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a b s t r a c t 

Transient stability assessment is critical for power system operation and control. Existing related research 

makes a strong assumption that the data transmission time for system variable measurements to arrive at 

the control center is negligible, which is unrealistic. In this paper, we focus on investigating the impact of 

data transmission latency on synchrophasor-based transient stability assessment. In particular, we employ 

a recently proposed methodology named synchrophasor recovery and prediction framework to handle the 

latency issue and make up missing synchrophasors. Advanced deep learning techniques are adopted to 

utilize the processed data for assessment. Compared with existing work, our proposed mechanism can 

make accurate assessments with a significantly faster response speed. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Transient stability assessment (TSA) is critical for the operation

nd control of power systems. With the ever-increasing demand

n modern power grids, the transient stability issue is considered

ore serious than before because grids are operating close to

heir stability limits [1] . Power blackouts and significant system

ailures are two possible outcomes of this issue. Much research has

een carried out on how to assess the stability status of a power

ystem subject to large disturbances. With the assessment result,

ystem operators can plan remedial control actions to maintain

rid stability. 

All existing TSA mechanisms require full or partial knowledge

f the system operating state to conduct assessments [2] . With

he assistance of wide-area monitoring systems (WAMS), this

equirement can be fulfilled in real-world power systems [3,4] .

onventional mechanisms introduce an “observation window” in

he assessment process, in which system variable dynamics are

ollected by measurement devices in the power system – see

5,6] for examples. Transient stability status is assessed after the 

indow, and the assessment accuracy is highly dependent on

he window length. The longer the observation window is, the

ore information is collected, which can result in better perfor-

ance. However, this scheme has three major drawbacks. First, no
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reliminary results can be developed during the observation

indow. This significantly increases the system response time.

econd, there appears to be no general rule of thumb to set the

ength of observation window. Since there is a trade-off between

he assessment accuracy and response speed for TSA, it is hard to

etermine the optimal window length. Third, this scheme makes

n implicit assumption when evaluating the response time of TSA

echanisms: all system measurements are immediately received

y the control center through communication infrastructures

ithout any latency. 

In the past few years, results have been published on de-

eloping a “continuous observation” scheme to substitute the

bservation window – see [2,7] for examples. In this scheme,

reliminary assessments are made once the first post-contingency

ystem state is received at the control center, and subsequent

ssessments are conducted upon subsequent system measure-

ents. In such a way, the first two drawbacks of the “observation

indow” scheme can be resolved. However, this scheme cannot

elax the assumption that there is no communication latency [8] .

hen applied to real-world environments, this latency signifi-

antly increases the system response time. TSA mechanisms have

o wait for the arrival of the last measurement, whose data packet

ay experience latency spikes or packet drop issues during trans-

ission [9,10] . Therefore, it is necessary to develop a delay-aware

SA mechanism to handle the asynchronous arrival pattern of

easurements and provide fast assessments. 

Recently, a synchrophasor recovery and prediction framework

SRPF) was proposed to handle the communication latency of sys-
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tem measurements in power system applications [8] . SRPF employs

recent deep learning techniques to recover missing synchropha-

sors in the past, and make predictions of system states in the fu-

ture. This is achieved by constructing a deep neural network (DNN)

ensemble to learn the power system characteristics using histori-

cal and simulated time-domain system dynamics [8] . The temporal

and spatial data correlation can be extracted from the processed

data with DNN [11,12] , and employed to recover missing data in

real-time. 

While SRPF is capable of providing system states in the near

future, as will be discussed in Section 3.5 , the system cannot be

employed to handle TSA. In this work, we propose a new tran-

sient stability assessment mechanism based on SRPF and DNN to

provide reliable and fast TSA results. In the proposed mechanism,

upon receiving any post-contingency measurements at the control

center, SRPF is employed to fill in the other measurements which

have not yet been received due to communication latency, and also

predict possible future system states. After the measurement re-

covery and prediction process, the synthetic data is employed to

predict the post-contingency stability status of the power system

using a DNN-based TSA system. Furthermore, we conduct compre-

hensive simulations to evaluate the efficacy of the proposed mech-

anism. 

The rest of this paper is organized as follows. Section 2 ana-

lyzes the latency issue in transient stability assessment process.

Section 3 elaborates on the formulation and implementation of

the proposed delay aware TSA mechanism. Section 4 demonstrates

case studies and numerical results on two test system. Finally this

paper is concluded in Section 5 with a discussion of potential fu-

ture research. 

2. Delay aware transient stability assessment 

In this work, we follow [8] to analyze the communication

latency in WAMS. We consider the scenario in which synchro-

nized phasor measurement units (PMU) sample system variables

at a constant frequency, e.g., 60 Hz. Samples at time t from

PMU p ∈ P are sent to the control center through communica-

tion infrastructures, which impose a stochastic latency d p, t . Pre-

vious synchrophasor-based work assumed that d p, t ≡ 0. Therefore,

the system response time is developed by n �t + t ′ , where n is the

length of observation window, �t is the length of each cycle, and

t ′ is the computation time for TSA. 

However, the latency values are actually stochastic, rendering

samples from different PMUs measured at the same time to arrive

in an asynchronous and disordered pattern. As a result, the system

state at t remains incomplete until max p∈P d p,t . This delay must

be included when calculating system response time. In addition,

it is possible that some data packets experience packet drops or

latency spikes in the communication network, rendering uncom-

monly high latency [9,10,13] . In such cases, the system response

time of conventional mechanisms becomes unpredictable. Previous

work [2,7] focuses on reducing the n �t component in the response

time. However, the proposed mechanisms still assume a zero delay

environment. 

In this work, the proposed mechanism performs TSA in an iter-

ative manner after fault clearance. Since measurements arrive at

the control center in an asynchronous manner, SRPF is adopted

to recover the missing measurements and predict potential future

system states. Utilizing this information, recent advances in deep

learning techniques are employed to develop the assessment re-

sults. The proposed mechanism copes with the asynchronous ar-

rival of power system measurements, and is robust against latency

spikes in communication networks. 
. SRPF-based transient stability assessment 

In this section, we first briefly introduce the system model and

RPF methodology. Then we present the proposed SRPF and DNN-

ased delay aware TSA mechanism. 

.1. System model 

In modern power systems, WAMS samples the power system

tates continuously in terms of system variable measurements. The

ystem state at time instance t is represented by S t , which consists

f voltage magnitudes and angles of all buses in the network. In

ddition, M t is adopted to denote the collection of all system vari-

ble measurements sampled by sampling units, e.g., phasor mea-

urement units (PMU). The system topology and parameters of the

ower grid can be reflected by h ( · ), and S t = h (M t ) . 

At time t , { M t , M t−1 , M t−2 , . . . } may be incomplete due to com-

unication latency. M 

−
t is introduced to represent the (incomplete)

eceived measurements in M t , and S −t = h (M 

−
t ) is the incomplete

ystem state that is subsequently calculated with M 

−
t . The objective

f the proposed TSA mechanism is to assess the post-contingency

ystem stability using { S −t , S −t−1 
, S −

t−2 
, . . . } . Instead of directly inves-

igating the characteristics of these incomplete measurements and

ystem states, SRPF is firstly adopted to recover the missing mea-

urements and predict the possible future system states. In such a

ay, the volume of available information for TSA is expanded. 

.2. Synchrophasor recovery and prediction framework 

SRPF [8] is a recently proposed framework which aims to re-

over the missing measurements caused by communication laten-

ies, and predict potential future system states based on available

easurements. Specifically, SRPF employs { M 

−
t , M 

−
t−1 

, M 

−
t−2 

, . . . } to

ecover { S t , S t−1 , S t−2 , . . . } and predict { S t+1 , S t+2 , . . . } at time t . This

bjective is achieved by the two sub-systems defined in SRPF,

amely, Predictor and Estimator . The predictor is designed to utilize

ultiple consecutive complete system states to predict the next

ystem state. And the estimator is designed to combine this pre-

icted system state with existing incomplete measurements of the

ame time instance. SRPF employs these two systems in an itera-

ive manner to progressively generate recovered and predicted sys-

em states for other power system applications. 

.2.1. Predictor implementation 

The predictor takes a sequence of complete system states as in-

uts, and predicts the possible system state at the next time in-

tance: 

 

+ 
t+1 = Predictor (S t , S t−1 , S t−2 , . . . ) , (1)

here S + 
t+1 

is the predicted system state at time t + 1 . In [8] , pre-

ictor is implemented using DNN, namely a Gated Recurrent Unit

GRU) ensemble [14] . In the ensemble, multiple deep GRU net-

orks are constructed, each of which can individually provide a

redicted system state with the input ones. The results are aver-

ged in order to improve the robustness of the system against data

oises [15] . 

GRU [16] is a modern model of artificial neural networks (ANN)

17,18] , which simulates the model of a given system by learning

rom the input-output relationship of the system. While conven-

ional ANN only extracts the spatial data correlation from the input

raining data, GRU additionally learns the system characteristics

rom the temporal data correlation [16] . This is achieved by intro-

ucing a series of training parameters which maps the time-series

nput data x 1 , x 2 , . . . , x t into a sequence of output data h 1 , h 2 , . . . , h t 
sing the following equations: 

 t = sigm (W xz x t + W hz h t−1 + b z ) , (2a)
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Fig. 1. Flow chart of the proposed TSA mechanism. 
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Fig. 2. Output data of SRPF and input data of DNN for TSA. 
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Fig. 3. SRPF and DNN layers. In this figure, parameters T = 3 and T = 1 . 
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 t = sigm (W xr x t + W hr h t−1 + b r ) , (2b) 

 t = z t � h t−1 + (1 − z t ) � tanh (W xh x t + W hh (r t � h t−1 ) + b h ) , 
(2c) 

here z t and r t are intermediate values, W xz , W hz , W xr , W hr , W xh ,

nd W hh are weight parameters, b z , b r , and b h are bias parame-

ers, sigm( · ) is the sigmoid function, and � is the element-wise

ultiplication operation. Eq. (2) calculates output h t at the t th

ime instance using input data x t , training parameters (weight and

ias), and the output h t−1 of the previous time instance. Conse-

uently, given a sequence of time-series data, GRU can iteratively

mploy (2) to calculate the outputs with input data and train-

ng parameters. In SRPF, the inputs are the history system states

 S t , S t−1 , S t−2 , . . . } , and outputs are the state at the next time in-

tance, i.e, S t+1 . The training process can be conducted using real

istorical or time-series simulation data, and the trained parame-

ers are used to make predictions in real-time with (2) . 

.2.2. Estimator implementation 

One may note that the predictor takes the complete system

tates as inputs and outputs the predicted system state at the next

ime instance. This means that some of the actual measurements

n this and future time instances may be partially available at the

ontrol center. The estimator combines the predicted state with

he already available measurements to give an estimation of the

eal system state at the same time instance: 

ˆ 
 t+1 = Estimator (S + t+1 , S 

−
t+1 , S 

−
t+2 , . . . ) , (3) 

here ˆ S t+1 is the estimated system state for t + 1 , and is expected

o be more accurate than S + 
t+1 

in approximating S t+1 . In [8] , a sim-

listic estimator implementation is proposed, which fills the miss-

ng state variables in S −
t+1 

with the corresponding values in S + 
t+1 

o develop 

ˆ S t+1 . This implementation, as demonstrated in [8] , is

imple yet can develop satisfactory results in terms of estimation

ccuracy when estimating the power system states. 

.3. Proposed mechanism 

In this paper, we incorporate the “time-adaptive” idea pre-

ented in [2,7] and propose a delay aware TSA mechanism which

ims to provide accurate TSA results at the earliest possible time.

he proposed mechanism performs TSA in an iterative manner, in

hich preliminary assessment results are developed in each itera-

ion. The flow chart of the mechanism is depicted in Fig. 1 . 

Upon detecting a contingency, the mechanism starts assess-

ng post-contingency system transient stability. In each iteration,
RPF is firstly adopted to pre-process synchrophasor measure-

ents available at the control center. In this process, the history

ystem states of the past T cycles are estimated, and those of fu-

ure T cycles are predicted, where T and T are control parameters

hose sensitivity will be investigated in Section 4.2 . Fig. 2 presents

he output system states of SRPF, which also corresponds to the in-

ut data of the subsequent DNN. Using these system states, a new

SA system calculates the preliminary assessment result and its re-

iability. If the result is reliable, the mechanism outputs it for fur-

her remedial and protective control actions. Otherwise, the mech-

nism waits for new system measurements to arrive at the control

enter. This process iterates until a reliable TSA result is developed.

From Fig. 1 it is obvious that the accuracy of the TSA sys-

em is critical to the performance of the mechanism. In this

ork, DNN is employed to construct the system. Two GRU lay-

rs (each with 512 units) and a fully connected neuron layer

with 128 nodes) are stacked to form the DNN for TSA as shown

n Fig. 3 . Upon receipt of the recovered and predicted system

tates from SRPF, the data is input into (2) to calculate the first

ntermediate states { h t−T +1 · · · , h t−1 , h t , h t+1 , . . . , h t+ T } . After the

alculation, (2) with a different set of training parameters are

mployed to further process the intermediate states, and develop

 h ′ 
t−T +1 

· · · , h ′ 
t−1 

, h ′ t , h ′ t+1 
, . . . , h ′ 

t+ T } . Finally, the last value h ′ 
t+ T is

nput into a fully-connected neuron layer [19] with a sigmoid

ctivation function to translate the intermediate state into a

uman-readable transient stability index y between zero and one.

n index smaller than a control parameter � represents that the
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mechanism considers the system to be transiently stable subject

to the contingency, and greater than 1 − � means that the system

will become unstable in the future. If the index is between � and

1 − �, the mechanism cannot make a credible assessment at the

current time, and new measurements are required to make further

assessments. 

Comparing with conventional TSA methods such as time-

domain simulation [20] and transient energy function [21,22] , neu-

ral network-based TSA systems have two major advantages [2] : 

• Network training process is typically conducted offline, which

means that the online testing calculation is computationally ef-

ficient, i.e., less time is required to develop TSA results [23] . 

• Neural networks try to emulate the system response with only

input power dynamic data (historical and/or simulated) [24] .

Therefore, accurate power system models and parameters are

not required. 

3.4. Network training 

In Section 3.3 , the proposed mechanism is employed to de-

velop real-time TSA results given incomplete power system mea-

surements. However, the calculation process includes (2), in which

multiple training parameters need to be optimized before imple-

mentation. In this section, the data and method adopted to train

these parameters are discussed. 

In the proposed mechanism, training data are employed to

fine tune the training parameters in GRU and full-connected lay-

ers. The data can be generated with time-domain simulation on

post-contingency power system dynamics, and historical dynamics

recorded during operation can also be employed. Specifically, us-

ing 50/60 Hz sampling, post-contingency positive sequence voltage

magnitudes and angles of all buses can be arranged in the follow-

ing form as inputs: ⎡ 

⎢ ⎢ ⎣ 

V 1 , T V 2 , T V 3 , T · · · V N, T 

V 1 , T −1 V 2 , T −1 V 3 , T −1 · · · V N, T −1 

. . . 
. . . 

. . . 
. . . 

V 1 , T V 2 , T V 3 , T · · · V N, T 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

ˆ S T 
ˆ S T −1 

. . . 
ˆ S T 

⎤ 

⎥ ⎥ ⎦ 

where N is the number of buses in the system, and V i,t is the es-

timated voltage phasor of bus i at time instance t from SRPF (See

Fig. 3 for reference). 

To tune the training parameters, the expected output of the

neural network must also be provided along with the input data.

In the proposed TSA mechanism, the output, i.e., y in Fig. 3 , is ob-

tained by calculating the post-contingency maximum angle devia-

tion δmax of any two generators: 

y = 

{
1 (Unstable) for δmax ≥ 360 

0 (Stable) otherwise 
. (4)

This assignment is widely adopted in the previous literature, see

[2,7,25] for examples. 

Given a collection of C training cases

{ ̂  S (c) 
T 

, ̂  S (c) 
T −1 

, . . . , ̂  S (c) 

T 
, y (c) } C 

i =1 
, the objective of the training pro-

cess is to find the optimal training parameter values such that the

binary cross entropy error function is minimized: 

minimize −
C ∑ 

n =1 

[ y (c) log ̂  y (c) + (1 − y (c) ) log (1 − ˆ y (c) )] , (5)

where ˆ y (c) is the assessment result using the input data

{ ̂  S (c) 
T 

, ̂  S (c) 
T −1 

, . . . , ̂  S (c) 

T 
} and the training parameters. This optimization

problem can be effectively solved using existing gradient-based so-

lutions, and in this work the Adam optimizer [26] is adopted due

to its fast convergence speed. 
.5. Discussion 

In this work, we employ SRPF in [8] to develop system states

n near future, which can be utilized in a DNN to further estimate

he transient stability of the power grid. In fact, it is hypothetically

ossible to use SRPF to predict more future states and then calcu-

ate the stability using (4) . However, the prediction error of SRPF

ay limit this usage of the system. By observing the case studies

n [8] , it is clear that the accuracy of the predicted system states,

hile remaining satisfactory, decreases with the predicted time in

he future. TSA typically can lead to a large enough angle devia-

ion to make the system out-of-sync, but the deviation is not sig-

ificant enough in the first several cycles after fault clearances. On

he other hand, SRPF aims to provide the future system states in a

ower grid, which cannot be directly used to calculate the genera-

or angle deviations. Therefore, SRPF alone is not capable of iden-

ifying TSA at the early stage, making this research necessary. 

Furthermore, we mainly focus on developing a well-performing

SA technique based on SRPF in this paper. The assessment ac-

uracy and computation time performance are evaluated through

omprehensive case studies, which will be presented in Section 4 .

n the meantime, it is possible to develop related theoretical anal-

ses on performance bounds of the proposed technique in two as-

ects, namely, the performance guarantees of SRPF on synchropha-

or recovery accuracy and transient assessment accuracy. These

tudies are out of the scope of this paper and will be thoroughly

nvestigated in the future work. 

. Case study 

To evaluate the performance of the proposed delay aware TSA

echanism, a comprehensive case study is conducted to analyze

ts characteristics. Specifically, we first compare the TSA accuracy

nd response speed with existing state-of-the-art algorithms in the

iterature. Then the parameter sensitivities of three control param-

ters ( T , T , �) in the mechanism are studied. After that, we exam-

ne the robustness of the proposed mechanism when experiencing

ifferent latency patterns and data noises. In addition, a large scale

ower system is also employed to test the scalability of the mech-

nism. 

The New England 10-machine system benchmark [27] is em-

loyed in the simulations, which comprises 39 buses, 10 syn-

hronous generators, 34 transmission lines, and 12 transformers.

mong all generators, G10 represents the aggregated generation

rom the external grid. All other generators are equipped with an

EEE Type-1 (IEEET1) exciter [28] and a WSCC Type G (BPA_GG)

overnor with parameters taken from [29] . This setting accords

ith previous work by the authors [2,25] . 

In the simulation, the training and testing data are generated

y time-domain simulation of post-contingency power system dy-

amics, which includes all possible N − 1 contingencies and se-

ected N − 2 contingencies subject to a three-phase short-circuit

ault with a random fault clearance time between 0.1 and 0.3 s

8] . In total, 50 0 0 transient contingencies are generated in the test

ith a random load level between 80% and 120% of the nominal

ase, and the power system dynamics are simulated using DIgSI-

ENT PowerFactory [30] . All simulations are conducted on a com-

uter with an Intel Core i7 CPU at 3.60 GHz clock speed. The deep

eural networks are trained with an nVidia GTX 1080 graphics

ard. 

Furthermore, we employ the real latency values from FNET/Grid

ye records [31] in this work. All synthetic measurements with the

ame timestamp are randomly selected from the same time record

n [31] . For cross-validation, in this work all generated system dy-

amics are randomly divided into a training dataset and a testing

ataset with a 3:1 ratio. As a result, 3750 random cases are used
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Table 1 

Comparison of assessment accuracy and response time. 

Technique Testing dataset Training dataset 

Accuracy Avg. time Min. time Max. time Accuracy Avg. time Min. time Max. time 

Proposed 100.0% 40.6 ms 22.1 ms 89.7 ms 99.8% 39.4 ms 21.9 ms 121.5 ms 

[25] 100.0% 50.8 ms 39.0 ms 82.6 ms 99.8% 49.1 ms 28.8 ms 150.3 ms 

[2] 99.9% 92.5 ms 57.2 ms 138.1 ms 99.8% 91.2 ms 44.4 ms 151.0 ms 

[7] 99.4% 87.1 ms 59.9 ms 147.5 ms – – – –
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Fig. 4. TSA response time and ratio comparison. 
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or training the neural network in the proposed mechanism, and

he remaining 1250 cases are employed to test the system perfor-

ance. The same configuration is adopted in previous work, see

2,7,8] for examples. This setting can effectively reveal over-fitting

ssues, which result in performance difference on the training and

esting datasets. 

.1. TSA accuracy and response time 

In the first test, the TSA result accuracy and averaged response

ime are evaluated and compared with representative existing TSA

lgorithms in the literature. In the simulation, control parameters

re set to the following values: T = 5 , T = 5 , � = 0 . 4 . Specifically,

e adopt the algorithms proposed in [2,7,25] for comparison,

hich are among the fastest TSA mechanisms in the literature. We

ssume that the TSA techniques in [2,7] are conducted once the

omplete system states can be developed at the control center,

ince they do not consider the latency issue. For the compared al-

orithm proposed in [7] , we further assume that the computation

ime is zero 1 . 

The simulation results are presented in Table 1 . From the table

t can be concluded that the proposed delay aware TSA mechanism

utperforms existing fast TSA techniques in both assessment ac-

uracy and response speed. Specifically, the proposed mechanism

ields satisfactory TSA accuracy in both training and test datasets,

hich illustrates that it does not suffer from the over-fitting prob-

em. In addition, it can also develop assessment results earlier than

he previous technique which also considers communication de-

ays, i.e., [25] . This is contributed by both the accurate recovered

nd predicted system states generated by SRPF and the outstanding

earning capability of the employed DNN [8] . One may note that

he proposed mechanism improves the average response time of

SA by approximately 10 milliseconds compared with the existing

astest solution, which is relatively insignificant. We will demon-

trate in the subsequent sections that the proposed mechanism is

ore robust when handling different measurement data. 

Besides the average simulation results, it is also of interest

o study the distribution of TSA response time for the compared

echniques. In Fig. 4 , the response time statistics for the pro-

osed mechanisms introduced in [2,25] on the 1250 testing cases

re presented with a granularity of 10 milliseconds. The x-axis

s the elapsed real time after fault clearance, and the y-axis rep-

esents the ratio of all test cases for which the respective tech-

ique can develop a TSA result within the corresponding given

ime. From the figure it can be observed that the proposed mecha-

ism is faster than the compared ones in term of system response

peed. This can be interpreted as that given a random unknown

ost-contingency power system dynamics, the proposed mecha-

ism generally requires less time to develop a TSA result than oth-

rs. This observation also accords with the results presented in

able 1 . 
1 The system response time values presented in case studies include both the 

ommunication latency and the computation time of the respective mechanism. 

s

t

.2. Parameter sensitivity analysis 

In all previous tests, a fixed combination of the control pa-

ameters are adopted, i.e., T = 5 , T = 5 , and � = 0 . 4 . However,

t remains unknown if this combination yields the best system

erformance, and how the mechanism would respond to parame-

er changes. In this section, a parameter sweep test is performed

o find the best performing control parameters. To be specific,

he TSA accuracy and response time are compared for { T , T } ∈
{ 3 , 3 } , { 5 , 5 } , { 7 , 7 } , { 9 , 9 }} and �∈ {0.25, 0.30, 0.35, 0.40, 0.45}

n the testing dataset 2 . The simulation results are presented in

able 2 . 

From the table it can be observed that the previously adopted

arameters ( T = 5 , T = 5 , � = 0 . 4 ) can yield the best performance

onsidering the trade-off between accurate TSA results and fast

SA speed. In general, small � values (less than 0.35) develop infe-

ior accuracy and response speed. This is because a small � value

ill drive the proposed mechanism iterate more to generate a “re-

iable” result, rendering longer system response time. In addition,

hese results also indicate that the extra iterations actually under-

ines TSA accuracy. This implies that these iterations introduce

ess relevant system dynamics information into the system. 

Another observation is on the relationship between { T , T } and

he system performance. Generally speaking, medium { T , T } values

ead to more accurate TSA results, and the response time increases

ith the values. On the one hand, a small { T , T } pair requires less

omputation time for SRPF to make recoveries and predictions. But

nsufficient system dynamics information is supplied to the TSA

ystem, and a worse TSA accuracy value can be observed. On the

ther hand, a large { T , T } pair provides more system information

or assessment. However, more time is consumed by SRPF, and
2 Due to page limit, T and T are grouped as one pair of parameters. Investigations 

how that the system performance are quite similar if their values are changed so 

hat T + T remains constant. 
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Table 2 

TSA accuracy and response time for different control parameters. 

{ T , T } TSA accuracy Average response time 

{3, 3} {5, 5} {7, 7} {9, 9} {3, 3} {5, 5} {7, 7} {9, 9} 

� 0.25 90.3% 95.0% 92.3% 84.5% 59.8 ms 68.9 ms 71.0 ms 76.7 ms 

0.30 97.2% 99.9% 99.2% 99.4% 60.4 ms 64.1 ms 71.9 ms 72.9 ms 

0.35 98.5% 100.0% 99.8% 99.5% 45.4 ms 46.0 ms 51.7 ms 61.3 ms 

0.40 98.3% 100.0% 100.0% 99.3% 38.8 ms 40.6 ms 44.1 ms 48.9 ms 

0.45 89.6% 98.7% 97.1% 93.2% 30.0 ms 32.9 ms 35.4 ms 37.0 ms 

Table 3 

Impact of different latencies. 

Technique Latency Accuracy(%) Avg. time (ms) Min. time (ms) Max. time (ms) Slowdown 

Proposed High latency 100.0 55.21 30.05 121.98 1.360 

Lossy link 100.0 42.88 23.34 94.73 1.056 

Bad link 100.0 57.76 31.44 127.62 1.423 

[25] Highlatency 100.0 71.25 54.70 115.85 1.402 

Lossy link 99.5 69.48 53.34 112.98 1.368 

Bad link 99.4 84.63 64.97 137.61 1.666 

[2] High latency 99.9 137.38 84.95 205.10 1.485 

Lossy link 99.4 178.78 110.55 266.92 1.933 

Bad link 99.3 185.61 114.78 277.11 2.007 

[7] High latency 99.4 130.50 89.75 221.00 1.498 

Lossy link 99.4 166.82 114.72 282.50 1.915 

Badlink 99.3 176.68 121.51 299.20 2.028 
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the extra information may actually introduce more data noise in

the system, rendering a worse assessment accuracy performance.

Therefore, {5, 5} is suggested by the parameter sweep as the opti-

mal values for { T , T } considering the system performance. 

4.3. Impact of different latency patterns 

In real-world applications, various WAMS can have different

underlying communication infrastructures, rendering different la-

tency values. In this test, the impact of this factor on the assess-

ment speed and accuracy is investigated. Specifically, we modify

the benchmark latency data employed in Section 4.1 (tagged as

“benchmark”) and develop the following scenarios for analyses: 

• Highlatency : All latencies are increased by 50% from their

benchmark value. This scenario emulates WAMS with high la-

tency but stable communication links. 

• Lossy link : All latencies retain their benchmark value, but ran-

dom 30% of the measurements have their latency values in-

creased by 100%. This scenario emulates WAMS with unstable

communication links. 

• Bad link : All latencies are increased by 50% from their bench-

mark values, and 30% of the measurements have their latency

values increased by 100%. This scenario combines the previous

two to emulate a quite bad communication infrastructure. It

can be considered as a worst case scenario. 

Other experimental configurations are identical as in

Section 4.1 and the simulation results are presented in Table 3 . In

this table, the TSA results on the 1250 test cases are presented.

The average, minimum, and maximum system response times are

listed, together with the averaged slowdown of the respective

latency compared with the benchmark scenario in Section 4.1 . A

smaller slowdown value indicates that the respective mechanism

is less influenced by the changed latency. 

From the table it can be concluded that while the system re-

sponse speed is negatively influenced by the increase of commu-

nication latency, the proposed mechanism can still develop TSA

results within a satisfactory period of time. Specifically, the sys-

tem response time is notably influenced in the High Latency and

Bad Link scenarios, in which the communication latencies are sta-
le and slow. In the meantime, although the average measurement

atency is increased by 30% in the Lossy Link scenario, the response

ime slowdown compared with the benchmark scenario is not sig-

ificant. This demonstrates the capability of the proposed mecha-

ism in handling unstable communications of WAMS, contributed

y the data pre-processing of SRPF. In addition, it can be observed

hat the assessment accuracy remains 100% for different latency

alues, which presents the outstanding transient stability identifi-

ation capability. 

Furthermore, we also adopt the previous TSA techniques and

est them with the different scenarios. The simulation results are

ompared in Table 3 . It can be observed that both techniques can

andle the High Latency scenario with a reasonable response time

lowdown. However, the performance deteriorates if random mea-

urements experience latency spikes. This is due to the design of

he respective techniques. In [25] , TSA is conducted based on a

main block”, which can accept system states with data loss, and

ultiple “ensemble blocks”, which require the complete data of a

re-defined subset of system states. Hence when latency spikes de-

ay the measurements, these “ensemble blocks” need to wait for

heir arrival before making assessments, rendering a slow response

ime. For the techniques in [2,7] , complete system states are always

equired by the systems. Therefore they also suffer from the same

roblem. From this comparison it can be concluded that the pro-

osed TSA outperforms the compared techniques, especially when

he communication latency in WAMS is unstable. 

.4. Measurement noise sensitivity test 

In the previous analyses, it is assumed that the measurements

eveloped by WAMS can accurately reflect the system state, i.e.,

o data noise is recorded. In the meantime, these synchrophasors

uffer from sam pling error issues in practice [2] . According to

EEE Standard for Synchrophasor Data Transfer for Power Systems

C37.118.2–2011) [32] , the total vector error (TVE) for all syn-

hrophasors complying with the standard should be no greater

han 1%, and many existing PMUs can achieve the accuracy, see

33] for an example. In this section, we investigate the impact of

andom sampling error on the performance of the proposed TSA

echanism. We follow the approach in [2,34] to construct noisy
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Table 4 

Accuracycomparison with noisy measurements. 

Technique ε

0.2% 0.5% 1.0% 2.0% 

Proposed 100.0% 100.0% 100.0% 99.9% 

[25] 100.0% 99.9% 99.9% 99.6% 

[2] 99.9% 99.9% 99.8% 99.4% 

Table 5 

Results on 50-generator 145-bus system. 

Dataset Accuracy(%) Avg. time (ms) Min. time (ms) Max. time (ms) 

Testing 100.0 51.2 34.0 121.3 

Training 99.9 50.9 36.4 130.4 
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ower system dynamics data based on the benchmark training

nd testing cases. Specifically, a noise phasor �V � �θ is randomly

ampled from a truncated complex Gaussian distribution for each

easurement: 

 (�V ∠ �θ | 0 , ε2 ) 

= 

⎧ ⎨ 

⎩ 

9 × (π(1 − e −9 ) ε2 | V ∠ θ | 2 ) −1 exp (− 9 | �V ∠ �θ | 2 
ε2 | V ∠ θ | 2 ) 

if | �V ∠ �θ | ≤ ε| V ∠ θ | 
0 otherwise 

, (6) 

here V � θ is the simulated voltage phasor, and ε is the expected

aximum total vector error. Then the new noisy voltage phasor
˜ 
 ∠ ̃

 θ can be calculated by imposing the noise phasor on the

riginal one: 

˜ 
 ∠ ̃

 θ = V ∠ θ + �V ∠ �θ. (7) 

he noisy data is employed for both training and testing the pro-

osed mechanism, and all other simulation configurations remain

he same from previous tests. 

The simulation results on the testing cases are presented in

able 4 . In this test, ε is set to 0.2%, 0.5%, 1.0%, and 2.0% to em-

late PMUs with difference levels of accuracy. The simulation re-

ults of the techniques in [2,25] on the same data are also pre-

ented for reference. From the table, it can be observed that the as-

essment accuracy is slightly undermined by the data noise when

he noise ratio is notable (2%), yet the performance degradation is

iniscule. Furthermore, if PMUs are designed to comply with the

EEE C37.118.2–2011 standard, the proposed mechanism is not in-

uenced by data noises. To conclude, the proposed SRPF-based TSA

echanism can achieve perfect assessment accuracy when PMUs

rovide reasonably accurate measurements, and can still achieve

atisfactory assessment performance when analyzing data with

ignificant noises. 

.5. Large power system test 

In all the previous simulations, the New England 10-machine

ystem is employed, which is a relatively small power system.

o evaluate the system performance of the proposed mechanism

n large-scale systems, a large power system with 50 generators

nd 145 buses [35] is tested in this simulation. The same method

o generate training and testing datasets is employed to develop

0,0 0 0 contingencies. The simulation is performed with the same

onfiguration as in Section 4.1 , and the results are presented in

able 5 . 

Compared with the results presented in Table 1 , the system per-

ormance of the proposed mechanism on the large power system

emains satisfactory. In both systems, the TSA accuracy on testing

ataset is 100%. Meanwhile, as more information is required by

SA on large systems, the system response time in Table 5 is gener-

lly longer than that for New England 10-machine system. Despite
his, the required time is still short enough to facilitate subsequent

emedial control actions. Both results outline the high applicability

f the proposed mechanism on large systems. 

Besides the accuracy and system response time, it is worth not-

ng that the training time for the system is also acceptable con-

idering the dynamic changes in power systems. When employing

he proposed mechanism in the New England 10-machine system,

he total training time is less than 40 min. The time increases to

pproximately one hour for the 50-machine large system. The fast

raining speed also makes the proposed mechanism robust consid-

ring significant changes to the power grid, since the system can

e quickly updated/re-trained online with new system measure-

ents for performance improvement. The detailed implementation

or the re-training process is beyond the scope of this paper, and

ill be investigated in the future. 

. Conclusion 

In this paper, a new TSA mechanism based on synchropha-

or recovery and prediction framework (SRPF) and deep neural

etworks (DNN) is proposed to provide timely and accurate TSA

esults for power system control and operation. Compared with

revious work, the proposed mechanism considers the stochas-

ic communication latency, which is a critical factor in system

esponse speed but usually overlooked in the literature. Specifi-

ally, upon receiving post-contingency power system variable mea-

urements, the mechanism employs SRPF to recover other miss-

ng measurements which are still being transmitted. In addition,

ased on the recovered measurements, SRPF further develops fu-

ure system states for assessment. The recovered and predicted

ystem states are input into a deep GRU network-based TSA sys-

em for assessment. By extracting both spatial and temporal data

orrelations, the proposed system can develop accurate TSA results

ithin a short computation time. 

In order to evaluate the performance of the proposed TSA

echanism, the New England 10-machine system and a 50-

enerator 145-bus system are employed in the case studies. All

imulations indicate that the proposed mechanism can achieve a

atisfactory assessment accuracy with a short response time on

ifferent scales of power systems, considering communication la-

encies. In addition, the impact of different latency patterns on the

roposed mechanism is investigated. The results reveal that the

roposed mechanism can be applied to WAMS with bad communi-

ation infrastructures without significant performance degradation.

ast but not least, the sensitivity of control parameters is studied

hrough a parameter sweep test. 

Future work will focus on two topics. The predictors employed

n this work are the positive sequence voltage phasors. It is pos-

ible that a wide range of other predictors can develop better ac-

uracy and/or response time [36] . In addition, in this work a GRU-

ased DNN is constructed as the TSA system. With the rapid de-

elopment of deep learning techniques, new and advanced neural

etwork structures can be adopted [37] . 
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