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Abstract—Electric vehicle (EV) dynamic wireless charging
system has become an emerging application in the area of the
intelligent transportation system (ITS). However, an integrated
design of EV dynamic wireless charging system requires the
considerations of both the economical and technical perspectives
of a smart city. Specifically, most of the existing researches unilat-
erally considers the application of either placement strategy for
power tracks (PTs) or dynamic vehicle-to-grid (V2G) scheduling.
In this paper, we propose a multi-stage system framework to
account for an integrated EV dynamic wireless charging system
in a smart city. First of all, an optimal placement strategy
for PTs is developed based on city traffic information and
EV energy demand. Then, having the optimal locations of PTs
through the previous stage approach, the proposed dynamic V2G
scheduling scheme is formulated to coordinate the schedules of
EVs with the provision of daytime V2G ancillary services. Our
simulation results present that the proposed multi-stage system
model achieves improvements on both the placement strategy
and V2G scheduling scheme. In addition, relatively low economic
system costs can be obtained through our proposed model.

Index Terms—Ancillary service, dynamic wireless charging,
electric vehicles, vehicle-to-grid scheduling.

I. INTRODUCTION

N the recent years, wireless charging systems have been

widely applied in a smart city. By Internet of Things
(IoT) devices, wireless charging systems become a crucial
component in intelligent energy management for an urban
area [1]. The primary purpose of these systems is to provide
convenient and efficient energy services to electric vehicle
(EV) customers in a smart city. Compared to traditional wired
charging systems where one wired charging pile only serves
with a single EV, wireless charging systems can provide
energy service to multiple participated EVs in a more flexibly
way [2]. Specifically, wireless power transfer (WPT) tech-
nique, referring to wireless power transmission empowered
by electromagnetic technologies, enables EVs to generally get
charged wirelessly via remote devices equipped in the system.
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EV wireless charging systems can be categorized into two
main types, namely, stationary and dynamic wireless charging
systems. Stationary wireless charging systems are operated to
transfer energy when EV is parked over fixed couplers, e.g. [3]
and [4]. A number of research studies focus on designing the
wireless charging schemes under the EV stationary wireless
charging system [5], [6], and [7]. For instance, a practical
wireless charger prototype in [5] was developed for stationary
wireless charging with high efficiency, which improved the
compactness of the system. Then, an economic dispatch prob-
lem was formulated in [6] for satisfying EV charging demands,
which modeled EV mobility as a queuing network. Besides, an
optimal charging framework for electric buses was proposed to
minimize the system operational cost by considering stationary
charging activities at multiple stations in [7]. Nonetheless, the
waiting time for EVs to fulfill the charging requirements is
relatively long with the stationary solutions. Also, EVs are
required to be parked when they are charged to ensure the
on-going process of energy transfer services, which limits the
EV traveling schedules.

The promising application of dynamic wireless charging
systems can indeed tackle with the issues above. Such systems
enable EVs to charge while they are in motion over the
dynamic charging facilities. There are several studies propos-
ing dynamic wireless charging system models [8]-[13]. In
particular, the hardware of dynamic wireless charging systems
were investigated in [8] and [9] based on the coil design,
whose energy efficiency was illustrated through practical
demonstrations. Additionally, EVs can be operated to charge
in motion under multiple route plans, whereas power tracks
(PTs)-the power supply units-are embedded beneath the traffic
roads for energy transfer processes [10]. By having such
techniques, dynamic charging protocols can be further applied
in dynamic EV charging systems. For instance, the application
of dynamic EV charging system for the slow moving traffic
conditions was studied and demonstrated in [11]. Furthermore,
in [12], a joint model with intelligent routing and EV dynamic
charging was proposed to consider the eco-routing scheme
while fulfilling the energy requirement of EVs through the
system. [13] developed an electric roadway system for long-
distance vehicular travels under limited battery capacities and
charging rates. However, the placement strategy for PTs in the
system is neglected. Moreover, these studies lack the budget
constraints on placing PTs.

The design of an integrated dynamic EV wireless charging
system requires both the economical and technical analysis
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of the placement strategy of PTs in the city traffic network.
Several existing researches have investigated the placement
strategy of PTs in a smart city, see [14], [15], [16], and
[17] for some examples. In [14], the optimal transmitter coils
in a road was designed based on the consistent coupling
coefficient. Moreover, [15] investigated the optimal solutions
of the charger placement strategy by solving practical issues,
such as huge deployment cost and charging delay for different
levels. Besides, [16] developed a sequential two-level plan-
ning approach for finding the optimal locations to install the
dynamic wireless charging facilities. Last but not least, [17]
studied the placement strategy related to the EV optimum path
selection based on minimizing of the total travel distance or
time. Although the existing studies succeed in computing the
optimal locations for placing these facilities in relatively large-
scale city traffic networks based on the economical and road
traffic constraints, they do not involve the effect of EV energy
demand on the placement strategy. The available capacity of
city energy services is correlated to EV energy demand.

When considering EV energy demand in the city, the
interaction between EVs and the smart grid system is critical.
The EV charging control scheme is primarily operated by
the power grid. Hence, EVs can bring substantially impact
of a demand-side management to the grid through dynamic
wireless charging. For instance, [18] studied the potential
benefit of demand-side management system when considering
EV dynamic wireless charging. Besides, EVs are capable
of providing different ancillary services to the city smart
grid since EV batteries can be regarded as collectively mo-
bile power storage. By considering the vehicle-to-grid (V2G)
technique, EVs can be coordinated to return energy to the
grid by providing ancillary services. In [19], a coordinated
parking system was designed for EVs, as well as supporting
V2G ancillary services. Considering the wireless charging with
the provision of V2G ancillary services, [20] illustrated that
wireless charging can be triggered to fulfill V2G requirements
by vehicular communications, e.g. Honda feasibility study
[21]. Thus, the provision of daytime V2G ancillary services
in EV dynamic wireless charging system can further help
stabilize the smart grid [22], [23]. In addition, having the
information of daytime driving plans of EVs, the city system
operator can easily control a fleet of EVs in providing the
daytime V2G ancillary services. Since most of the existing
research studies do not consider the provision of V2G ancillary
services into EV wireless charging systems, in this work, we
consider the provision of V2G ancillary services in dynamic
wireless charging system in a smart city.

To bridge the research gaps related to the planning and
operation of the current charging systems, in this work, we
construct an integrated EV dynamic wireless charging system
with the consideration of the facility locations and operations.
Specifically, a multi-stage framework for joint optimal placing
PTs and V2G scheduling for particular groups of EVs in a city
is proposed. The major efforts of this research work are shown
as follows:

1) We develop a multi-stage system model to account

for EV dynamic wireless charging system in a smart
city. This model is more general and practical than
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the existing studies since the cost-effective approach is
developed within the feasible regions.

2) We propose an optimal placement strategy for installing
PTs at the first stage, which is based on the city traffic
information and energy demand. This contributes to a
large economic benefit in the wireless charging system.

3) We formulate the proposed dynamic V2G scheduling
framework at the second stage by considering the pro-
vision of daytime V2G ancillary services. This helps to
understand how EVs and the system operator interact in
the energy market.

4) We discuss the merits and effectiveness of the proposed
multi-stage system model. We find that through the
proposed integrated system, the optimal social welfare
of the entire system can be achieved. Furthermore, the
effectiveness of the V2G regulation services can also be
guaranteed.

The rest of this paper is organized as follows. Section
IT presents and illustrates our multi-stage system model. In
Section III, we formulate an optimal placement strategy for
PTs in a city. By receiving the optimal placement strategy for
installing PTs, the dynamic V2G scheduling, is then proposed
in Section IV. In Section V, we conduct the performance
evaluation of the proposed system model. Finally, we conclude
this work in Section VI.

II. SYSTEM MODEL

This section presents four essential parts of the multi-stage
framework, including the road network of a smart city, EVs,
PTs, and system overview. The details of each component are
illustrated as follows.

A. Road Network

The road network is developed to represent the physical
connections from one location to another inside a city. For
ease of representation, the road network is modeled by a
directed graph G(V,E), where V denotes the set of nodes to
indicate the intersection points among different road segments.
In addition, & represents the road paths connecting the nodes.
We define d;; as the travel distance from Node 7 to Node
j for every road segment (i,j) € £. Note that, if Node i
and Node j are not adjacent, the travel distance d;; may
not be equal to dj;; due to the different routing plans. To
evaluate the shortest distance for traveling from the departure
point to the destination point, we adopt Dijkstra’s algorithm to
obtain the routing plans for the vehicles. Furthermore, inside
a city, both wired and wireless charging stations are located
in the city road network. The wired charging stations refer
to the set of actual parking garages or parking lots with
the installations of wired chargers. For the wireless charging
stations, there are two main types, stationary wireless charging
stations and dynamic wireless charging systems. The former
is similar to the wired charging stations but with wireless
charging pads installed at parking spaces while the latter one
refers to the installations of PTs over the road paths in the city
network. In this work, since we focus on the design of the EV
dynamic wireless charging system and the charging protocols
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Fig. 1.

Qualcomm’s dynamic charging technology [26]

are different for EV wired and wireless charging, we only
consider the installations of PTs in the city road network.

B. Electric Vehicles

Considering their mobility behavior, EVs, known as vehicles
with batteries equipped, can collectively be considered as a
large city mobile energy storage. Due to the quick start and
fast response characteristics of EV batteries, they can follow
power control signals to provide various types of ancillary
services in the city [22], such as frequency regulation service.
The power control signals are defined as the coordination
commands from the system operator so as to control the
subordinate EVs. Specifically, the system operator broadcasts
a uniform control signal to optimize and report the subordinate
EV charging/discharging schedules. The purpose of frequency
regulation service is to keep the grid frequency close to the
nominal value to maintain the stability of the smart grid. By
considering the EV batteries in the smart grid, a group of EVs
is capable to collectively bring in a substantial capability for
providing the frequency regulation service.

C. Power Tracks

PTs refers to an energy supply unit of roadway powering
systems. One of the real testbeds of PTs is shown in Fig. 1, i.e.,
Qualcomm’s dynamic charging technology. Fundamentally,
PTs are based on the near-field electromagnetic induction-
based WPT technique. It consists of two main types, namely,
magnetic induction and electrostatic induction [24], which is
determined by different power levels and gap separations. PTs
are typically installed on the road segments of a city road
network, and they enable the WPT technique for EVs to both
charge and discharge wirelessly. The set of PTs in a city is
denoted by K. Each PT k € K is embedded beneath every
road segment (i, j) € £. According to [25], a single standard
coil-set for SAE J2954 charging standard is applied for the
WPT Power Class 1 and 2 to 7.7kW.

D. System Overview
The overall system involves interactions between two cru-

cial smart systems in a smart city, namely, the intelligent
transportation system (ITS) and the smart grid. ITS mainly
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deals with the mobility of vehicles in a city, while the smart
grid system tackles with the charging operations of EVs.
Through the information sharing between these two smart
systems, the coordination of EVs can be associated with
joint mobility and charging operations. Specifically, under this
system, EVs can jointly complete their own travel plans and
fulfill the charging requirements.

Consider a simplified scenario given in Fig. 2 which shows
a travel plan of a particular EV n. We set a specific routing
plan from initial point to Point j. In the beginning, an EV
with around 50 % battery level at the initial point. When
it arrives at Point i, it depletes around 25 % battery level
since it involves multiple driving schedules in a relatively
long distance. In order to complete the remaining of EV’s
schedules, it can choose to travel over the road segment with
PTs installed with joint charging and moving. For instance,
as Fig. 2 shown, PT k is used to placed between Point i to
Point j. Here, we consider the case that PT k is relatively long
and EV participates various driving schedules during these
two points. By having such implementation, EV can fulfill
around 25 % battery level. Besides the scheduling operation
of EVs in a smart city, to better facilitate such implementation,
efficient placement strategies for PTs are needed based on the
information of the traffic networks and EV conditions.

The proposed multi-stage system model consists of two
main stages: I) optimal placement strategy for PTs and II)
dynamic V2G scheduling. The flowchart of the system model
is shown in Fig. 3. Initially, the system operator collects
and analyzes the traffic information from ITS and energy
demand from the smart grid, respectively. Then, the system
operator carries to perform optimal placement strategy for
installing PTs on the road segments at Stage I. The PT
placement solutions can be obtained by considering the city
road networks, flows of EVs, and EV energy demands. Making
use of the optimal placement solutions for PTs at Stage I,
the EV dynamic V2G scheduling scheme is thus proposed at
Stage II. Meanwhile, EV customers have their preferences on
participating in dynamic V2G scheduling or only performing
vehicle traveling. In addition, the provision of daytime V2G
ancillary service can further be deployed to stabilize the
stability of the city smart grid. The final commitment of V2G
ancillary service is reported to the smart grid so as to verify the
effectiveness of the provision of the daytime ancillary services.
For this multi-stage system framework, the utilization of PTs
can help EVs both complete their travel plans and charging
plans in a joint and efficient manner. The dashed lines shown
in Fig. 3 indicate the information flows occurred in this system
while the solid arrows represent the system operation flows.

III. OPTIMAL PLACEMENT STRATEGY FOR POWER
TRACKS

As discussed in Section II-D, the first stage problem is to
investigate the optimal placement strategy for installing PTs
on the city road networks. The problem formulation is shown
as follows. The related parameters and variables are presented
in Table L.
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Fig. 2. A time slot conversion example.
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Fig. 3. Proposed system model.

A. Placement Strategy Constraints

We first define a binary variable xfj to indicate that PT

k € K is installed at the road path (i, j), as follows:

& 1 if PT k is installed at path (i,j) € £
Tij = . (D
0 otherwise

In the EV dynamic wireless charging system, each PT is
designed to be installed on the city road segments. To ensure
that an EV arrives at the final destinations fulfilling the energy
requirements, the case of wireless charging through the PTs
are required during the traveling period. To let EV charge in
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TABLE I
TABLE OF NOTIFICATIONS IN PROPOSED OPTIMAL PLANNING STRATEGY.

% Index set of nodes
\% Total number of nodes
£ Index set of road paths
K Index set of PTs
N Set of EV groups
z¥; Binary variable for placing PT k at path (4, 5)
v Departure point for EV n for each route
Ly Destination point for EV n for each route
P*(1) Power demand of PT k at Time ¢
FEnin Minimum required energy for EVs’ charging operations
Vi Installation cost for PT &
dij Physical distance for path (3, j)

motion, there is at least one PT installed on the city road
segments. This can be ensured by having:

Sk 1 @)

k.i,j

By considering the vehicular routes in the city, the network
flow model needs to be implemented. The utilization of this
model is to ensure the feasibility of installing each PT on road
path (4, j), which further elaborates the potential placement of
PTs by following the bi-directional traffic flow on this road
path. Hence, for PT k € I, the relation between the number
of incoming paths and the number of out going paths can be
guaranteed by

L if =L, L7 # Ly
foj—zl‘?i: -1 itj=L2LY ALY (3)
iey ey 0 otherwise

where £} and L7} represent the departure and destination point
for EV n € N at each route. Also, the first two conditions
ensure the directional placement of PTs on road paths, which
are based on the traffic flows of the road network. The last
condition ensures no PT installation on this road path since
the number of incoming edges is equal to number of outgoing
edges.

In addition, the energy demand of PTs in the wireless
charging system is directly related to the amount of energy
needed for charging all participated EVs in the city. Let P*(t)
be the power demand of PT k at Time ¢. Hence, during the
time period 7, the city energy demand is associated with the
utilization of PTs, which can be expressed as

> ali PP)AL > Eyin, Yk € Kt €T, (i,j) €€ (4)

t.k,ij

where Eyi, denotes the minimum energy required for charging
all participated EVs in the city.

B. Formulation of Optimal Placement Strategy

The proposed optimal placement strategy of PTs is devel-
oped based on the demand for EVs traveling and charging.
Different from other existing formulations of charging station
placement strategies, we incorporate the energy demand of
EVs in (4), so as to link the case of scheduling EVs with the
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provision of daytime V2G ancillary services at the second
stage. For the first stage, the purpose is to investigate the
efficient strategy for placing PTs in the road segments of the
entire city. Here, we assume that the travel pattern of every
EV is known after the execution of Stage I. To approach it,
the control objective of this problem aims to minimize the
budget for placing the PTs in the city area while satisfying
the energy requirements. The budget function is associated
with the placement costs for PTs in the city, which can be
expressed as:

CPlacement =

> rdyal )
keK,(i,5)€E
where 15, represents the installation cost for a single PT on
each road segment.

By incorporating the operational constraints into the pro-
posed optimal placement problem, the optimization problem
is formulated as follows:

(6a)
(6b)

minimize Cpacement
subject to (1) — (4)

The proposed optimal placement problem in (6) is for-
mulated as a mixed-integer linear programming (MILP). Al-
though this problem is NP-hard, many commercial solvers,
such as gurobi and mosek, can be utilized to efficiently
provide approximate solutions. The utilization of these solvers
can provide an approximate solution to the problem in an
efficient manner [27]. There are metaheuristics methods like
evolutionary algorithms that can solve the proposed problem.
Nonetheless, mosek can guarantee a provable upper and lower
bounds for the global optimal solution, therefore is preferred
in this work. In addition, the sub-optimal solution can be
converged through a finite number of steps.

IV. DYNAMIC VEHICLE-TO-GRID SCHEDULING

As discussed in Section II-D, based on the optimal so-
lIution of Stage I, we develop the optimal wireless charg-
ing/discharging strategies for the participating EVs in the city
at the second stage. The problem formulation is presented
in the following. The related parameters and variables are
presented in Table II.

A. Wireless Charging/Discharging Constraints

The system operation of dynamic V2G scheduling depends
on the planning strategy for power tracks installed in the
city road paths. We first define the time-varying route plan
of EV n as y/(t) at Time ¢, which corresponds to the
optimal placement strategy J;fj* that is developed from Stage
I. Otherwise, without the prior information about the PT
placement strategy, the charging/discharging schedule cannot
be determined. Meanwhile, the optimal travel plan of each
EV is also gained so that the amount of periods between
every EV and in-touch PTs is known. In the second stage, we
make use of these two information to schedule the dynamic
wireless charging for the particular groups of EVs that users
prefer to participate. The rest of EVs are regarded as the
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TABLE II
TABLE OF NOTIFICATIONS IN PROPOSED DYNAMIC V2G SCHEDULING.

ynm (1) Time-varying route plan of EV n at Time ¢
T Index set of timeslot
Nr Total operation time period
Ngv Total number of EVs
P,(t) Active power of EV n at Time ¢
P dch Discharging power limit of EV n
P ch Charging power limit of EV n
SOC,(t) State-of-charge of EV n at Time ¢
At Length of a time slot.
Capn Installed battery capacity of EV n.
Neh Charging efficiency
Ndch Discharging efficiency
di; (t) Travel distance of EV n for path (7, ) at Time ¢
vy (t) Travel velocity of EV n for path (¢, ) at Time ¢
075(t) Delay parameter for path (7, ;) at Time ¢

Bn Unit energy consumption of EV n

SOC ini Initial state-of-charge of EV n
SOCh req Charging requirements of EV n
SOCH min Lower bound of state-of-charge for EV n
SOCH, max Upper bound of state-of-charge for EV n
Po(t) Total active power of the city area at Time ¢
P (1) Regulation signals at Time ¢
Qn Unit cost for operating EV n
Yn Charging/discharging cost for EV n
13 Reward for providing daytime regulation service

group that only considers traveling in a road network without
wireless charging/discharging. During the participation time
period 7, the participating electric vehicles must fulfill the
system requirements related to charging/discharging behaviors.
In addition, since we consider the provision of daytime ancil-
lary services in the city region, the stability criterion of the
city smart grid system should also be achieved. The operation
bounds for charging and discharging powers of EV n follow:

Pn,dch S Pn(t)y;;(t) S Pn,chy Vn € N,t c T (7)

where P, ¢cn < 0 and P, ¢, > 0.

Then, when EV n participates in dynamic scheduling opera-
tion at each time slot, it performs charging/discharging activity
as it is connected with the power tracks. Hence, the state-of-
charge (SOC) of each participated EV n € N at Time ¢ can
be calculated by:

At
Capy,

SOC,(t+ At) = SOC,(t) + n(P,(t))Pu(t), t€T

®)
where Cap,, represents the battery capacity of EV n, and
7(-) denotes the energy efficiency of the charging/discharging
power of each EV, which is calculated by:

P €))

(Pa(t)) = {”‘f‘

Tdch

where 7cn, Nach € (0, 1] represents the charging and discharg-

ing efficiencies of each participated EV n, respectively.
Since EVs are traveling in the city area, we define the travel

distance of EV n from Point ¢ to Point j as d}’;. Then, the time-
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varying energy consumption of the battery level of EV n at
Time ¢ can be expressed as:

Bn
Capy,

where 3, denotes the unit energy consumption factor of EV
n.

SOC, (t + At) := SOC,(t) —

i (t) (10)

For the travel velocity from Point 7 to Point j at Time
t over the road segment (i,j) € &, we denote it as v} (t)
for EV n. In practice, the real-time traffic conditions of the
city network may affect the EV actual routing plans. Once
the immediate changes in road condition happened, the travel
velocity of EV n is indeed influenced. Hence, we define the
delay parameter 6;;(t) to indicate whether the sudden traffic
congestion occurred over the road segment (i,j) at Time ¢
or not. The delay parameter is related the time-varying travel
speed of the road segment for EV n, Then, we have

dij(t) = (vi5(t) — ;5 (1) At, Yn e N, (i,j) € £ (11)

Apart from completing the routing plans for each EV n,
it also fulfills the energy requirement of charging/discharging
scheduling through the connections of wireless power tracks.
The energy requirement is associated with the required SOC
level of each EV n. Let SOC,, iy be the initial SOC of EV
n at the source location and SOC), ;q be the required SOC
level of EV n, respectively. Suppose SOC,,(Nt) be the final
SOC of EV n at the end of the total time period, and then,
the fulfillment of the charging requirement before reaching the
destination is denoted by

SOC,(N7) > SOCyini + SOChreq, YR €N (12)

Furthermore, for the charging/discharging operation of each
EV n, over-charging and deep-discharging scenarios, should
be avoided. Therefore, the operational bounds of SOC at Time
t should follow

SOC) min < SOC,(t) < SOC, max, Yn e N (13)

where SOC), min and SOC,, max denote the lower and upper
bound of SOC of EV n, respectively.

Before the problem formulation of the proposed dynamic
V2G scheduling, the following assumptions are adopted in
this paper:

1) Each EV reports its own travel plans with charging

requirement during the participation period.

2) Frequency regulation service is zero-energy service,

since the expectation of the required energy is zero for
a relatively long time period.

The related studies have adopted the first assumption fre-
quently, see [28], [29], and [30], while the second assumption
is related to the forecast errors of the grid power upon
frequency regulation requests [31].

B. Formulation of Dynamic Vehicle-to-Grid Scheduling

The proposed dynamic V2G scheduling framework is for-
mulated to consider the V2G scheduling problem. The V2G
scheduling is associated with the operation of the dynamic
wireless charging system on handling all participated EVs

6

when traveling inside the city area. By considering the sys-
tem operation, the operational cost related to managing the
participated EVs traveling inside the city area is needed to be
considered. It is affected by the route plan of EV n, which
directly affects the value of d};(¢) at time ¢. Hence, this cost
function can be expressed as

>

neN teT,(i,j)€E

COperalion = O‘nd?j (t) (14)

where «, indicates the unit operational cost for managing EV
n in the city area.

Furthermore, besides the system operational cost, the pro-
posed scheduling scheme involves V2G scheduling of the
participated EVs during the time period 7. The mechanism
of V2G scheduling incurs the cost of charging/discharging
activities of EVs. In addition, the provision of daytime V2G
ancillary services can be implemented to further keep the
system’s stability. In this work, we study the V2G scheduling
with the daytime frequency regulation service to alleviate
the active power fluctuations of the city smart grid, in order
to keep the grid frequency within a stable region. Hence,
for the proposed dynamic V2G scheduling, during the total
period 7, the control objective is to minimize the charging
costs of the participated EVs while generating the reward for
providing daytime V2G regulation service in the city smart
grid. This reward is directly associated with the quality of the
V2G regulation service. Therefore, the cost function for V2G
scheduling is formulated as follows

D Pu(t) = (R—€> (Pult)?)

neN teT teT
(15)

where y,, denotes the individual charging/discharging cost for
EV n, and R is the base reward for providing the daytime
regulation service in the city area with the penalty factor
¢ € (0,1] to investigate the regulation performance. P (7))
denotes the total active power profile of the city smart grid,
which is calculated by

Ptot(T) = Preg(T) + Pa (T)

where P, (7") denotes the regulation signals of the city smart
grid. P,(7) indicates the active power profile of EV n. In
addition, P4 (7) presents the aggregated active power of the
participated EV n in the city area, which is also obtained by

PA(T) == Z P,(T)

neN

C’Charging/Discharging =

(16)

A7)

To sum up, the optimization problem for dynamic V2G
scheduling is formulated as follows:

minimize C’Scheduling = OOperalion + CCharging/Discharging (183)
subject to (7) — (13) (18b)

Lemma I: The objective function (18) is convex.

Proof: As shown in (18), the objective function includes
two parts, Hamely, C(Operalion and OCharging/Discharging' For func-
tion Coperation, it belongs to an affine function. Then, since
C'charging/Discharging 15 @ quadratic function, it’s strictly convex.
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Therefore, it follows that the summation of an affine function

and a convex function is convex such that the objective

function (18) is convex. |
Lemma 2: The feasible set of (18) is convex.

Proof: The feasible set of (18) is associated with the
constraints (7), (12), and (13). The region of (7) is apparently
convex by definitions. Then, we first transform (12) to

Cap,
At

> n(P(t) Pa(t) At > (SOCyreq — SOC, ini) (19)

teT

Also, Constraint (13) can be transformed as follows:

3 0(Pu(t)) Pa(t) At > CZZZ" (SOChmin — SOCy i) (20)
teT

Capy,
> n(Pu(t) Pu(t) At > Ap (SOChma = SOCim) (21)

teT

We assume that there exist two points P, 1(7) and P, 2(7T)
satisfying the region of (19) and there exist A1, Ay € [0,1] to
satisfy A\; + Ao = 1. First of all, we define:

Pos(T)=MPui(T)+ XaPpo(T) (22)

Then, the following inequality holds:

NP3 ()P 3(t) = An(Po,1(t) Py (0)+A2n (P 2(1)) P 2(t)
(23)
The inequality constraint (23) indicates that P, s(7) also
satisfies (19). Since the region of (19) is equivalent to (12), we
prove that the feasible set defined by (12) is convex. Similarly,
the feasible set of (20) and (21) are also convex recursively
through different timeslots. To conclude, the feasible region
defined by the constraints (7), (12), and (13) is convex so that
the feasible set of (18) is convex. |
Theorem 1: The formulated problem in (18) is a convex
optimization problem.

Proof: According to [32], we use the proofs to Lemmas 1
and 2 to prove that the formulated problem in (18) is a convex
optimization problem. ]

The proposed V2G scheduling is developed in a centralized
manner so that the system operator broadcast the power control
signals to the participated EVs when receiving the traffic and
energy information. Considering the communication between
the system operator and the participated EVs, the number of
EVs connected may cause the communication burden and the
incast issue among the communication nodes simultaneously.
Hence, we need to define the communication overhead, which
is denoted as

CO=D-m-Np(Ngy +1) 24)
where D denotes the size of a one-dimensional control vari-
able, P,(7), and m is the number of iterations performed by
using the solver.
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V. PERFORMANCE EVALUATION

In this section, we assess the performance of the proposed
multi-stage system. First of all, we present the simulation
setup. Then, we conduct the scenarios for comparison in
simulation, as well as relevant performance metrics. After that,
we test the proposed system on its effectiveness and effect
to the city smart grid. Then, we investigate the economic
feasibility of the proposed model. Finally, we further examine
the impact of fleet size to the system.

A. Simulation Setup

In the simulation, we evaluate the performance of the
proposed model in Manhattan of New York city shown in Fig.
4. The investigated area (approx. 1300 m x 870 m) is captured
inside the red bounding box. In this area, there are totally 324
nodes and 378 road paths. The installation cost of one PT with
the length of 75 m is set to $40,000 per 100 meters following
[33]. To capture the EV mobility patterns, the operational
period is considered from 8:00 a.m. to 10:00 a.m., which can
be divided into N7 = 120 slots with At = 1 minutes. During
this time period, each EV performs multiple travel plans, and
the time gap for resting between two consecutive routing plans
is set to 1 min. The unit operation cost o, = $3.75 per
100 km, which follows [34]. Furthermore, in this work, we
investigate a specific daytime V2G ancillary service, namely
V2G regulation service. In order to present the effectiveness
of such service, during the investigated time period, we use
the regulation signal data on 1 September 2017 [35] with a
forecast error e(t) ~ N(0,0.3) [28]. In addition, we set the
base regulation reward to $40 per MWh following the PJIM
market standard [36]. The regulation capacity of the Manhattan
area is set to be 300 kW following [37].

The settings for EVs are shown in the following. Con-
sidering EVs traveling in the urban area, the unit energy
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consumption f; of each EV is set to 20 kWh per 100
kilometers. The averaged driving speed of each EV is set
to be 20 mph without sudden congestion conditions. In this
work, we consider two types of EV groups with Ngy = 200,
Chevrolet Volt with 18.4 kWh [38], and Nissan Leaf with 40
kWh [39]. Here, we assume the entire two groups of EVs
participating dynamic V2G scheduling so as to present the
desired system performance. The charging standard follows
SAE J2954 under the WPT Power Class 1 and 2 [25]. Based
on the standard, we limit the discharging and charging power
to -7 kW and 7 kW, respectively, and the charging/discharging
efficiency is set to 0.9. According to [29], we model the SOC
settings of EVs based on the uniform distribution. In particular,
the initial SOC of EV n follows U[30%, 40%], and the
charging requirement of EV n follows U[0%, 20%]. The safety
condition of the charging/discharging mechanism is considered
where the minimum and maximum SOCs follow U[10%, 20%]
and U[90%, 99%], respectively. Besides, the charging price is
set to $0.59 per kWh, which is in accordance with the actual
price in Manhattan. The simulation is conducted in MATLAB
Release 2017a through the mosek optimization solver under
the yalmip toolbox.

B. Scenarios for Comparison

For evaluating the effectiveness of the proposed system
model, we consider three different scenarios in comparison,
which are shown as:

1) S1: proposed dynamic V2G scheduling under optimal
placement strategy

2) S2: proposed dynamic V2G scheduling under fixed
placement strategy

3) S3: optimal V2G scheduling at fixed charging stations

The proposed dynamic V2G scheduling under optimal place-
ment strategy for PTs is denoted by S1. In S1, we perform
different vehicular route patterns under 100 random cases
to generate the optimal placement strategy. S2 presents the
proposed dynamic V2G scheduling under a fixed placement
strategy. Specifically, for the fixed placement strategy, we
consider that there exist the following two fixed placement
strategies, namely, “S2 with Main Roads” and “S2 with Full
Roads”. The former indicates that the PTs are only installed at
the main roads, including Sth Avenue, Park Avenue, Lexington
Avenue, 3rd Avenue, 2nd Avenue, 1st Avenue, and York
Avenue, which are shown as the green roads in Fig. 4,
while the latter one presents the case that all road segments
are placed equipped with PTs. These main roads are the
crucial intersected segments of multiple junctions with dense
vehicular flows. Different from the previous two scenarios, S3
only considers V2G service provided at the wired charging
stations located in the city area. In this case, we deploy the
optimal V2G scheduling framework in [37], and the exact
locations of the six charging stations in the Manhattan area can
also be found in Fig. 4. In this scenario, we set the parking cost
of these wired fast-charging stations to $5 per hour following
the actual Manhattan parking cost.
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C. Performance Metrics

We evaluate the variance of the total power profile P, of
the Manhattan area as one important performance metric. The
variance function of the active power profile of the city smart
grid is expressed as

Var(Ptot(T)) = NLT Z ((Ptot(t) — A}T(Z(Pwt(t))>
teT

= D P = 7 (3 Pl

teT T teT

(25)
A smaller variance value indicates a better performance in
providing the daytime V2G regulation service, which also
presents that the active power fluctuations of the city smart
grid can be better flattened.

D. Simulation Result

1) Effectiveness of Proposed System Model: The effec-
tiveness of the proposed multi-stage system framework is
evaluated based on the quality of the daytime V2G regulation
service provided in the city area. The quality of this service
is reflected by the total active power profile of the city smart
grid. During the complete time period, the regulation signals
of the system refer to the active power mismatches between
power generations and demands, which is shown by the blue
solid line in Fig. 5. In this figure, we can observe that our
proposed model (S1) outperforms the two baseline approaches,
including “S2 with Main Roads” and S3. The reason is that
EVs perform dynamic wireless charging only in motion of
the main roads in S2, while for S3, EVs are operated to
charge within the short parking period at the charging stations.
These two scenarios cannot thoroughly smooth the active
power fluctuations of the entire period, which are shown as
the magenta dashed line (S2) and the green triangle-solid line
(S3) in Fig. 5. Comparing the cases of “S2 with Full Roads”
and “S2 with Main Roads”, “S2 with Full Roads” yields a
better performance. The reason is that “S2 with Full Roads”
enables all road segments placing PTs so that when EVs are
traveling inside a road network, they always contact with PTs
to perform wireless charging/discharging. However, for the
case of “S2 with Main Roads”, EVs can only perform dynamic
V2G scheduling when they are traveling over the main roads.
Besides, “S2 with Full Roads” performs better than S1 because
this scenario does not consider the economical constraints
on installing PTs. Hence, our proposed model can not only
provide a relatively high quality of V2G regulation service but
also satisfy the economical budget constraints on installation
costs. Furthermore, a similar result can be presented in Table
III, which shows that S1 has a relatively low variance value so
that better performance on the provision of the daytime V2G
regulation service is obtained.

Besides, we further study the satisfaction of EV dynamic
charging of the proposed system model. Note that we define
ROE as the ratio of the energy requirement, which is calcu-

lated by
Ec
ROE — Ereq Ec < Ereqa
1 EC > Ereqa

(26)
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Fig. 5. Comparison of different scenarios in active total power profile.

TABLE III
COMPARISON OF DIFFERENT APPROACHES IN VARIANCE OF TOTAL POWER
PROFILE

Variance (k*W?)  ROE

Regulation Signals 3.31 x 10° -
S1 8.78 x 102 1

Scenarios

S2 with Main Roads 1.58 x 103 0.9501
S2 with Full Roads 9.75 x 10~ 1
S3 6.09 x 10° 1

where E¢ denotes the actual charged energy from EVs and
Erq is the required energy of EVs. When ROE = 1, it holds
that the charging requirement of each EV n € N is satisfied.
From Table III, we can observe that S1, “S2 with Full Roads”,
and S3 have ROFE = 1 on average, which means that they
can fulfill the EV charging requirements so as to indicate
the satisfaction of EV customers. “S2 with Main Roads” only
complete 95.01% of the charging requirements averagely due
to insufficient charging with limited PTs.

2) Effect of City Smart Grid: From the previous results, the
active total power profiles of different scenarios are gained.
We further study the system’s effect, especially the impact of
different scenarios on the grid frequency. Table IV presents the
effect of the grid frequency under different approaches. Note
that we utilize a frequency standard of 50 Hz for the grid.
Based on its operating requirements, the stable region of this
system is within [49.5,50.5] Hz, which presents a tolerance
bound at 1%. According to Table IV, we can observe that S1
and “S2 with Full Roads” can both satisfy the stability criteria
of the city smart grid system, while the other two scenarios
cannot keep the system stable. Indeed, S1 can keep the system
stable for the entire time period except for a few minor spikes.
Therefore, our proposed multi-stage system model can better
guarantee the stability of the smart grid.

3) Economic Feasibility: In this part, we evaluate the
economic feasibility of the proposed multi-stage system model
in comparison of the baseline approaches. Note that for S3, we
utilize the actual capital cost of installing the charging stations
at the specific locations. The cost of every single port at fast-

9

charging stations is approximately $51,000 [40]. Meanwhile,
we presume that all participated EVs are assigned at least
once to the fast-charging stations for charging during the total
participation time period. Based on the settings, we can obtain
the economical aspects of different scenarios. The result is
shown in Table V. By comparing different placement strategy,
S3 develops the highest installation costs while “S2 with Main
Roads” requires the lowest. For the case of “S2 with Main
Roads”, it only involves the PT placements at critical junctions
of the road network that are mentioned in Section V-B. The
reason is that S3 requires all roads to place PTs, which leads
to the highest capital costs. When considering the service
quality for providing the daytime V2G regulation service, S1
can contribute to cost-effective benefits by considering the
efficient dynamic V2G scheduling scheme with relatively low
installation costs. Hence, S1 can guarantee both economical
and technical benefits to the entire system.

In addition, we further investigate the averaged cost per EV
on dynamic V2G scheduling scheme. The result is presented
in Table VI. Clearly, S1 achieves a relatively low cost on EV
wireless charging scheme, which reflects that it can better en-
courage EV customers to participate dynamic V2G scheduling.
Besides, owing to the best performance in smoothing the active
power fluctuations of the city smart grid, “S2 with Full Roads”
yields a better result than S1 when the entire system do not
consider the budget constraint on placing PTs. This result is
consistent with the solutions shown in Section V-D1, which
further indicates the effectiveness of S1 for both economic and
technical aspects of the entire system.

4) Impact of Fleet Size: We further analyze the impact of
the EV fleet size on the performance of the V2G scheduling
scheme. In particular, we consider five different sizes of
EV fleets, including 50, 100, 200, 300, and 400 EVs. The
simulation result is shown in Table VII. As the size of the
fleet increase, the variance of the active total power profile
reduces dramatically. Additionally, the lower variance of the
total power profile indicates a more stable grid operation.
Besides, in the same table, we can observe that the operation
cost related to V2G scheduling decreases when raising the
size of the EV fleet. It apparently reflects that the better
performance on alleviating the active power fluctuations can
let EV customers pay less and receive more rewards on
providing the daytime V2G regulation service in the city
smart grid. Furthermore, we further study the communication
overhead related to different fleet size. Suppose the size of
one-dimensional control variable D = 8 bytes, and then the
results for average communication overhead C'O are 0.098
MB, 0.194 MB, 0.386 MB, 0.578 MB, and 0.770 MB for
these five cases individually, which follows (24).

5) Comparison of Different Placement Strategy: In this
part, we further investigate the effectiveness of the proposed
optimal placement strategy for PTs. The performance metrics
consist of the total budget cost on placing PTs and requirement
ratio that is calculated by % where FE,:q; denotes the
total EV energy demands. In ‘addition, a higher requirement
ratio indicates better performance in fulfilling the EV energy
demands. Note that the baseline placement strategy follows
the formulations from several existing approaches, such as
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TABLE IV
THE EFFECT OF GRID FREQUENCY UNDER DIFFERENT SCENARIOS

Performance Metrics

Scenarios Average (Hz) Variance (Hz?) Maximum (Hz) Minimum (Hz)
Regulation Signals 50 30.58 59.11 39.89
S1 50 0.06 50.03 47.43
S2 with Main Roads 50 24.09 59.55 41.31
S2 with Full Roads 50 7.13 x 1079 50.01 49.99
S3 50 3.15 53.27 46.75
TABLE V TABLE VIII
ECONOMIC FEASIBILITY OF DIFFERENT SCENARIOS. COMPARISON OF DIFFERENT PLACEMENT STRATEGY.
Scenarios Chlacement (SUSD) Metrics Proposed Strategy ~ Baseline Strategy
S1 6.00 x 106 Budget Cost ($USD) 7,929 4914
S2 with Main Roads 4.08 % 106 Requirement Ratio 90.0% 35.8%
S2 with Full Roads 1.02 x 107
S3 1.28 x 107
budget cost on placing PTs. Therefore, the effectiveness of the
TABLE VI proposed placement strategy is guaranteed.

IMPACT OF DIFFERENT SCENARIOS ON EACH EV.

Scenarios Averaged Cost per EV ($USD)
S1 19.86
S2 with Main Roads 37.33
S2 with Full Roads 8.01
S3 25.13

[17]. Based on [17], we change the objective function (5) to
Zkelc,(i,j)ef(tijx?j)’ which means that the objective aims to
minimize the time spent on traveling around the entire routes.
In the meantime, we do not consider (4) for this formulation.
The comparison result is presented in Table VIII. Although
the baseline approach achieves a lower budget cost on place-
ment strategy, the energy demand cannot satisfy the demand
of all participated EVs in the captured area of Manhattan.
Nonetheless, our proposed placement strategy can meet the
requirement of the EV energy demand with a relatively low

TABLE VII
IMPACT OF DIFFERENT SIZE OF EVS THROUGH S1.

Number of EVs ~ Variance (k*W?) Cscheduling (SUSD)

50 7.58 x 103 9.03 x 10°
100 1.95 x 103 2.35 x 10°
200 8.78 x 102 9.56 x 10*
300 5.02 x 102 1.51 x 102
400 3.95 x 102 1.18 x 10?

VI. CONCLUSIONS

In this paper, we propose a multi-stage system framework
to develop a novel EV dynamic wireless charging system in
a smart city. The multi-stage system jointly considers optimal
placement strategy for installing PTs in a city road network
and dynamic V2G scheduling. In the first stage, we formulated
an optimal placement strategy for PTs based on the city traffic
information and energy demands. Once the optimal locations
of PTs are obtained, the proposed dynamic V2G scheduling
scheme is developed in the second stage to coordinate the EV
schedules as well as provide daytime V2G ancillary services
to the city smart grid system. Simulation results indicate
that our proposed multi-stage system model outperforms the
baseline approaches with relatively low capital costs for the
system installations. In addition, the frequency of the city
smart grid can be further stabilized owing to the provision
of daytime V2G regulation service. Besides, the impact of the
different sizes of the EV fleets on the system is investigated.
For future work, we can extend several following parts into
the proposed integrated system model. First of all, since this
work does not consider the coexistence of both wired and
wireless charging mechanisms for EVs, we will develop a
general EV charging system that accounts for both wired
and wireless charging schemes. Then, we will investigate
the effect of this approach on the city power grid due to
the different EV patterns on performing wired and wireless
charging mechanisms. Furthermore, the proposed multi-stage
system framework can be implemented with by considering
real-time traffic conditions of the city road networks.
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