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Abstract—This paper presents a novel delay aware syn-
chrophasor recovery and prediction framework to address the
problem of missing power system state variables due to the ex-
istence of communication latency. This capability is particularly
essential for dynamic power system scenarios where fast remedial
control actions are required due to system events or faults. While
a wide area measurement system can sample high-frequency
system states with phasor measurement units, the control center
cannot obtain them in real-time due to latency and data loss. In
this work, a synchrophasor recovery and prediction framework
and its practical implementation are proposed to recover the
current system state and predict the future states utilizing existing
incomplete synchrophasor data. The framework establishes an
iterative prediction scheme, and the proposed implementation
adopts recent machine learning advances in data processing.
Simulation results indicate the superior accuracy and speed of
the proposed framework, and investigations are made to study its
sensitivity to various communication delay patterns for pragmatic
applications.

I. INTRODUCTION

Modern power system operation and control require accu-
rate and timely update of the system states. Conventionally
these states were generated with the help of the Supervi-
sory Control and Data Acquisition (SCADA) system, which
samples the grid every 2-6 seconds. However, changes in
modern systems, including the ever-increasing adoption of re-
newable energy sources and demand-side control, lead to new
requirements for a faster system measurement technique [1]].
As an alternative, modern Wide Area Measurement Systems
(WAMS) equipped with measurement devices such as Phasor
Measurement Units (PMU) are being gradually utilized [2].
These synchrophasor measurement devices can provide accu-
rate, network-wide synchronized system state measurements
of positive-sequence voltage and current phasors at a high
resolution [2], [3].

Thanks to the sampled synchrophasors, grid operators can
effectively improve the accuracy of both of ine applications,
such as post-disturbance analysis [4], [5], system identi cation
[6]], and online data-driven tasks, e.g., state estimation [7]], [8].
Moreover, the power utilities are enabled to address conven-
tional power system problems in a more advanced and timely
manner [2], see [9]], [10] for examples. For synchrophasor
applications, the communication quality-of-service of PMU
is among the essential factors that need to be considered to
facilitate power system applications [11]], [12]. According to
North American Synchrophasor Initiative (NASPI), the data
quality issue can be characterized by three properties, namely,
data accuracy, data availability (data loss), and data timeliness

(data latency) [13]], [14]]. Furthermore, power applications may
require different levels of data quality, and various ones depend
on timely synchrophasor data [15]]. The stochastic packet drops
and data transmission latency can signi cantly impact the
system state data integrity at the control center, which in return
in uences the response time of these applications [11]], [16]].

However, as analyzed in [16]-[18]], the current communica-
tion infrastructure of WAMS cannot guarantee a satisfactory
QoS. In addition, with the expansion of power grids and
introduction of new power electronics, the volume of data
to be transmitted over the communication infrastructure is
increasing drastically [[12]. As a result, packet drops and
notable data transmission latency can be expected, which leads
to missing data in synchrophasor measurements. This problem
is widely recognized in the previous literature, see [17], [19]-
[21] for examples.

In common reliable communication networks, e.g., TCP/IP,
data loss issues can be addressed by packet re-transmission.
However, this will further increase the overall data trans-
mission latency, rendering a larger response time for power
system applications [[17]. It becomes a critical issue to de-
velop techniques that can recover missing synchrophasors with
high accuracy without data re-transmission [19]]. There exists
previous work investigating solutions to handle missing PMU
data, see [19], [22] for examples. The results mainly utilize the
low-rank property of synchrophasors for data recovery [[19].
However, as will be shown in Section such low-rank-
based methods cannot properly handle missing data caused
by communication latencies since the available data may not
satisfy the minimal obtained measurement requirement [[19].
In addition, the employed synchrophasor completion methods
involve data approximation, which can potentially undermine
the data recovery accuracy.

In response to the research gap, in this work we pro-
pose a delay aware Synchrophasor Recovery and Prediction
Framework (SRPF) to recover system states using existing
incomplete synchrophasor data. The proposed methodology
can recover missing synchrophasors subject to system faults,
and does not require data re-transmission or approximation. In
addition, it can be further employed to predict future system
states. SRPF extracts the temporal and spatial relationships of
the power system dynamics from historical data, and employs
the result for real-time synchrophasor data processing. The
generated system states can then be adopted for high-level
system control and decision making. Moreover, the proposed
framework is modular, with its constituent sub-systems able
to have various implementations to meet the requirements of
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different applications. Existing related research can also be
easily adopted into the framework subject to requirements.
The main contributions of this paper are:

e« We propose a modularized framework to generate the
past, present, and future system states utilizing existing
incomplete synchrophasor data due to communication
latency.

e We devise a practical implementation of the proposed
framework using machine learning techniques by ap-
plying new machine learning and big data methods to
synchrophasor data processing.

o We conducted case studies to illustrate the ef cacy of the
proposed framework and implementation. The robustness
and sensitivity to latency are also investigated.

The rest of the paper is organized as follows. In Section
IT we introduce synchrophasor communication delay and the
main problem to be addressed. Section III presents the system
model employed. We elaborate on the proposed SRPF in
Section VI, and devise a practical implementation of SRPF
in Section V. Section VI records the numerical experiments,
and Section VII concludes this paper.

II. SYNCHROPHASORS DELAY

As expected by power utilities, future WAMS can directly
provide dynamic views of power systems for supervision and
control [2]]. The system can lead to signi cantly improved state
estimation performance. Moreover, thanks to the synchronized
nature of synchrophasors, time skew errors can be prevented
when the data is employed in power system applications. This
time-synchronized characteristic is widely acknowledged by
the literature, and it is common to assume that the control
center can receive synchrophasors with zero latency caused
by communication, see [7]], [23]]-[25]] for recent examples.

While this assumption can signi cantly reduce the dif culty
in system modeling and problem formulation, assuming zero
delay will mean inappropriate control gets applied. Mean-
while, assuming all synchrophasors arrive together means that
the delay is determined by the slowest one. According to
IEEE Standard for Synchrophasor Data Transfer for Power
Systems [3[], a typical communication latency value from
PMU{] to local Phasor Data Concentrators (PDC) ranges
from 20 to 50 milliseconds, and extra delay can be expected
for more complex WAMS structures. Moreover, due to the
high sampling rate of PMUs, WAMS will generate more
system data than the conventional SCADA. The large data
traf ¢ will introduce more data congestion in the supporting
communication infrastructure, which may lead to stochastic
latency spikes for synchrophasors. According to the analysis
in [26], which investigated the GPS-synchronized wide-area
FNET/GridEye records [27], “the communication delay may
vary dramatically in short terms” and “the realtime commu-
nication delay presents strong dynamic characteristics”. On
average, the studied records experienced approximately 90ms
of communication latency with random latency spikes and data

'We use “PMU” to summarize all possible synchrophasor measurement
units in current and future WAMS, such as branch PMU and line PMU, etc.

losses. This level of delay may be insigni cant for steady-
state operation of power systems or “slow” stability issues
such as voltage stability, but it can notably in uence the
system response for other time-sensitive issues, e.g., transient
stability. What makes things worse is that existing literature on
power system applications requires the control centers to have
complete knowledge of the system states [28]]. They need to
wait for the slowest synchrophasor data packet in the system
to arrive, which can be both time-consuming and unnecessary.

To address this problem, new methodologies should be
developed to make use of incomplete synchrophasor data for
delay-sensitive power system applications. Such techniques
must 1) be capable to accept a stream of data as input
and recover system states in real time, so as to adapt to
the data stream of synchrophasors, 2) be computationally
ef cient to ful 11 the fast response speed requirement of power
applications, and 3) be “model-free”, i.e., independent to the
model of speci ¢ power system components. Such model-free
methodologies can be applied to a wider range of systems
as they do not rely on the model of speci ¢ components,
rendering a better adaptability.

III. SYSTEM MODEL

We model the power network with an undirected graph
G(V,&), where V and £ are the sets of buses and branches,
respectively. For bus ¢ € V, we denote the set of its connecting
branches by & C &. In addition, neighboring buses of bus
i €V are de ned by N; = {k € V|(s, k) € &}

We use symbol ¢ to denote the current time. In addition, we
use tr,7 € Z to represent the discrete time instances when
PMUs generate system variable samples. For ease of further
de nitions, we use to and ¢; to denote the previous and next
“sampling” time instances. Therefore, ¢y < ¢ < ¢; holds.

In the power system de ned by G(V,&), M PMUs are
installed on system buses, which are denoted by set VM C V.
We use VN = {k € N;|i € VM} to denote the neighboring
buses connected with these PMU-equipped buses. In this work,
we employ a widely adopted PMU model [2], [29], i.e.,
each PMU measures the complex voltage phasor V; , of its
installation bus ¢ at ¢,, and all the complex current phasors
Iy, » of branch (i, k) € &;. Considering the lumped-circuit
model for transmission lines, voltage phasors of buses k € N;
can be calculated by employing transmission line parameters:
Vir = Vir — (Likr — y3{'Vir) /Yin Where y; and ysf* are
the series and shunt admittance of branch (i, k), respectively.
Therefore, voltage phasors of VM can be sampled directly,
and those of VN can be calculated with the aid of measured
current phasors. We consider the investigated power system is
fully observable, i.e., My YN =y,

In this work, we consider the system state of the power grid
at ¢ is composed of the voltage phasors of all buses in the net-
work, denoted by S» = {V; ,|¢ € V}. The collection of voltage
and current phasors directly measured by the measurement
devices is denoted as M, = {V; ,, Lix -|i € VM (i, k) € &},
called full measurements. At current time ¢, all M, for
7 < 0 have been sampled by PMUs. However, due to non-
deterministic communication latencies, the control center only
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TABLE I
COMPARISON OF DIFFERENT SYSTEM STATE AND MEASUREMENT SETS

~

T—q tr—otr—1

Vi i €V [ Lipg i €V | Vig i€ VN
v

System State v X
Full Measurement v v X
Received State | v'(Incomplete) X v'(Incomplete)
Received Measurement | v'(Incomplete) | v (Incomplete) X

receives a subset of these measurements MT_ , C M, V7 <0,
named received measurements.

Then, utilizing M, we can construct received (measured)
states S7, = {V; i € VP UVN} for all 7 < 0. In this
de nition, Vi\f[tp C VM represents the buses whose system
variables are sampled by the measurement unit, and received
at the control center. The neighbor buses of Vi\f[tp are de ned
as VNI = {k € Ni|i € VMP}. Table Il summarizes these
terminologies, where check-marks denote inclusion and cross-
marks denote exclusion.

Using the above de ned notations, the main objective of this
work can be interpreted as recovering and predicting S, T € Z

utilizing available M, at ¢.

IV. SYNCHROPHASOR RECOVERY AND PREDICTION
FRAMEWORK

We propose a delay-aware SRPF to achieve the objectives
summarized in Section According to the discussion in
Section [[l] the methodology should have three characteristics,
namely, 1) streaming input, 2) computationally fast, and 3)
model-free. In this section, we rst develop a modularized
framework that can schematically recover and predict syn-
chrophasors with streaming input. Then in the following
section we propose an implementation of the framework to
ful 11 the second and third characteristics stated above.

The framework is designed to be an on-line process, i.e.,
real-time system states can be generated with known received
measurements. For optimal recovery and prediction perfor-
mance, the calculation process of the framework is executed
whenever new synchrophasors are received by the control
center.

A. Modular Sub-systems

The proposed SRPF is composed of two sub-systems, called
Predictor and Estimator. Each system addresses a sub-problem
of the stated key objective. The former is designed to utilize
complete system states to predict a future system state, while
the latter is de ned to combine a predicted system state with
the received synchrophasors for the same time.

Speci cally, the predictor is designed to accept a sequence

of complete system states S;_1,S-_2,---,Sr_q as input, and
predict the system state for the next sampling time instance:
St = Predictor(S;—1, -2, , Sr—q), (D

where ij denotes a prediction of system state at time 7, i.e.,
Sr. In this process, g is a user-controlled lookback length
parameter. It instructs the predictor to “look” back by g
sampling time instances from ¢,, and take all system states in
the lookback window as input. Fig. [Ta]is an illustration of this
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Fig. 1. Schema of SRPF sub-systems.

system. The predictor should fully utilize the temporal and
spatial relationships among synchrophasors to predict future
system state, and its accuracy has a great in uence on the
performance of the complete system.

Meanwhile, the estimator combines Sj with the remaining
received states S-S 1 4, -+, 5, to construct an estima-

tion of S; at t, denoted by S ; (estimated state):

Sr1 = Estimator(S}, S5, 57,1 4.+, Sg0)- )

Tt

In case that there are no synchrophasors known in these
received states, the estimated state Sr,t is set by S*. This
will happen when predicting future system states, where no
power system variables are sampled for future sampling time
instances. Fig.|1b|depicts the input and output of the estimator.

B. Framework Work ow

In Section we de ne the input and output of the
predictor and estimator, which enable SRPF to recover and
predict unknown synchrophasors in an iterative manner. At
t, new synchrophasors are received by the control center, and
SRPF starts its recovery and prediction tasks. The pseudo-code
for SRPF is presented in Algorithm [I]

The framework rst constructs a matrix of system states,
denoted by S (Line 1 in Algorithm [I). Each column of
the matrix represents the received state of a sampling time
instance. The unknown synchrophasors are left empty in the
matrix. SRPF then looks back in S from the current time,
and nds the last incomplete column, which represents the
incomplete system state of the corresponding time instance
(Line 2). The time is denoted by ?,, and the synchrophasors
in all previous states are known, i.e., S,:t = S,,Vr < p. Based
on the value of p, we create a lookback window from ¢,_,
to t,_1, in which all system states are complete (Line 3), and
we focus on estimating the system state for time instance p,
denoted by T, the currently estimating time index (Line 4).
This ends the initialization of SRPF

Next, the complete system states in the lookback window
are input into the predictor to generate S; using (Line
6). The predicted system state is then combined with the
remaining states S, ;, .S, 1 4, -+, S, to develop an estimated
state S'pyt using (2) (Line 7). The resulting estimated state is
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Algorithm 1 SRPF
1: Construct a system state matrix S.
2: Find the time instance ?, that all previous states are
complete.
Create a lookback window from ¢,_, to ¢,_; in S.
Determine currently estimating time index 7.
do
Use the predictor to predict S with lookback window,
denoted
by S;t.
7: Use the estimator to estimate S, with S and remain-
ing states,
denoted by S
8- Insert S into S.
: Move lookback window forward by one time instance.
10: T+ 7141
11: while 7 < rend
12: Output S.
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Fig. 2. Work ow of SRPF recovering and predicting synchrophasors. Num-
bers in brackets are the indices for steps. “P” stands for Predictor, and “E”
stands for Estimator.

then inserted back into the corresponding column of system
state matrix S (Line 8). This estimated state can be considered
as a best estimation of the power system state at the investi-
gated time instance. Consequently, the lookback window can
move forward by one sampling time instance, and the included
system states remain complete (Line 9). The current estimating
time index 7 is incremented by one (Line 10), and this ends
the rst iteration of SRPF. In the following iterations, the
same synchrophasor recovery and prediction operations are
repeated. This process iterates until 7 > 7°"¢ (Line 11), where

774 i the sampling time instance to which SRPF is designed
to recover and predict.

Fig. [2| demonstrates the work ow of SRPF. At the current
time, system states for t_5 and ¢_3 are complete, and those
for to and ¢_; are not. ¢; refers to a time instance in the
future, so no synchrophasor can be measured now. Assume
that the lookback length ¢ = 2. In this case, SRPF uses three
iterations to recover and predict all unknown synchrophasors.
In the rst iteration, the predictor employs S_o and S_3 to

develop ST, (Step 1), which is combined with S, , by the
estimator to generate S,l,t (Step 2). This result is considered
as S_1 in the following iterations. Then in the next iteration,
the lookback window moves forward and uses S_; and S_»
to develop SS' (Step 3). The estimator subsequently generates
S'OJ (Step 4). Finally, the predictor employs previous results
to predict the synchrophasors at 1, and the estimator simply
uses the predicted state as the nal system state S7 (Step 5).

V. SYSTEM IMPLEMENTATION

In Section we proposed SRPF to recover and predict
delayed synchrophasors in modern WAMS. The methodology
recovers and predicts synchrophasors with streaming inputs.
Meanwhile, two other required characteristics in Section [[I
namely fast-computing and model-free, remain open. These
properties can be achieved by appropriate design of the sub-
systems in SRPF.

In this section, we devise an implementation for SRPF
that can provide both characteristics. We employ the Gated
Recurrent Unit (GRU) as the basic component to construct the
predictor. As a modern variant of Arti cial Neural Network
(ANN), GRU naturally ts the needs, which will be elaborated
later. Moreover, we develop an intuitive rule-based estimator
for SRPF to estimate synchrophasors, which is effective and
fast.

A. Arti cial Neural Network and Gated Recurrent Unit

ANN is among the most commonly used machine learning
techniques, and has been employed in a vast number of
disciplines since its invention [30]. ANN tries to simulate
investigated systems by learning from the mathematical re-
lationship between the input and output of the system. Two
major advantages make it suitable for being adopted into the
predictor:

o Most computationally extensive process in ANN can be
performed off-line, rendering a very fast response speed
[30]. This makes it possible to conduct synchrophasor
recovery and prediction in an online manner.

o Training ANN does not depend on the knowledge of
analytical models of power system components such as
thermal generators and wind turbines. As far as the
training data describes the input-output relationship, ANN
can emulate the system with arithmetic computations
[31].

GRU is a modern variant of ANN [32]]. It differs from the
conventional ANN and its many variants in that besides spatial
data correlation, it also extracts temporal data correlation in
the training data to simulate the original system. Fig. 3] depicts
the structure of a GRU block and its unrolled form. GRU
separates the input data by timestamps, and accepts data of
one timestamp, denoted by x;, for each time. As presented in
Fig. GRU calculates an output h; using input z; and its
previous result h;_; with the following equations:

2y = sigm(Waoxe + Wiohe 1 +02),
ry = sigm(Warxe + Whrhie—1 +0r),

(3a)
(3b)
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(b) Unrolled form

(a) Computing graph

Fig. 3. Structure of GRU. Adopted from [33] with re-arrangements.

h = tanh(Wapze + Wha(re © hye—1) + bn),
he =2 Ohi1 + (1 —2) © hy,

(3¢)
(3d)

where the W and b matrices are the GRU parameters [33]], and
©® denotes element-wise multiplication. Given a sequence of
time-stamped data {z1, 22, -, 2, -}, GRU rst develops
h1 using z7 and a randomly generated hg (usually initialized
by zeros). Then it takes xo and h; to calculate hy, and the
process can be iterated until terminated by the user. This
“chained” process is presented schematically in Fig. [3b] Note
that all blocks labeled “GRU” in the gure share identical
training parameter values.

B. GRU Ensemble-based Predictor

An ensemble of neural networks is an effective machine
learning paradigm where multiple neural networks are con-
structed to solve the same problem. In general, an ensemble
of networks can provide more robust results than standalone
ones, and it has been demonstrated to outperform single neural
networks in a collection of learning problems [34].

In this work, we devise a GRU ensemble-based predictor
to predict unknown and future synchrophasors using avail-
able ones. The implemented predictor comprises N GRU
networks, which contains two GRU layers as presented in
Fig. [3] and another layer with fully connected neurons. In
each network, the GRU layers extract the temporal and spatial
relationship from the input x;, and the calculated information
is output in the form of h;. The hidden layer then translates
h¢ to synchrophasors. So for the same synchrophasor V; .,
N predictions are calculated from these networks, denoted
by Vifﬂp e ,VfT - The mnal predicted synchrophasor Vzt,

which is an entry in S}, is developed by

1 N
Vib =5 2o, Vi

This concludes the data processing and calculation of the
predictor.

1) Of ine Predictor Training: As presented in (3)), the arith-
metic computations in GRU blocks involves GRU parameters.
Their values can be calculated by training GRU networks
with bus voltage phasors obtained from power system time-
series simulations off-line. Considering a power system whose
PMUs sample 60 system states per second, the time-stamped
data x; is de ned as [V.,0;], where V,, = V, .20, .,
V. = [Vl,ﬂ"’ 7V\V|,T]’ and 0, = [01,7""' 70\\/\,7]- For

GRU
RU

{GrUy
Predictor

(b) Parallel processing of each
GRU network calculation in
the predictor

Preprocessing
Postprocessing|
Preprocessing

Predictor

(a) Sequential processing of
each GRU network calcula-
tion in the predictor

Fig. 4. Parallel processing of the predictor.

any arbitrary ¢, in the time-domain simulation, the standard-
ized [2;_g,++,7,_1]" is utilized as the input x of each
training data case. The corresponding prediction output is
accordingly constructed by standardized [z,_441, ", 2,7
Consequently, the trained network can predict any arbitrary
2y With - _q,--- ,x-_1, and thus satis es (.

The training process aims to optimize the system variables
of the GRU blocks and neurons in each GRU network of the
proposed predictor. GRU networks are trained simultaneously
and independently. In this work we adopt the Adam optimizer
[35] as the neural network training optimizer due to its superior
convergence performance, and the objective is to minimize the
mean-squared-error (MSE) of the prediction.

2) Online Prediction: The online prediction of synchropha-
sors is conducted in a similar manner as the training process.
As described in Section system states of ¢,_1 to t,_q
are complete. Therefore, utilizing the trained GRU parameters
and (3), the system state of ¢, instance calculated.

3) Parallel Processing and Prediction Caching: The com-
puting process described above can serve the prediction re-
quirement of the predictor. However, it is not optimal in terms
of computational ef ciency. In practice, SRPF may request the
predictor to make predictions upon the receipt of any sampled
synchrophasors. This can result in extensive computations
within a very short time span. To address this problem, two
practical solutions are proposed.

The rst scheme makes the whole computing process par-
allel. As the most time-consuming task in the predictor is in
calculating predictions, each GRU network can be handled by
a separate computing unit, making the ensemble parallel. This
scheme is depicted in Fig. 4]

The second one is to make use of previous prediction results
when performing new predictions. If no system states are
changed for a time instance and for its previous ones after
receiving new synchrophasors, the predictions solely based
on them remain unchanged. In such cases, these predictions,
which are developed in previous calculations, can be consid-
ered as known in current calculations. Both schemes save a
signi cant amount of time, which is illustrated in Section

Note that the proposed predictor depends on the availabil-
ity of historical data and/or time-domain simulated data as
training data. If neither historical data nor power network
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topology/con guration is available, the mechanism cannot
provide reliable predictions. However, in many modern power
systems equipped with synchrophasor measurement devices,
it is highly possible that the measured data can be properly
stored. Therefore, the proposed mechanism can be applied to
most power systems.

C. Estimator Implementation

As designed in Section the estimator aims to merge pre-
dictions and PMU samples to create system state estimations.
These sets of data have the following properties:

e Predicted Synchrophasors are complete predictions of
system states, but they will have estimation error.

e PMU Sampled Synchrophasors are very accurate, but
there are missing phasors in the system states as analyzed
in Section

Utilizing these characteristics, in this work we consider a
simplistic estimator implementation. For each synchrophasor
in the investigated system state, if the corresponding PMU
data is available at the control center, the PMU Sampled Syn-
chrophasor is used. Otherwise, the predicted synchrophasor by
predictor is considered accurate and placed in the estimated
state.

This implementation is simple and intuitive, yet it can yield
outstanding performance in terms of estimation accuracy and
computation time, as demonstrated in Section Note that
in this design, only St and S, are utilized. In this way,
the computational complexity is minimal at the expense of
losing extra information in the remaining received states. It is
possible to devise advanced schemes to employ all available
information to develop S'T,t, which is beyond the scope of this
paper.

Note that in conventional power systems, residual-based bad
data detection is carried out when all synchrophasors/SCADA
measurements are received by the control center. Otherwise the
residual cannot be computed. In the proposed mechanism, bad
data detection can be conducted when the mechanism outputs
an estimated state. However, due to prediction errors, the
residual threshold should be larger than that in conventional
bad data detections. This drawback can be resolved by incor-
porating more complex estimator design, such as appending
a Kalman Filter after developing estimated states. We will
investigate such estimator designs for the proposed mechanism
in our future work.

VI. CASE STUDY

To assess the performance of the proposed SRPF and its
implementation, we conduct three sets of simulations on the
New England 10-machine system [36]. In the rst test, we
study the synchrophasor data recovery and prediction accuracy,
and analyze its sensitivity to the time of recovered/predicted
system states. In the second test, we investigate the impact of
communication delays on the system performance. Finally, we
analyze the execution time of the proposed implementation as
well as its time optimization schemes, and discuss the training
time of the system.

In the simulation, we employ 30 GRU networks to construct
the predictor, and each network has 512 GRU nodes in both
of the GRU layers. All numerical simulations are conducted
on a personal computer with an Intel Core i7 CPU working
at 3.4 GHz and 8 GB RAM. The GRU networks are trained
with an nVidia GTX 1080 graphic card with 8 GB RAM. The
proposed SRPF is implemented with Python 3 on Linux.

A. Test System and Data Generation

In the New England 10-machine system, PMUs are installed
on the following buses to maintain an [N — 1 observability: 2,
3, 6,8, 10, 12, 14, 16, 17, 19, 20, 22, 23, 25, 26, 29, and 39.
We assume that all PMUs measure 60 time-stamped system
states in each second, and each one sends its measurements
to the control center with stochastic communication latency.
We consider the system dynamics of a large number of
system faults that may potentially lead to transient system
stability issues, as they are among the most important cases
in power system operation: 5000 three-phase short circuit
contingencies are generated with a random load level between
80% and 120%, a random fault clearance time between 0.1
second and 0.3 second, and a random fault location (on
transmission lines or buses). The system dynamics of each
contingency is calculated with time-series simulation using
the TSAT software [37]. PMU measurements are developed
based on the calculated true system dynamics. Furthermore,
we adopt the real latency values derived from FNET/GridEye
records [27] in this work, which are the voltage and frequency
measurements by Frequency Disturbance Recorders (FDRs)
across the States. For PMU measurements with the same
timestamp, their latencies are randomly selected from the
latency values of all FDRs at an arbitrary time. We adopt the
open-loop latency values from the dataset, since SRPF aims
to address the open-loop latency issue, i.e., from measurement
devices to control center. After SRPF processes the received
synchrophasors, the system operator may utilize the estimated
system states for subsequent protection and control actions.
The instructions are later sent back to control devices, which
(closed-loop latency) is actually out of the scope of this paper
and SRPE. All test cases are divided into two groups with a
3:1 ratio as suggested by previous literature, see [S]], [9] for
examples. The former is used for training, while the latter
for testing. While insuf cient samples cannot characterize
the system properties, too many samples can signi cantly
increase the training time, and may potentially lead to over-

tting problem. In this work, the training and testing set sizes
are 3750 and 1250, respectively. The simulation results in
the following sub-sections indicate that the selected sizes are
appropriate. With this con guration, the over- tting problem
can be easily observed, where the training set yields superior
accuracy but the testing set performance is unsatisfactory.

B. Synchrophasor Recovery and Prediction Accuracy

We rst test the accuracy of recovered past synchrophasors
and predicted future ones. For each of the testing cases,
SRPF is executed whenever a new measurement arrives at
the control center. The system recovers all incomplete system
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TABLE II
SYNCHROPHASOR RECOVERY AND PREDICTION ACCURACY

Voltage Magnitude Deviation (p.u.) Voltage Angle Deviation (rad) TVE Percentage of
Mean Min. Max. RMSD Mean Min. Max. RMSD Unknown Data
S_5 | 4.822E-06 0.000E+00 2.229E-04 7.488E-06 | 3.518E-05 0.000E+00 1.048E-03  6.368E-05 | 0.02% 2.45%
S_4 | 5.619E-06 0.000E+00 1.448E-03  2.406E-05 | 4.012E-05 0.000E+00  6.793E-03  2.282E-04 | 0.02% 6.22%
S_3 | 3.683E-05 0.000E+00 9.501E-03  1.940E-04 | 2.971E-04 0.000E+00  2.652E-02  1.717E-03 | 0.11% 52.01%
S_o | 3.363E-04 0.000E+00 1.178E-02  6.291E-04 | 2.572E-03  0.000E+00  6.061E-02  5.193E-03 | 0.96% 76.18%
S_1 | 6.547E-04 0.000E+00 1.185E-02  9.594E-04 | 6.039E-03 0.000E+00  1.511E-01  1.028E-02 | 1.03% 95.22%
So 8.716E-04  0.000E+00  1.460E-02  1.239E-03 | 9.058E-03  0.000E+00  1.569E-01  1.543E-02 | 1.04% 99.91%
S1 1.076E-03  3.842E-08  1.722E-02  1.504E-03 | 1.149E-02  1.384E-08  1.547E-01 2.031E-02 | 1.07% 100.00%
Sa 1.281E-03  4.516E-08  1.897E-02 1.787E-03 | 1.334E-02  6.070E-07  1.845E-01  2.506E-02 | 1.10% 100.00%
S3 1.485E-03  5.299E-08  1.890E-02 2.074E-03 | 1.531E-02  2.400E-09  1.974E-01 2.992E-02 | 1.11% 100.00%
S4 1.692E-03  2.416E-07  2.023E-02  2.378E-03 | 1.695E-02  1.352E-06  2.187E-01  3.718E-02 | 1.12% 100.00%
Ss 1.912E-03  8.067E-08  2.672E-02  2.730E-03 | 1.798E-02  4.241E-06  2.120E-01  4.282E-02 | 1.14% 100.00%
Se 2.133E-03  9.780E-08  3.239E-02  3.093E-03 | 2.022E-02  3.350E-07 2.118E-01 4.989E-02 | 1.16% 100.00%
S7 2.356E-03  1.268E-07  3.228E-02  3.449E-03 | 2.176E-02  2.338E-06  2.155E-01  5.384E-02 | 1.19% 100.00%
Sg 2.592E-03  1.061E-07 4.732E-02 3.831E-03 | 2.401E-02 6.900E-07  2.125E-01  6.092E-02 | 1.25% 100.00%
Sg 2.812E-03  5.152E-08  5.237E-02  4.183E-03 | 2.602E-02  1.661E-07 2.162E-01  6.702E-02 | 1.44% 100.00%
state on and before ¢y, and makes predictions from S to So. TABLE 111

For each missing synchrophasor in these system states, the
recovered/predicted value is compared with the ground truth
generated in time-series simulations. The mean, minimum,
maximum, and root mean square deviation (RMSD) [8] of
voltage magnitude and angle deviations between S, and
S, are calculated. In addition, we present the average total
vector error (TVE) of voltage phasors in S and S.. Let
= {Vl /0, +|i € V}. For voltage magnitude, we have:

Mean = Z|V”— Virls
|V| SY
RMSD = [— S|V, =V,
|V| i€V
|Vz7—_ LT|
TVE = —————
Vil

The summarized results are presented in Table [l In this
table, each row presents the accuracy of SRPF in recovering
the corresponding system state labeled in the rst column at
the recovery time. For reference, the percentage of unknown
synchrophasors in the past system states at the current time is
also listed in the last column.

From the simulation results it can be concluded that SRPF
can accurately recover the past synchrophasors and predict
the future ones. For both voltage magnitude and angle re-
covery, the estimation error is correlated with the percentage
of unknown synchrophasors. When recovering the system
states in which most synchrophasors have been received, the
data recovered can be extremely accurate, e.g., S_3 to S_s.
With the increase of missing synchrophasor percentage, the
accuracy is slightly undermined. However, even for Sy where
almost no measurement is known, there is only approximately
1.5 x 1073 p.u. error in voltage magnitude estimation, and
approximately 1.5 x 102 rad error in voltage angle estimation
on average. Both cases demonstrate the capability of SRPF in
recovering past synchrophasors.

SRPF is also outstanding at predicting future system states.
The prediction accuracy goes down slightly with time, but the
decrease is insigni cant. This is mainly due to the fact that the

COMPARISON ON SYNCHROPHASOR RECOVERY ACCURACY

Total Vector Error Recoverable Cases
SRPF ICMC SVT SRPF ICMC & SVT

S_s5 | 0.02% 0.01% 0.12% | 100% 100.0%
S_4 | 0.02% 0.14% 042% | 100% 99.8%
S—_3 | 0.11% 1.46% 0.99% | 100% 76.5%
S_o | 096% 343% 1.15% | 100% 49.9%
S_1 | 1.03% 4.69% 190% | 100% 9.0%
So 1.04% 4.30% 1.73% | 100% 1.8%

system state predictions are calculated based on their previous
predictions, and prediction errors will be ampli ed in later
calculations. Despite this, the overall prediction accuracy is
still satisfactory even for Sy predictions, where the predicted
synchrophasors will only suffer from 0.003p.u.£1.5° error on
average.

In the meantime, one may note that the average TVE values
of S_; and beyond exceed 1%, which is the required PMU
measurement accuracy in [3]]. Recall that the data quality issue
involves data accuracy, availability, and timeliness [13]], SRPF
can obviously improve the data availability and timeliness
at the expense of some data accuracy. Hence, the current
implement of SRPF can be better employed in power system
applications which rely more on fast measurements. Given that
the developed synchrophasors are the only system state data
system operators can obtain with the existing information, they
can still be valuable in power system applications. Nonethe-
less, it is possible to improve the data accuracy with advanced
design of both the predictor and estimator in the system, which
will be investigated in the future work.

We also present the post-contingency voltage dynamics of
some randomly selected buses, and the predicted dynamics
using SRPF. The results of an arbitrary contingency are
depicted in Fig. 0] where the true system state is plotted
against the recovered current system state and ve predictions
at different times. In this gure, the curves labeled with
“Recovery” represents the recovered system dynamics at the
current timestamp, which corresponds to the performance of
Sp in Table [II} Curves labeled with “7-th Prediction” denotes
the predicted dynamics at 7 cycles ago. From the gure it can
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Fig. 5. Recovered and predicted system states for bus 5, 15, 25, and 35 of an arbitrary contingency case.
be observed that the accuracy for the recovery and different TABLE IV

ahead-of-time predictions accords with the summarized results
presented in Table [l While the recovery is very accurate com-
pared with the true system state, the 9th prediction performs
slightly worse. Yet, all predictions clearly resemble the trend
of power system dynamics in the future.

Finally, we implement the previously proposed matrix com-
pletion methods in [[19], namely, information cascading matrix
completion (ICMC) and singular value thresholding (SVT),
which are utilized to recover the previously tested incomplete
system states. As illustrated in [[19], such methods can only
recover the system states with partial existing measurements.
Hence, they cannot be applied to predict future states, and a
majority of recent states, e.g., So and S_1, cannot be recovered
since no measurements have been received yet. We present
the simulation results of these methods in Table [T} in which
TVE and percentages of recoverable cases are summarized
for SRPF and the compared methods. From the results it
is obvious that SRPF outperforms SVT and ICMC in most
tasks, with the only exception at S_5 where ICMC develops
more accurate system states. Furthermore, neither ICMC nor
SVT can recover system states without existing measurements.
They can recover much less cases than the proposed method
on recovering S_3 to Sy. Hence, SRPF is more suitable for
recovering missing data caused by communication latencies.

C. Impact of Communication Delay on System Performance

In the previous test, we evaluate the accuracy of SRPF in
WAMS with normal communication infrastructures. It is also
of interest to investigate its sensitivity to bad communication
conditions. In this test, we assess the accuracy of SRPF with
different random latency generation schemes, which represents
various practical data transmission performance of the power

SYSTEM PERFORMANCE WITH VARIOUS LATENCY PATTERNS

Total Vector Error
Default High Latency Lossy Link  Bad Comm.
S_5 | 0.02% 0.44% 0.09% 0.48%
S_4 | 0.02% 0.73% 0.16% 0.75%
S_3 | 0.11% 0.84% 0.23% 0.90%
S_2 | 0.96% 1.01% 0.91% 1.07%
S_1 1.03% 1.05% 1.02% 1.11%
So 1.04% 1.08% 1.09% 1.13%
S1 1.07% 1.10% 1.11% 1.18%
Sa 1.10% 1.13% 1.13% 1.22%
S3 1.11% 1.15% 1.16% 1.21%
Sa 1.12% 1.15% 1.18% 1.27%
S5 1.14% 1.19% 1.21% 1.30%

system communication infrastructures. Speci cally, based on
the benchmark delay data (labeled by “default”) as introduced
in Section [VI-A] we manipulate the latency values and con-
struct the following scenarios:

e High Latency: In this setting, all latency values are
increased by 50%. This setting emulates systems where
the latency is signi cantly high and stable.

o Lossy Link: In this setting, the latency values are identical
to the default scenario. However, 30% of the PMU mea-
surement data packets are dropped and not recoverable.
This setting emulates systems where the communication
infrastructure is unstable.

e Bad Communication: In this setting, all latency values
are increased by 50%, and 30% of the data packets
are lost. This setting emulates a bad communication
infrastructure which suffers from all previous issues, and
can be considered as a worst case scenario.

We use the same experimental con gurations as stated in
Section [VI-A] for all latency con gurations, and the simu-
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TABLE V
EXECUTION TIME COMPARISON OF SRPF WITH DIFFERENT DEGREE OF
TIME OPTIMIZATIONS

Average Computational Time (ms) to

recover current state Sp | predict one future state
Benchmark 33.7 9.61
Parallel Processing 1.52 0.49
Prediction Caching 19.6 9.61
Full Optimization 0.85 0.49

lation results are presented in Table Due to the space
limitation, only TVE values are demonstrated, and system
states of ve future time instances are predicted since different
latency patterns do not have great impact on the prediction
accuracy. From the table it can be concluded that while
bad communication links of WAMS have a negative impact
on the synchrophasor recovery and prediction accuracy, the
in uence is not signi cant. Comparing with the default latency
pattern, other settings generate comparable accuracies for S_o
to S5 recovery and prediction. While the recovery accuracy
on S_5 to S_3 is not as outstanding, it is still tolerable. This
is due to the fact that the system states, whose percentage
of unknown data is insigni cant, tend to suffer more from
larger latency values. Despite that, even in the worst case
scenario (Bad Communication), the insigni cant recovery and
prediction error still suggests that SRPF can be applied to all
kinds of WAMS regardless of the quality of their underlying
communication infrastructures.

D. Execution Time Analysis

One of the main objectives of the proposed SRPF is to
provide timely system states for system operators and other
power system applications. So the execution time for SRPF
is critical. In Section we propose two practical schemes
to boost the computational speed of the predictor, namely
Parallel Processing and Prediction Caching. In this subsection
we investigate the synchrophasor recovery and prediction
speed of SRPF, and the improvements resulting from both of
the proposed schemes.

We employ the original design without any execution time
optimization schemes as benchmark, and compare its execu-
tion time with 1) Parallel Processing, 2) Prediction Caching,
and 3) Full Optimization with both schemes enabled. The
simulation results are demonstrated in Table

From the comparison it is clear that both time optimiza-
tion schemes signi cantly contribute to the execution time
reduction. On average, Parallel Processing can shorten the
computation time of synchrophasor recovery to around one-
thirtieth of benchmark test, and Prediction Caching can intro-
duce a further one-third reduction. On the one hand Prediction
Caching focuses on alleviating the repetitive computation
in recovering the past synchrophasors, it does not have an
in uence on the data prediction speed. On the other hand,
Parallel Processing effectively reduces the GRU ensemble
testing time, thus also helps boost SRPF prediction speed.
To conclude, the calculation speed with both optimization
schemes is capable of providing real-time system states.

Last but not least, the training speed of SRPF is also
critical. As the training data already considers random op-
eration conditions, the trained SRPF can effectively cope
with changing power system conditions without modifying
its model. Meanwhile, signi cant power network changes,
such as topology changes and power electronic component
upgrades, may adversely in uence SRPF accuracy. In such
cases, the mechanism needs to be re-trained. Thanks to the
relatively simple neural network structures, the proposed SRPF
implementation can be re-trained with new training dataset
within 30 minutes with GRU ensemble trained in parallel.
Hence, the mechanism can handle topology changes with time
intervals larger than 30 minutes, which in many cases are
planned by the system operator hours or days before. This
renders SRPF capable of adapting to signi cant changes in
the grid, making it a pragmatic solution to address the delayed
synchrophasor issue in modern power systems. We will also
investigate methodologies to update the neural networks in-
stead of re-training in order to further reduce the computation
cost brought by topology changes in future studies.

VII. CONCLUSION

In this paper we propose a novel synchrophasor recovery
and prediction framework to address the data transmission de-
lay of synchrophasor measurements in modern power systems.
As typical emergent power system data-centric applications
can suffer from communication latency, the proposed frame-
work aims to recover real-time power system states and predict
future states. The framework is composed of two modular
sub-systems, namely, predictor and estimator, which cooperate
to manipulate available synchrophasor data and recover the
unknown ones. To demonstrate the ef cacy of the proposed
framework, we implemented SRPF employing recent advanced
machine learning techniques. A series of simulations are
conducted on the New England 10-machine system, and the
results demonstrate the superior data recovery and prediction
performance of SRPF with the proposed implementation. In
addition, the impact of communication delay on the system
performance is investigated, and the execution time analysis
illustrated that the proposed framework can be executed in an
online manner with parallelized design.
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