investigate its theoretical proper-
ties. Section [IV] presents the quadratic core-selecting charging
rule and discusses its practical implementation. Extensive
simulations are demonstrated in Section [V] and Section
concludes the paper.

II. SYSTEM MODEL

In this section, we first introduce the model of multi-tenant
AVPTS and elaborate its pricing process. Then we explain the
reverse combinatorial auctions for the multi-tenant AVPTS.

A. Multi-tenant AVPTS

The original design of AVPTS assumes that all vehicles
are governed by the same operator, i.e., the system per se.
The primitive system has a control center which coordinates
a fleet of AVs to provide transportation services. Customers
submit transportation requests to the control center with nec-
essary transportation information, e.g., pickup and destination
locations, number of passengers, service time requirements,
etc [24]. Upon receipt of a transportation request, the control
center verifies its admissibility through the admission control
process [12], [25]. Once a request is admitted, appropriate
AVs are assigned to implement the service. There are three
types of transportation services in AVPTS, as defined in [[13|]:
(1) splittable, (ii) non-splittable, and (iii) private services. For
(i), passengers belonging to a single request may be split into
groups, each served by a separate vehicle. It also allows pas-
sengers from different requests sharing the same ride. For (ii),
each request must be served by one vehicle, where ridesharing
is allowed. For (iii), passengers of a request should occupy the
whole vehicle during the ride. To implement ridesharing, we
need to jointly determine the routes and schedules of several
AVs to accommodate multiple requests. This can be achieved
through the scheduling process [[12]], which can minimize the
overall system cost.

This system lays the foundation of adopting AVs in a
public transportation system. Meanwhile, one system operator
is assumed to determine the charge of service resulting in
the formation of monopoly. This encourages the only service
provider to manipulate the service charges, and poor service
quality and lack of customer sovereignty can be expected.
In practice, many modern deregulated public transportation
systems, such as taxis, embrace multiple business entities
(i.e., operators) to enhance the social welfare, see [26] for
an example. Therefore, a multi-tenant AVPTS is developed
in which multiple AV operators are allowed to compete to
provide service to the customers [[13]]. In this system, a tenant
refers to an operator. Vehicles governed by an operator are
considered cooperative while there are likely competitions
among the operators for economic reasons. When more than
one operator are interested in offering service to a request, a
pricing process is involved to settle the service charge. We
illustrate the pricing process in Fig. [T} In practice, customers
submit service requests to a broker (Step 1), who is the mid-
dleman responsible for arbitrating the admission competition
among the operators. Once receiving a request, the broker
disseminates its details to the operators (Step 2), each of
which then assesses its operational cost through the scheduling
process (Step 3) [12]. Based on this cost, each operator will
publish its proposed service charge to the broker (Step 4), who
will determine the winner and return the settled charge to the
customer for decision (Step 5).
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Fig. 1. Multi-operator AV public transportation system. Numbers indicate the
pricing process.

B. Reverse Combinatorial Auction

We basically follow [13]] to model the pricing process as
an auction. In this auction, seat occupancy is regarded as an
item to be sold. Each AV acts as a bidder, and those AVs
belonging to the same operator may place bids cooperatively.
An auctioneer (broker) determines the winning AVs based on
the submitted bids. Auctioning multiple items for sell at the
same time constitutes a reverse combinatorial auction [27],
[28]. Therefore, the pricing process is actually a reverse com-
binatorial auction, which is called the AV public transportation
auction in the sequel.

Consider a transportation request with r € N passengers.
Let K be the set of AVs. AV k € K has g, seats and there
are g, < @, seats availableﬂ Without loss of generality, we
assume

TS@WWCE’C’ (1)

and all seats are homogeneous. Hence k has a collection of
seat combinations Qy = {{1},{1,2},...,{1,...,¢qx}} for
lease. Based on the operational cost computed through the
scheduling process, each participating operator has its own
valuation on each seat combination S € Qj, for its governing
AV k, denoted by vy (S). The size of S is given by s, i.e.,
s = |S]. Consequently, each bidder can submit at most g
different bids by (S) for leasing s seats in AV k. We assume
that all operators are rational, and thus the value of a bid is
no less than its true valuation, i.e., bx(S) > vi(S) > 0. We
define a quasi-linear utility uy for %k as

¢y — vip(Sg) k wins the auction,
up = . 2
0 otherwise,

where Sy, is the set of seat occupancies that k£ has committed
after the auction. ¢y, is the actual service charge by k, which
is determined through a charging rule discussed in Section

We define the binary variable x;(S) € {0,1} to indicate
whether £ wins the auction with S. For the benefit of the cus-
tomer, we aim to determine a combination of seat occupancies
with the lowest total charge to accommodate r passengers
and thus we minimize the total sum of bids. The Winner

lék — gy, seats in k have been reserved for another request.
2If r > G, the request can be split into multiple ones so that (T) is satisfied
for each split request.0

Determination Problem (WDP) for splittable service can be
formulated as follows [|13]]:

minimize Z Z 2, (S)br(S) (3a)
kEK SEQ

subject to Y zx(S) < 1,Vk € K (3b)
SeQk
Z Z stp(S) > 7. 3c)
kEK S€Qy

(3D) ensures that each AV can at most win for one bid. This
guarantees that no seat can be occupied more than once. It
can be relaxed if the bidding function is concave and we will
elaborate this in Lemma |1| later. guarantees that enough
seats can be reserved for the customer.

For the non-splittable service, only one vehicle is allowed
to serve the request and thus there is only one winner. Based
on , the corresponding WDP is defined as follows [13]]:

minimize Z Z 2k (8)b(S) (4a)
keK SeQy

subject to Z Z 2 (S) =1, (4b)
keK SeQy,
Z Z sz(S) > (4¢)
keK SeQy,

The only difference between (3) and (@) lies in their first
constraints. (4b) ensures that there is only one winner.

For the private service, an extra constraint is required
to ensure that the request is served by an empty vehicle.
Therefore the respective WDP is defined as [|13]:

minimize Z Z 2k (S)bi(S) (52)
keK SeQy

subject to Z Z 1,(S) =1, (5b)
keK SeQy
Z Z sz (S) > (5¢)
keK SeQy
S[L‘k(S) = qkl‘k(S),Vk € K,VQ € Q. (5d)

If an AV k wins with S, (5d) guarantees that s = G, which
means that the number of seats provided is equal to the vehicle
capacity.

Lemma 1. Each AV can at most have one winning bid for
each service type if the bidding function by (-) is concave.

Proof. 1t is trivial for the non-splittable and private services.
For the splittable service, suppose that AV k£ wins the auction
with two bids by (S’) and by (S*), for S, S* € Q. As the
auction tries to minimize total service charge, the customer can
instead select another bid by (S) such that the sizes of these
bids satisfy |S| = |S'| + |S*|, and bx(S) < b (S’) + b (S*).
This induces a contradiction. ]

Lemma 2. Constraints (@Bc) and
Y kek 2osco, STh(S) =1 if by () is increasing.

become
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Proof. This lemma can be proved by contradiction. Consider
that k& wins the auction with bid b;(S;), S; € Qj. Suppose
> kek 2osco, STk(S) > 1, then we have

Sl + Y ISkl =1Spl+ DY > sz(S)

kEW\k keW\k S€Qk

= sz S)+ Y D szi(S)

S€Q; kek\k SE€EQk kek SeQy

where W C K is the set of winners. Here we consider two
cases:

1) |S;| > 1. In this case the auctioneer can select another bid
submitted by k, denoted by bj, (S7), such that [S| =[Sz -1
As the provided seat occupancies are greater than the re-
quested, this bid always exists. Therefore we have (all terms
in integer):

[Sel+ D Sk > ISH+ D> Skl = (6

keW\k keW\k

The auctioneer should favor S . over S;. as the former requires
a smaller charge. This contradlcts w1th the assumption that %k
wins with Sz.

2) |S;| = 1. In this case the auctioneer should prefer another
set of winners W \ k where other winners commit the same
seat occupancies. By removing k from the winners, we still
get D pex 2useg, 5Tk(S) = 1, and the total service charge
is reduced. This contradicts with the assumption that kis a
winner. ]

Lemma [2] tightens an inequality constraint in and
and this can significantly reduce the solution spaces of the
optimization problems, and may potentially lead to faster
computation speed. However, Lemma [2] cannot be applied to
the private service (B) as each AV can only have one feasible
bid due to [3dl Therefore the auctioneer cannot find another
bid to satisfy the constraints while incur a smaller charge.

III. CORE-SELECTING AV PUBLIC TRANSPORTATION
AUCTIONS

In this section, we study the properties of the core of
AV public transportation auctions, aiming to develop robust
outcomes against shill bidding and capable of achieving near-
optimal utility to the customer. We first define a general form
of the core for our reverse combinatorial auctions, followed
by the advantages of introducing core-selecting mechanism to
the AV public transportation auctions. Note that we study the
integration of core-selecting mechanism with AVPTS in this
paper. As the proposed auctioning mechanism is not limited
to AVPTS, It can be applied to other transportation systems
with proper modifications, which is beyond the scope of this
work.

A. The core

The core represents a collection of satisfactory outcomes
from an auction. It has some unique properties which allow
us to prevent shill bidding. Let mp = ¢, — bi(Sk) be the
observable surplus of k£ when k is a winner of the auction and

= Z Z szE(S) >r

commits to provide Sy for the service, and 7, = 0,Vk & W
where YW C K is the set of winners. Instead of the true
utility uy, given in (2)), the core is defined over 7y, because the
auctioneer does not have any knowledge on the bidders’ real
valuation vy (S) without a guarantee on the incentive compati-
bility [29]. We use “0” to denote the auctioneer, and define the
customer’s (auctioneer’s) utility as ug = mg = vg — Zke,c Ck»
where v is the customer’s valuation of the service. vg can
be set to a sufficient large value to ensure ug > 0 without
affecting the outcomes of the auction. vy is considered to
be known to the auctioneer but not the bidders for fairness
concerns.

Definition 1 (Core). An imputation © = {mi|k € KU {0}}
is a feasible non-negative observable surplus profile. An im-
putation T is blocked by coalition C C K if there is another
w' such that w), > my, for all k € C, and 7 > my. The core
is the set of imputations that are feasible and not blocked by
any coalition.

This implies that when the auctioneer selects a profile from
the core, there is no incentive for any bidder k£ to form a
coalition C with other bidders for any possible improvement
of their total utility. This properties renders it meaningless for
the bidders to bid with false names.

For simplicity and by abuse of notation, we use «(C) to
represent the optimal objective value of WDP (3), @), or
(), depending on the service type, where only bidders in C
participate in the auction. We further define w(C) £ vo—a/(C),
whose practical meaning is given as follows:

Proposition 1. w(C) is the total observable surplus of CU{0}
in an auction when C are the only bidders.

Proof. We use wg to denote the observable surplus of k €
C U {0}. Let W€ C C be the set of winners and c{ be the
service charge of k. We have

w(C) =vg — a(C) =vg — minz Z 2 (S)b

keC SeQy,
=wvo— Y br(Sk)
kew¢
:’UO*ZCk‘i’Z 7bk8k)
kew¢ kew¢
:7rg—|— Z Wg:mc)—i-Zﬂg.
kewe keC
|
Hence the core can be defined mathematically as
Core(K) = {m > 0 Z . = w(K),
keKU{0}
Y mzw),YC Ky, (D
kecu{o}

which follows Definition [I} With the first constraint in (7),
we focus on those profiles with the optimal total utility. The
second constraint emphasizes that the final payoff must no
less than that induced from any possible coalition. As w(C) is
the maximum total surplus that coalition C U {0} can achieve
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without other bidders, a greater total surplus value (left-hand-
side) prevents the existence of any blocking coalition.

In a first price auction, the winning bidders always charge
the customer the values of their bids.

Lemma 3. The charge profile of first price auction is in the
core of AV public transportation auction.

Proof. Let W C K be the winners. For k& € W, we will get
¢ = br(Sk) if k wins in the first price auction. Therefore, we
have 7, = 0 for all £ € K. We also have

g T = o = Vo — g Ck

kexu{o} kew
= V9 — Z Z {I?k(S)bk(S)
keW SeQy
= max[vy — Z Z 2k (S)be(S)] = w(K),
keK SeQy,

®)

As «f(-) is the optimal objective value of a minimization
problem, reducing K to C will make «(K) < «(C). Thus, we
have

Z 7 =7 = w(K) = vy — a(K)
kecu{o}
> vy — a(C) =w(C),VC C K. 9)

Therefore, the first price auction service charge profile is in
the core. ]

Corollary 1. The core of AV public transportation auction is
non-empty.

We can see that an efficient charging mechanism should
always produce an in-core auction result.

B. Incentive to Truth-telling

The profiles in the core guarantee that no auction partici-
pants will form coalitions for better unilateral utilities. This
makes the core-selecting auction robust against shill bidding.
The core-selecting auction for AVPTS is defined as follows:

Definition 2 (Core-selecting AV public transportation Auc-
tion). A core-selecting AV public transportation auction is
an auction that always results in w € Core(K) such that
the customer pays the minimum possible service charge, i.e.,
maximum customer utility, within the core:

75 = max{mg|m € Core(K)}. (10)

By definition, the core consists of all dominating profiles
of the bidders with observable surplus and they cannot be
further improved without undermining any participant’s utility.
However, it is still doubtful whether the core-selecting auction
can develop satisfactory customer utility, i.e., minimal service
charge, in the presence of shill bids. As VCG is the only
truthful and efficient auction mechanism [17]], [30]], the closer
the profile with observable surplus to the VCG charging
profile, the higher the incentive of the bidders to truth-telling
is. By adopting the results from an ordinary combinatorial

auction [20], we have the following theorem for the reverse
core-selecting AV public transportation auction:

Theorem 1. In an efficient AV public transportation auction,
no bidder can increase its utility to more than its VCG utility
by coalescing and through shill bidding if and only if it is a
core-selecting auction.

Proof. For an efficient auction, we have Zkenu{o} T, =
w(kC) [20]], [30]. We require that any coalition C in /C, which
can be shills, cannot increase its utility more than its VCG
utility. Therefore, we need to have

>, ™

Zﬂkﬁ Z T —

kec keku{o} ke(KK\C)u{o}
=w(K)—w(\C),VC C K, (11)
which holds if and only if
> m=w(\C),vCCKk. (12)

ke(K\C)u{o}

This condition holds as K \ C C K, stating that no blocking
coalition exists. Consequently, w € Core(K). [ ]

Theorem |1| suggests the theoretical maximum utility that
each bidder can achieve through manipulating its bid. How-
ever, such unilateral manipulation may change the winners of
the auction, resulting in zero utility. Therefore, if the core-
selecting charging profile is close enough to the VCG profile,
the winning bidders will not perform significant shill bidding.
Otherwise, they may actually lose the auction, resulting in
zero utilities. Hence the incentive of submitting false bids is
suppressed. This inspires the design of the charging rule which
will be discussed in Section [Vl

Combining Theorem |I| and the definition of core-selecting
auction, we have the following corollary:

Corollary 2. A core-selecting mechanism can prevent shill
bidding in the proposed AV public transportation auction.

Lemma 4. For non-splittable and private services, the VCG
charging profiles are never in core unless there are multiple
bids with the same lowest value.

Proof. For either service type, only one AV can win the
auction. When more than one bids have the same value which
is the lowest among all, the VCG charging profile is the same
of that developed by the first price auction. In such cases,
VCG charging profiles are in the core according to Lemma 3]

We then investigate cases where only one bid has the lowest
bid value. We use ¢* and k* € K to denote the winning
service charge and the winning bidder, respectively. The VCG
mechanism develops the final charge as follows:

¢ =a(K\ k") = (a(K) — g (Sp )bre= (S+))

=min > Y 2k(S)bi(S).

keK\k* S€Qy

(13)

(T3) states that the final service charge is set to the lowest bid
value except the auction winner, i.e., the second lowest bid
value in the auction. It is always possible to form a coalition
C C K\ k* such that 7, = 0,Vk € C and w9 = vy — c*.
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However, if the service charge is adjusted to ¢’ which satisfies
b= (Sk+) < ¢ < c¢*, the new observable surpluses become
7, = 0,Vk € C and my = vg — ¢ > vy — ¢* = my, where
7' is the observable surplus profile when k* charges for c.
Therefore, C is a blocking coalition, and the VCG charge is
not in core. |

Theorem 2. The only profile in core for non-splittable or
private service is the first price auction charge profile.

Proof. Based on Lemma [3] the first price auction profile is
in the core. Now we consider any service charge c* by the
sole winner k* of the auction, such that ¢* > by« (Sg).
There are more than one bidders participated. According to
Lemma [ there always exists a non-empty coalition blocking
C C K\ k* and a new charging price ¢’ = by« (Sg~), making
7, = 0,Vk € C and 7(, = vg—¢ > vo—c* = mg.Therefore, no
profile with ¢* > by« (Sg+) is in the core. For ¢* < by« (Sk~),
the auction results do not comply with the rationality as-
sumption of bidders [29], and thus infeasible. Consequently,
¢* = by~ (Sk~) is the only in-core service charge by the auction
winner k* if only one AV can win the auction. ]

Theorem [2] gives the only in-core service charge profile
for non-splittable and private services. Therefore, an efficient
charging mechanism should be able to directly find out the
only in-core profile, reducing the required computation time
for these service types.

IV. CORE-SELECTING CHARGING

Section gives the theoretical support on the efficacy
of core-selecting auctions in preventing shill bidding. In this
section, we present the quadratic core-selecting charging rules
[29] to select the optimal auction outcomes from the core of
an AV public transportation auction. The outcomes preserve
the properties of the core while minimizing the final service
charge for the customer. According to the definition of ,
given bid values, each observable surplus 7 corresponds to
a particular service charge ¢, Vk € K. Therefore, the terms
“observable surplus profile” and “charging profile” can be used
interchangeably.

A. Core-Selecting Charging Rule Properties

Although the core-selecting auctions can prevent the forma-
tion of any coalition from mutually beneficial re-aggregation
[30], they cannot guarantee the absolute truthfulness of bid-
ders. We can approach the truth-telling results through appro-
priate charging rules. Theorem [I] states that bidders’ incentive
to truth-telling increases with the decrease in the difference be-
tween core-selecting and VCG utilities. Therefore, an efficient
core-selecting charging rule minimizes the gap of utilities to
motivate truth-telling, and hence improves the seller’s utility,
or in our case, reduces the service charge.

Definition 3 (Bidder optimality). 7* is bidder optimal if m*
is in Core(K) and there does not exist w € Core(K) such that
m, <y for k € K with strict inequality for at least one k.

Theorem 3. [20] A core-selecting auction provides the
minimal incentive for each bidder to misreport its valuation

if and only if the auction determines a bidder optimal core
profile T*.

Proof. The detailed proof is given in [20] and we give an
outline here. The result is proved by contradiction. According
to Theorem |1} the maximum profit gain induced by a coalition
is the Euclidean distance between the core-selecting and
VCG charging profiles, where the latter is constant. If the
core-selecting auction profile is sub-optimal, there must exist
another in-core charging profile that increases the utility of
at least one bidder while maintaining others’. This contradicts
with the bidder optimality of the original charging profile. M

B. Quadratic Service Charge Minimization

According to Theorem 3, the optimal profiles for bidders
in the core represent optimal solutions to the auction, which
is mathematically guaranteed optimal. On the one hand, AV
operators are entertained as they are requesting just high
enough charges to rule out others, and no one can have
even larger utilities without undermining others’. On the other
hand, the customer is satisfied as no low-charge alternative is
apparently available [29]. As such auction outcomes only exist
in the core, the problem is translated into finding the optimal
solution in the core. In practice, Core(K) generally contains
a large number of bidder optimal solutions. The one with the
minimal distance from the VCG charging profile is the most
preferable since it can maximize the truth-telling incentive
while minimizing the service charge according to Theorems 1
and 3. Similar to [29], we construct a quadratic core-selecting
charging rule, due to its corresponding quadratic formulation
(will be explained later), to minimize the total service charge
and to maximize the truth-telling incentive. The optimal charge
can be developed in a two-step process:

1) First step: We determine the set of optimal charging
profiles from the core with minimum total service charge.
Based on Definition [T, we have

> m>w(C),vCCK.
kecu{0o}

(14)

The charging profile is determined once (3), @), or () is
solved. Thus the winning bidders are known. We have

Z Wk:vo—zck+ Z (cr — br(Sk))

kecu{o} kew kewnc
=vo— > er— Y b(Sk).  (5)
kew\C kewnc
Substituting into (T4), we get
Yo oe<uw— Y b(Sk) —w(C),¥CC K, (16)

kew\C kewnc

Then a linear program can be developed to minimize the total
service charge:

minimize C™° = Z Cr (17a)
ke
subject to ¢ > bi(Sk),Vk € W (17b)

and (T6).
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This linear program minimizes the total service charge
> ke Ck from all observable surplus profiles in the core
enforced by (I6). Since this is a reverse auction, we also
incorporate an individual rationality constraint [29]] to
ensure that the final charge is no less than the bid value.
Therefore, by solving (I7), we can obtain the set of optimal
charging profiles from the core.

2) Second step: To maximize the incentive for truth-telling,
we need to find the charging profile, which is closest to the
VCG result, with the minimum total service charge obtained
in the first step. This can be achieved by minimizing the
Euclidean distance of the profiles, resulting in the following
quadratic program:

minimize Z(ck — €62 (18a)
ke

subject to Y ¢ = C*F,Vk € K, (18b)
ke

and (I7),

where ¢} is the VCG charge of bidder k. guarantees
that the result retains the minimal total service charge as
obtained in (17).

C. Implementation

Constraint (T6) requires w(C), which is based on a particular
C. However, there are total 25 — 1 possible C in the auction.
To compute the optimal charging profile, we need to solve
the corresponding WDP for each C in order to construct
and (T8). It is too computationally expensive in practice. To
obtain a near real-time solution, we adopt the core-constraint-
generation (CCG) process [19] to reduce the computation bur-
den. The pseudo-code of the process is illustrated in Algorithm

m

Algorithm 1 Quadratic Core-Selecting Charging by CCG

1: Solve WDP, find W and their Sj, determine CZCG.
2: Set ¢ = 0, initial charge profile ¢}, = ¢)“C.
3: Remove (16) from and (T8).

4: loop

5 t=t+1

6: forall ke K,S e Qp do

7: bi(S) = C};_l + bk (S) — bi(Sk)

8.

9

Solve (@), @), or @) with new bids b} (S).
. if the objective value is not greater than ) |, _,- cx then
10: Break loop.
11:  Find the first blocking coalition C*.
12 Add constraint » 5, o\ oo ¢k > W(C*) + D24 e bi(Sk)
to and (T8).
13:  Solve then (I8) to get c}.

14: 02—1 is the quadratic core-selecting charge profile.

The algorithm creates a charging profile iteratively. We
begin with the VCG profile (Step 1) and remove (I6) from (I7)
and (Step 3). Then in each iteration the algorithm ma-
nipulates the submitted bids according to the current charging
profile (Step 7), and we compute the auction result (Step 8),

which is tested against each possible coalition until a blocking
one is found (Step 11). Then we include the corresponding
of the blocking coalition back to and (Step 12).
These two programs are solved to develop a new charging
profile for the next iteration. This process iterates until no
blocking coalition exists in the auction, and the developed
charging profile is considered as optimal. The efficiency and
optimality of CCG is proved in [19], [21].

V. PERFORMANCE EVALUATION

We perform three simulation tests to assess the efficacy of
our proposed core-selecting AV public transportation auctions.
Since VCG is the only existing auction mechanism developed
for AVPTS in the literature, we largely compare our core-
selecting mechanism with VCG. In the first test, we examine
the service charges developed by the two mechanisms and this
gives us insight into the impact of different parameters on the
service charge. The second test investigates the influence of
untruthful bids on the core-selecting mechanism. In the third
test, we evaluate the computation time required to develop
winning charging profiles by the core-selecting mechanism.

We create random cases with different numbers of bid-
ders for the tests. We generate 100 cases for each || €
{5, 10, 20, 50, 100, 200, 500}. In each testing case, each AV
has seat capacity of a random integer in the range of [4, 8]
and the available seats are accordingly generated in the range
inclusively from the seat capacity. Both the valuation and the
operating cost of each seat occupancy are randomly generated
in the range of [0.5,1]. The number of seats required, i.e., r,
is set in the range of [1,§].

All tests are performed on a computer with an Intel Core
17-3770 CPU at 3.40 GHz and 12 GB RAM. The testing code
is developed with Python 3 under Windows operating system,
and the optimization problems are solved with Gurobi [31].

A. Service Charge

We first investigate the auction results in terms of the final
customer charging price. Fig. [2| depicts the VCG and core-
selecting charges for the three service types with different
numbers of seats requested (i.e., ). Each data point is the
average produced from the corresponding 100 random cases.
In each of the sub-figure, there are 7 sets of lines, each of
which contains the results of the core-selecting (solid line) and
VCG (dotted line) charges and they correspond to |K| equal to
5, 10, 20, 50, 100, 200, and 500, respectively. In general, the
charges increase with r because more seat occupancies incur
higher charge. For the private service, since all seats need to
be reserved, the charges remain constant when r is smaller
than or equal to the smallest allowed vehicle capacity, i.e.,
four as defined above.

In general, the service charge for splittable service is lower
than those of non-splittable and private services and this
accords with [13] Theorem 1]. Moreover, the core-selecting
mechanism can produce lower final charges for all service
types than VCG auction, and the standard deviations of all data
points in Fig. [2| are minuscule. This validates our analytical
results given in Theorems [[] and 2] and Lemma[4] In addition,
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Customer service charge

Number of requested seats r

(a) Splittable service

Number of requested seats r

(b) Non-splittable service

5 6
Number of requested seats r

(c) Private service

Fig. 2. Service charge developed by core-selecting and VCG mechanisms for the three service types.

it can be observed that the core-selecting charges are much
more favorable for the private service while its advantage
becomes less significant for the splittable service. Lastly, the
service charges decrease with the number of bidders. These
observations are due to the degree of competition, which is
constituted by the number of bids submitted in the auction.
Table |I| shows the average number of bids submitted for all
the service types with respect to different  and K. In general,
the splittable service has most bids among the three types
while the private service has the least. Fewer bids constitute
less competition, which makes the bidders easier to manipulate
bids for higher profit.

As a result, the core-selecting mechanism can more ef-
fectively reduce the service charge, resulting in better per-
formance than the VCG mechanism. Although the charging
improvement over VCG for splittable service is not significant,
the major merit of the proposed mechanism, as analyzed in
Section [lII} is on its robustness against shill bidding. Mean-
while, despite the fierce competition for splittable service, the
core-selecting mechanism can still outperform VCG.

B. Truthfulness

Here we investigate the influence of bidders’ truthfulness
on the service charge. As mentioned in Section [T, no auc-
tion mechanisms other than VCG can guarantee truthfulness.
However, we can still approach the VCG performance by mini-
mizing the bidder’s incentive of reporting bids deviating from
their real valuations. Since the splittable service can result
in multiple winners, the auction results are more versatile
than the other two. Thus we focus on the splittable service
here. Consider that a certain number of the bidders do not
tell the truth by literally increasing their bids. Specifically,
we randomly select 10%, 20%, or 50% of the bidders as
untruthful bidders, whose bids are further increased by 10%,
20%, or 30% from their true valuations. Hence there are 9
combinations of untruthful bidders and bid increases, and each
combination is evaluated with different ¢ € [1,8] in each test
case. We compare the relative total winning service charges

due to the truthful and untruthful bidders. We define the

“increase of charge” as (3 i 6 — D ek Ch)/ Dpexc Cho
"W refer to the charge of & in the truthful

where ¢ and cj
auction and that in the untruthful auction, respectively. The
higher the “increase of charge”, the larger the amount of
overpricing is.

Table [T shows the average increase of charge with different
requested numbers of seats 7 in the presence of various levels
of truthfulness. We can see that the service charge increases
with both the number of untruthfrul bidders and the bid value
increase, in which the former plays a more important role.
When the percentage of dishonest bidders is relatively small,
the increase of charge is not very notable with respect to
different levels of bid value increase. There are two reasons
for this. First, the core-selecting charging method attempts
to minimize the total service charge. The original winners
with elevated bids are likely to be replaced by other truthful
bidders and thus the untruthful actions would not constitute
significant effect on the service charge. Second, as bidders
will not know if they are among the winners of the auction,
their service charge increase may not always undermine the
system performance. This supports our previous theoretical
analyses in Section [V} When the fraction of dishonest bidders
increases to 50%, the auction becomes sensitive to bid value
increase. In such cases, it is very likely that the winners
have already increased their bid values, and their amount of
increase impacts significantly on the increase of charge. In
the worst case with 50% of the bidders reporting 30% higher
service charges, the core-selecting auction results in 4.5%—
8% of increase in charge, despite that on average the bids
experience a 15% increase. This shows that the core-selecting
mechanism is robust against untruthful bidders.

Next, we compare the performance of core-selecting and
VCG mechanisms. In Table [[I, those results with smaller
increase of charge is highlighted in bold. It can be observed
that the performance of the two mechanisms is similar. In
most cases, the core-selecting mechanism slightly outperforms
VCG. This is due to the fact that the core-selecting mecha-
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TABLE I
AVERAGE NUMBER OF BIDS

. Number of requested seats r
K| Service i 5 3 7 5 6 = 3
Splittable 17.18 17.18 17.18 17.18 17.18 17.18 17.18 17.18
5 Non-splittable 17.18 12.18 8.19 5.02 2.71 1.34 0.52 0.15
Private 0.95 0.95 0.95 0.95 0.67 0.47 0.26 0.15
Splittable 35.32 35.32 35.32 35.32 35.32 35.32 35.32 35.32
10 Non-splittable 35.32 25.32 17.12 10.5 5.73 2.87 1.18 0.31
Private 1.98 1.98 1.98 1.98 1.4 0.99 0.6 0.31
Splittable 70.25 70.25 70.25 70.25 70.25 70.25 70.25 70.25
20 | Non-splittable 70.25 50.25 33.84 20.77 11.35 5.58 2.24 0.55
Private 3.87 3.87 3.87 3.87 2.79 1.94 1.17 0.55
Splittable 175.16 175.16 175.16 175.16 175.16 175.16 175.16 175.16
50 | Non-splittable 175.16 125.16 84.11 51.51 28.07 13.56 5.54 1.35
Private 9.19 9.19 9.19 9.19 6.59 443 2.97 1.35
Splittable 352.19 352.19 352.19 352.19 352.19 352.19 352.19 352.19
100 | Non-splittable 352.19 252.19 169.98 104.49 56.76 27.52 10.92 2.62
Private 18.34 18.34 18.34 18.34 13.16 8.92 5.7 2.62
Splittable 702.67 702.67 702.67 702.67 702.67 702.67 702.67 702.67
200 | Non-splittable 702.67 502.67 338.32 208.44 113.79 55.1 21.69 5.25
Private 36.41 36.41 36.41 36.41 26.18 18.18 11.52 5.25
Splittable 175336 175336 1753.36  1753.36 175336 175336 175336  1753.36
500 | Non-splittable | 1753.36  1253.36 841.85 517.55 282.41 135.44 52.25 12.34
Private 87.51 87.51 87.51 87.51 63.5 43.6 27.41 12.34
TABLE II
INCREASE OF CHARGE WITH LEVELS OF TRUTHFULNESS
N . Request size r
Untruthful | Increase Mechanism T 5 3 vl 3 5 = 3
10% Core-selecting | 0.61% 0.52% 044% 0.58% 0.79% 0.65% 0.63% 0.66%
¢ VCG 0.61% 047% 046% 0.67% 088% 0.57% 0.65%  0.69%
10% 20% Core-selecting | 0.65% 0.72% 049% ~034% ~ 0.72% 0.89% 055% ~ 0.64%
’ ’ VCG | 065% _ 053%_ 0.73% _039% _075% _ 099%%  042% _0.77%
309 Core-selecting | 0.77%  0.73% 045% 0.75% 0.71% 0.88% 0.79%  0.83%
‘ VCG 077% 0.77%  049% 087% 0.87% 0.89%  0.94% 1.10%
10% Core-selecting | 1.63% 1.14% 142% 085% 1.32% 1.22% 1.24%  0.98%
¢ VCG 1.63% 1.33% 1.53%  0.90% 1.49% 1.23% 1.16% 1.03%
209 20% Core-selecting | 1.49% ~ 152% 175% 1.07% ~ 1.32% 155% 133% 1.35%
¢ ¢ VCG 1.49% 1.68%  2.06% 1.03% 1.38% 1.61% 1.22% 1.45%
309 Core-selecting | 2.69% 155% 1.60% 136% 1.11% 199% 150% 1.15%
° VCG 2.69 % 1.67%  2.12% 1.45% 1.12%  1.96% 1.59% 1.22%
10% Core-selecting | 4.14%  3.30% 398% 3.56% 3.60% 356% 322% 3.24%
’ VCG | 414% _ 320%_ 424% _370% _336%  354%  323% _3.33%
509 20% Core-selecting | 5.84% 4.96% 4.75% 421% 4.65% 4.16% 438% 4.44%
° ° VCG 5.84% 534% 511% 434% 4.62% 432% 427% 4.61%
30% Core-selecting | 8.09% 555% 531% 497%  4.59% 526% 4.48% 4.52%
¢ VCG 8.09%  5.64% 574%  520% 5.00% 5.61% 457% 4.71%
nism can maximize customers’ utility as analyzed in Section
Although the core-selecting mechanism cannot guarantee ‘ ‘
bidder truthfulness like VCG, it can still efficiently reduce the 10| ¢ Splittable Service B8 Private Service
influence of dishonest bidders on the final service charge. The - 44 Non-splittable Service
benefit of minimized service charge, as illustrated in Section g 0.8}
can in general outweigh the hindrance of suppressing =
. . =}
untruthfulness. Therefore, core-selecting mechanism can gen- g 06}
. . . =
erally develop satisfactory service charge profiles even in the &
presence of overpriced bids, and can sometimes outperform § 04
. . on
the truth-guaranteeing VCG mechanism. g
>
<
02} .
. . i I
C. Computation Time W
. . . . . il L L m
The computation time for determining the winners and 05 100 200 300 400 500
Number of bidders

their respective service charges is also of importance to the
pragmatic implementation of our proposed auction in practice.
A shorter computation time will reduce customers’ waiting
time, resulting in better quality of service. Fig. [3| shows the

Fig. 3. Computation time of three services with various number of bidders.
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average and extrema of the computation time for the three
service types. We can see that all service types experience
linear computation time increase with the number of bidders.
Even in the worst case, it only takes less than one second
to compute the result. This indicates that our mechanism is
scalable and practical. In addition, the splittable and non-
splittable services require much less than the splittable service.
This can be credited to the significantly smaller solution spaces
of their WDPs and less computationally demanding core-
selecting charging process.

VI. CONCLUSION

In a multi-tenant AVPTS, the pricing process is used to
settle the service charge when multiple operators compete to
accommodate a transport request. The VCG auction mecha-
nism, adopted in the original design [[12]], suffers from some
significant drawbacks such as vulnerable to shill-bidding and
coalitions, rendering the VCG design impractical. In this work,
by looking into the core of the auctions, we construct the
core-selecting AV public transportation auctions to overcome
the problems brought by VCG. We first formulate the reverse
combinatorial AV public transportation auctions to model the
pricing processes of the three transportation service types.
Then we investigate the core of these auctions, which demon-
strates the non-blocking properties of auction results. Utilizing
this feature, we construct a core-selecting charging rule to
determine the service charges of the winning vehicles. We
verify our analytical results with extensive simulations. The
proposed core-selecting mechanism can result in lower total
service charges than VCG mechanism and it can also almost
preserve VCG’s unique ability against untruthful bidders. Last
but not least, the short computational speed of the core-
selecting mechanism can result in a practical pricing solution
for AVPTS for real-world implementation.

The future research is two-fold. First, it is of interest
to investigate other auction mechanisms for AVPTS pricing
process. While the proposed core-selecting mechanism can
successfully prevent shill-bids, other mechanisms may pos-
sibly provides other advantages. Second, this work follows
our previous work [[13]] in which requests are handled sequen-
tially. Second, it remains unknown how multiple requests will
influence the charging price and service time of the pricing
process. In addition, we will investigate suitable auctioning
mechanisms for such multi-tenant multi-request process.

APPENDIX A
VICKREY-CLARKE-GROVES AND SHILL-BIDS

In this appendix, we briefly discuss the pricing mechanism
of VCG in a reversed combinatorial auction. This mechanism
was employed in the pricing process of AVPTS in [13].

VCG [14]-[16] suggests that each winning bidder in an
auction should charge the amount of “damage” introduced to
all bidders. Let O be the set of auctioned items and X be the
set of bidders/operators who sell the items. Let b, (S) be the
reported operational cost (social value) for £ € K to provide
S C Q, and z4(S) be a binary variable indicating whether &
wins with S (z(S) = 1) or not (zx(S) = 0). Accordingly,

the total “social value” after the auction can be calculated as

Zkeic ngg 7k (S)bk(S).

For a winning k* € KC, instead of charging by~ (S*) for S*,
the service charge is determined by the “social cost” of their
winning incurred by other operators:

DD 2 (S)R(S) = D] D wk(S)br(S) — bae (S¥)]

keK SCQ keK SCQ
(19)

where 2},(S) is the winning result when & does not place a
bid for S. The first term in (I9) denotes the total social value
in the new auction and the second denotes the social value in
the original auction except by (S*).

We consider an example for illustration: A customer submits
a transportation request consists of two passengers A and
A sole operator X places a bid to serve both passengers at
a charge of $10. So he will win the auction and serve both
passengers at $10.

Meanwhile, X may impersonate two other fake operators or
form a coalition with two other real operators, denoted as Y
and Z. If so, X still bids to serve A and B for $10, Y bids to
serve A for $10, and Z bids to serve B for $10. In this case,
X still wins the auction. Meanwhile, the service charge of X
is set according to @]) In this auction, the total social value
for Y and Z is $0, since neither of them wins. If X is removed
from the auction, the winners will be Y and Z, and the total
social value will become $20. Therefore, X can charge $20
(total value in the new auction)—$0 (total value except X in
the original auction=%$20. This example shows the mechanism
of VCG pricing, and its vulnerability against shill-bids.
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