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Generative Adversarial Networks (GANs) are a remarkable creation with regard to deep generative models. Thanks to their

ability to learn from complex data distributions, GANs have been credited with the capacity to generate plausible data

examples, which have been widely applied to various data generation tasks over image, text, and audio. However, as with any

powerful technology, GANs have a lip side: their capability to generate realistic data can be exploited for malicious purposes.

Many recent studies have demonstrated the security and privacy (S&P) threats brought by GANs, especially the attacks on

machine learning (ML) systems. Nevertheless, so far as we know, there is no existing survey that has systematically categorized

and discussed the threats and strategies of these GAN-based attack methods. In this paper, we provide a comprehensive

survey of GAN-based attacks and countermeasures. We summarize and articulate: (1) what S&P threats of GANs expose to

ML systems; (2) why GANs are useful for certain attacks; (3) what strategies can be used for GAN-based attacks; (4) what

countermeasures can be efective to GAN-based attacks. Finally, we provide several promising research directions combining

the existing limitations of GAN-based studies and the prevailing trend in the associated research ields.

CCS Concepts: · General and reference→ Surveys and overviews; · Security and privacy; · Computing methodolo-

gies→ Machine learning; Distributed computing methodologies;

Additional Key Words and Phrases: Generative adversarial networks, GANs survey, deep learning, security and privacy, attack

and defense

1 INTRODUCTION

1.1 Background

Generative modeling using neural networks has received wide attention in machine learning (ML) for its capacity
to learn data in an unsupervised manner. Among these techniques, Generative Adversarial Networks (GANs)
have emerged as the most prominent and widely utilized approach in recent years due to their implicit learning
capability of complex and high-dimensional data distributions. GANs have demonstrated successful applications
in the realm of computer vision, including tasks such as image generation, image resolution enhancement, and
image texture synthesis [18]. GANs are capable of generating fake portraits that can be remarkably lifelike,
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making it diicult to distinguish them from real ones1. In addition to computer vision, many successes of GANs
have also been witnessed in natural language processing [69, 71, 138], speech recognition [29, 110], and so on.

Birth of GANs. In the community of unsupervised learning, the generative model is one of the most promising
techniques. Conventional generative models typically rely on approximate inference methods such as maximum
likelihood and Markov chains [53, 99]. For example, restricted Boltzmann machines-based models (e.g., deep
belief networks) are based on maximum likelihood estimation, and these models can represent latent distributions
whose parameters closely match the empirical distribution of the training data [91]. However, there have been
investigations conducted to explore the limitations of deep generative models, especially the challenges in
maximum likelihood estimation. Thus, Goodfellow et al. identiied the research gap and proposed a novel
generative modelÐGenerative Adversarial Networks (GANs) [45]Ðwhich attempts to address the limitation
that exists in the previous generative models.

Table 1. Summary of related surveys on Generative Adversarial Networks (only papers are peer-reviewed and published are
selected here).

Literature Year Application-Speciic
Coverage

Remark
Variants Metrics Benchmark Datasets S&P DS

Wang et al. [121] 2017 − ✓ GANs in parallel systems.
Hong et al. [57] 2019 − ✓ ✓ Theoretical analysis on GANs’ working principle.
Pan et al. [91] 2019 − ✓ ✓ Latest advances of GANs.
Cao et al. [18] 2019 CV ✓ ✓ ✓ ✓ Performance of GANs’ variants on computer vision.
Yi et al. [136] 2019 medical imaging (CV) ✓ ✓ ✓ GANs’ design principle for medical imaging.
Dutta et al. [30] 2020 cybersecurity ✓ Overview of GANs on cybersecurity.
Hajarolasvadi et al. [49] 2020 human emotion synthesis (CV) ✓ ✓ ✓ ✓ GANs’ design principle for human emotion synthesis.
Tschuchnig et al. [115] 2020 digital pathology (CV) ✓ ✓ Domain transfer by GANs in digital pathology.
Gao et al. [42] 2020 spatial-temporal tasks ✓ ✓ ✓ GANs’ usage for modeling spatial-temporal tasks.
Yinka-Banjo et al. [137] 2020 cybersecurity ✓ ✓ Overview of GANs on cybersecurity.
Saxena et al. [103] 2021 − ✓ ✓ General overview of GANs’ design and optimization solutions.
Gui et al. [47] 2021 − ✓ ✓ ✓ Theoretical analysis on mode collapse.
Bond-Taylor et al. [13] 2021 − ✓ ✓ ✓ Comparison among GANs and other deep generative models.
De Rosa et al. [27] 2021 text generation (NLP) ✓ ✓ ✓ Benchmarks of GANs on text generation.
Navidan et al. [85] 2021 networking ✓ ✓ ✓ ✓ Benchmarks of GANs on networking .
Zhou et al. [156] 2021 text-to-image synthesis ✓ ✓ ✓ ✓ Benchmarks of GANs on text-to-image synthesis.
Toshpulatov et al. [114] 2021 3D face generation (CV) ✓ ✓ ✓ ✓ Benchmarks of GANs on 3D face generation.
Li et al. [70] 2021 − ✓ ✓ Theoretical analysis on GANs’ design principle.
Wali et al. [119] 2022 speech processing ✓ ✓ ✓ Comprehensive study of GANs on speech processing.
Cai et al. [17] 2022 − ✓ ✓ Overview of S&P applications with GANs.

Abbreviation: S&PśSecurity and Privacy, DSśDecentralized System

1.2 Motivation

GAN-based applications are expanding rapidly across various domains, including inance, healthcare, and
infrastructure, to name a few. Unfortunately, not all of these applications are used for positive purposes. Some
malicious actors attempt to acquire private data without authorization or corrupt the learning or inference
process of models, which compromises the security and privacy (S&P) of the data or models’ stakeholders
[17]. Some are illegitimate, such as recovering private medical information without permission to access patients’
raw data using GAN to learn the real image’s distribution [19]. Furthermore, these malicious activities can pose
severe threats to the life safety of individuals. For example, suppose an automatic pilot system’s computer vision
model is corrupted with poisoning examples generated by GAN. Consequently, the system may misjudge a traic
sign resulting in the car accelerating and crashing [34, 51]. Accordingly, there has been increasing attention
on studying GANs in the context of S&P [17]. The S&P of any system can be investigated as an attack/defense
problem [25]. This problem is measured concerning the attacker’s goal and capabilities designed to achieve the
goal as possible and the victims’ capabilities designed to defend against the attack. GAN, as a generative model,

1Examples of plausible portraits generated by GANs can be found at the following website: https://thispersondoesnotexist.com/.
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cannot perform the attacks solely without any strategic instructions. An insightful way to study it in the S&P
context could be understanding how GANs are łweaponizedž in an attack process along with the threats it brings.
Although there has been a number of surveys on GANs, most of them investigated the existing GAN-based

eforts from a certain range of perspectives except for S&P. [57, 91, 103] presented a brief overview of the GANs
taxonomy and incorporated some of the architectural variants and loss-enhanced variants of GANs. [27, 49, 114,
115, 119, 136, 156] provided comprehensive of GANs but in particular applications (e.g., text generation). [13, 90]
emphasized comparing GANs and parallel techniques. While [85] involved security in the survey, it only paid
close attention to related issues in the networking ield. [30] and [137] identiied łsecurityž as łcybersecurityž
and surveyed GAN-based applications in this domain. Recently, [17] summarized the GANs studies with regards
to S&P, however, this survey is performed at an application level where the taxonomy is based on diferent
application domains. Compared to [17], we put our survey in a unique scopeÐ investigate existing GAN-based
attacks and corresponding countermeasures from the angle of threat and strategy.
Furthermore, we survey existing GAN-based attack methods against decentralized/distributed ML systems2

and further discuss the attack and defense strategies behind these methods. Decentralized ML systems are gaining
prevalence due to further commercialization, the increasing requirements for collaboration and the rising demand
for stringent data privacy criteria. The attacks against decentralized ML systems have garnered signiicant
attention from researchers, especially on the recently popular federated learning systems. However, many attack
methods available to centralized systems fail to handle the decentralized ML systems due to cross-silo restrictions.
In this context, some unique properties enable GAN to bypass these barriers, making it a sharp weapon to attack
FL systems. We believe that the studies on decentralized ML systems can expand readers’ horizons and gain them
a better understanding of GANs’ properties, GAN-based attacks’ tactics, and countermeasures.
Additionally, to showcase the distinctions and serve as a gateway for readers interested in exploring other

GAN-related studies, we include a summary of GAN-oriented surveys in Table 1.

1.3 Highlights and Contributions

• To the best of our knowledge, this study represents the pioneering efort to provide a comprehensive review
of the existing literature on GAN-based attacks and countermeasures. The review investigates various
studies, considering the perspectives of threat and strategy, with a speciic focus on both centralized and
decentralized machine learning systems.
• We provide insights into diferent GAN-based attack methods. Integrating the views of conventional S&P
threats, we provide a novel taxonomy that formalizes diferent scenarios and further assists researchers in
identifying the threats, strategies, and GAN-based techniques employed in these cases.
• There have been various GAN-based attack and defense approachesÐ it is challenging and time-consuming
to understand the broad picture of all works in this ield. To ofer readers a more accessible means of
understanding existing works, we present a uniied formulation, deinition, and visualization among them
in this survey.
• In addition to GAN-based attacks and countermeasures, we expand our discussion to a broader horizon that
covers the deinition of S&P problems in machine learning and some general attack and defense methods.
Thus, this survey serves as a resource for the research community (experts) and brings a clear image to
researchers outside this research domain (beginners).
• Lastly, as the GAN-oriented S&P problem is still at its seminal stage and there is plenty of room for either
consolidating existing research or exploring new directions, we also shed light on several promising future
research directions.

2To streamline the presentation, we use the term łdecentralized ML systemsž to refer to both distributed and decentralized ML systems

throughout the rest of the paper.

ACM Comput. Surv.



111:4 • Zhang et al.
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5.2 GANs Threats to More Applications

5.3 Interpretability Studies on GANs

6. Summary

Fig. 1. The structure of the survey.

1.4 Structure of the Survey

The structure of this survey can be seen in Figure 1. Section 2 introduces primitive GAN and its variants and
provides a novel taxonomy of the S&P issues in ML. Based on the proposed taxonomy, we review and discuss
GAN-based attacks in Section 3. Section 4 presents countermeasures to GAN-based attacks. We discuss promising
future research directions in Section 5, and the paper is concluded in Section 6.

2 PRELIMINARY

2.1 Generative Adversarial Network and Its Variants

Before reviewing and discussing GANs as attack/defense weapons in machine learning tasks, we irst introduce
the primitive GANs and the variants as preceding knowledge to non-expert readers to make them understand
the principle and development progress of GANs.

2.1.1 Primitive GAN. The framework of primitive GANs is illustrated in Figure 2. The generatorG generates
samples that aim to match the latent distribution pdata (X ) of the real data samples X . A random noise vector Z ,
which follows a uniform distribution pZ (Z ), is input to G. G then maps this noise vector to a new space that has
the same dimensions as the real data to develop the fake samplesG (Z ). The discriminator D ingests both samples
from both G (Z ) and X to distinguish themÐ it is a binary classiier that evaluates the input samples and outputs
a probability value of whether the samples are generated by G (i.e., fake data) or from real data. Both G and D

ACM Comput. Surv.
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Fig. 2. The architecture of primitive GAN [45]. This architecture is also followed by most of the non-architectural variants of
GAN, e.g., WGAN [3] and LSGAN [77].

are diferentiable functions represented by neural networks with parameters θG and θD , respectively. G aims to
maximize the probability of D. To achieve their individual goals, the two networks engage in a zero-sum minimax
game, where G tries to maximize the probability, but D tries to minimize it. GANs address the drawbacks of
traditional generative models, where deep learning training methods, e.g., backpropagation and dropout, are
employed to train both networks without maximizing the likelihood that involves Markov chains or approximate
inference. The objective functions of GAN are to minimize diference between pG (X ) and pdata (X ), which is
formulated as





L(D ) = −
1

2
E

X∼pdata (X )
[logD (X )] −

1

2
E

Z∼pZ (Z )
[log(1 − D (G (Z )))]

L(G ) = −
1

2
E

Z∼pZ (Z )
[logD (G (Z ))]

, (1)

From the aims of D and G, we know that D (G (Z )) is expected to be close to 0 by D and 1 by G, respectively. D
maximizes the output if an input sample is from real data and minimizes the output if the sample is generated by
G Ð the term log(1−D (G (Z ))) is designed to this end. As D andG play a zero-sum game thatG tries to maximize
D’s output, the inal objective function is written as

min
θG

max
θD

V (D,G ) = E
X∼pdata (X )

[logD (X )] + E
Z∼pZ (Z )

[log(1 − D (G (Z )))], (2)

where V (·) denotes a binary cross-entropy function. Note that if D yields a probability of 0.5, the equilibrium
between G and D occurs that D cannot determine if the sample is from real data or generated by G. To update
the model parameters, the training of G and D is performed alternatively, where one network is ixed while the
other is backpropagated.

2.1.2 Variants of GAN. With the development of GANs, variants have been developed to overcome the deiciencies
or extend the functions of the primitive GAN. As shown in Figure 3, these variants can be broadly categorized into
three classes based on the aspect they target for improvement: latent space, loss function, and architecture.

Latent Space Enhancement. Mapping latent space to feature space is crucial in GANs. Primitive GANs use
random input noise Z , resulting in inferior semantic features due to amorphousness and entanglement. Improved
studies address this issue by introducing auxiliary and useful information to the latent space input. Latent
space-enhanced GANs are in good graces of attack methods since they can efectively utilize limited knowledge
gained by attackers to generate examples. Furthermore, some of them can assist attackers in inferring additional
properties of the generated samples (e.g., class). In the sequel, we introduce the four most representative variants
regarding the enhancement of latent space (see Figure 3 for their frameworks).

ACM Comput. Surv.
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Fig. 3. Overview of GANs’ evolution and most representative variants of GANs from a latent space perspective. For ACGAN
and InfoGAN, Q represents the classifier that shares the model architecture (except the output layer) and parameters with
the discriminator.

Conditional GAN (CGAN) [81] is the most widely-adopted latent space-enhanced GAN. Compared to the
primitive GAN, the generator and the discriminator of CGAN add additional information C as a condition, which
can be any information such as category information or other modal data. For the generator, a priori input noise
p (Z ) and the conditional information C combine to form the joint hidden layer representation. The objective
function of CGAN remains a two-player minimax game but with conditional probabilities:

min
θG

max
θD

V (D,G ) = E
X∼pdata (X )

[logD (X |C )] + E
Z∼pZ (Z )

[log(1 − D (G (Z |C )))], (3)

where the loss function of the discriminator can be formulated as

L(D ) = E
X∼pdata (X )

[

log P (S = real | X )
]

+ E
Z∼pZ (Z )

[

log P (S = fake | G (Z |C )))
]

, (4)

where S = {real, fake} denotes the source of the input data sample. It can be observed that both the generator
and discriminator are expressed as conditional probabilities, speciically computed based on the given variable C .
By modifying the conditions fed into the generator network, it is possible to generate examples belonging to
diferent categories or classes.

Auxiliary Classiier GAN (ACGAN) [87] is an extension to CGAN with improved discriminator. Speciically, the
discriminator of ACGAN does not conine to distinguishing true from false but can also diferentiate between

ACM Comput. Surv.
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categories by introducing an auxiliary classiier developing the probability over diferent classes. The loss function
of ACGAN is designed as L(D ) = L(source) + L(class) where L(source) is the same as the loss function of CGAN’s
discriminator (Eq. (4)) while L(class) denotes the classiication loss:

L(class) = E
X∼pdata (X )

[

log P (C = c | X )
]

+ E
Z∼pZ (Z )

[

log P (C = c | G (Z |C )))
]

, (5)

where c denotes a speciic class label. The functional extension makes ACGAN a solution to many class-speciic
scenarios [118, 145].

InfoGAN [21] works in an unsupervised fashion, diferent from CGAN and ACGAN. The objective function of
InfoGAN can be written as

min
θG

max
θD

V (D,G ) = VGAN (D,G ) − λI (C;G (Z ,C )). (6)

InfoGAN’s input incorporates the latent semantic variable C and noise variable Z . Compared to the primitive
GAN’s objective function, an additional term is introduced, denoted as λI (C;G (Z ,C ))3, which computes the
mutual information between C and the output of the generator. InfoGAN encourages high mutual information
between the generated samples and selected latent variables. While InfoGAN also develops the probability
complied with conditional information C like CGAN, they difer: CGAN supposes C is known, which contains
speciic information (e.g., class labels); however, InfoGAN assumes C is unknown, sampled from a prior p (C ).
This distinction highlights the supervision diference between CGAN and InfoGAN.

Semi-supervised GAN (Semi-GAN) [86] exploits both supervised and unsupervised learning by training the
discriminator in both two manners. In an unsupervised manner, the discriminator is trained similarly to a regular
GAN to predict whether the example is from the real source. In a supervised manner, the discriminator is trained
to classify the label of real samples. The merit of this design is that unsupervised training enables the model
to learn efective feature extraction capabilities from a huge unlabeled dataset. Meanwhile, supervised training
allows the model to exploit the learned features and allocate class labels.

Architecture and Loss Enhancements. The modiication of architectural designs and loss functions can
also contribute to enhancing GANs, solving problems such as training stability and collapse mode. In terms of
architecture, Deep convolutional GAN (DCGAN) [95] adopts convolutional neural networks (CNNs) for both the
discriminator and the generator instead of the multilayer perceptron (MLP) neural networks, achieving more
stable training andmore high-quality image generation. Such architectural evolution can also be seen in StackGAN
[141], BigGAN [14], StyleGAN [63], etc. In terms of the loss function,Wasserstein GAN (WGAN) [3] introduces
Wasserstein distance in the loss function design to solve the problems above. Such loss function-enhanced GANs
include EBGAN [152], LSGAN [77], etc.

In addition, various practical applications have spawned many variants as well. For example, CycleGAN [157]
and Pix2Pix [59] for image-to-image translation, 3DFaceGAN [105] and GANFit [43] for 3D face generation, to
name a few. From the attack and defense perspective, the proliferation of GAN variants also provides attackers
with a wider array of potential tools.

2.2 Security and Privacy in Machine Learning

To gain the audience a better insight into GAN-based attacks/defenses and their scope, we deine security and
privacy (S&P) in machine learning (ML) hereÐ this also provides a systematical knowledge frame to non-expert
readers. Typically, we can progressively explore the S&P issues in machine learning by identifying CIA model
and threat model.

3Note that in this survey, we have simpliied the expression of this term. For readers interested in more details, we recommend referring to

the original literature [21]
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2.2.1 CIA Model. Inherited from the cybersecurity, conidentiality, integrity, and availability (CIA) model
is a traditional way to form the basis for the analysis of security systems. In terms of ML, conidentiality is
usually associated with the model assets (e.g., training data, model algorithm, and model parameter). Some of
the conidentiality attacks seek to divulge the model’s architecture or parameters, which may be recognized
as signiicant intellectual property of the model holder [92]. Others attempt to expose the data used to train
the model and may compromise the data source’s privacy, e.g., the patients’ clinical data used to train medical
decision models is often of foremost privacy. Therefore, conidentiality attacks are more closely connected to
privacy issues. Comparatively, integrity attacks jeopardize the model by false negatives, i.e., inducing deviated
model output. Availability attacks try to deny access to valuable model outputs or system features via false
positives, cf., denial-of-service (DoS) [124].

2.2.2 Threat Model. A more comprehensive approach involves the identiication of a threat model, which
encompasses assessing the threat surface (also known as attack surface) of ML-based systems and understanding
the attacker’s capabilities, goals, and speciications. By gaining insights into when, where, and how an attacker
may attempt to compromise the system, we can better understand the threats and strategies associated with
GAN-based attack methods. Building upon existing studies of GAN-based attacks, we present a novel taxonomy
with regard to the threat model, including some redeined concepts.

Attack Objective. According to the attackers’ objectives, threat models can also be classiied into poisoning
attack (also known as causative attacks), evasion attack, and inference attack. Both poisoning and evasion
attacks attempt to undermine the integrity that makes ML models yield incorrect results (e.g., predicted label and
information retrieval) given input, which can be categorized as security attacks through CIA model. In the realm
of machine learning model surface4, there are two main phases involved: inference phase and training phase.
Attacks at the inference phase (also known as exploratory attacks) do not manipulate the model itself but attempt
to either deviate it from yielding correct outputs (similar to the concept of integrity attack as aforementioned) or
gather information about the model architecture or parameters. Attacks at the training phase seek to exploit or
compromise the model itself. Therefore, the diference between poisoning attacks and evasion attacks lies in
that a poisoning attack is launched at the training phase that injects adversarial training data samples with the
aim of corrupting the learned model to yield wrong outputs [12, 79]; conversely, evasion attack is launched at
the inference phase that manipulates the testing data samples to deceive previously trained model. Inference
attack5, also known as exploratory attack, refers to that the attacker can exploit leak information about the
features of training data, which is considered as a threat to the conidentiality of model assets through CIA model.
According to diferent features that the attackers intend to infer, inference attacks can be further categorized
into: preimage inference, class representation inference, andmembership inference. Given a ML model,
preimage inference (also known as model inversion) targets reconstructing training data from model parameters
in which the requirement of inference accuracy is usually high (e.g., pixel-level [158]) [40]. A special variant of
preimage inference targets at reconstructing model rather than data (also known as model extraction attack),
which attempts to obtain an adversarial model that is functionally and statistically equivalent and statistically
close to the target model. Comparatively, class representation inference does not aim to reconstruct actual training
data but only class representatives. Our taxonomy distinguishes preimage inference and class representation
inference as separate concepts due to their diferent threat levels. Membership inference attempts to predict
whether or not an exact data point (e.g., an image) is contained in the model’s training dataset [107]. From a
view of the population, property inference aims to learn from the model properties about the training dataset
seemingly independent of the model’s actual goal [80]; we classify it as a variant of membership inference in this

4Commonly, threat surface of machine learning includes: physical surface, data representation surface, and machine learning model surface [7].

Particularly, according to the usage of GAN, this survey falls within the realm of data representation and machine learning model surfaces.
5Note that łinference attackž is diferent from łattack at the inference phrasež.
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survey. Furthermore, some attacks incorporate the above threat models, such as morphing attacks [104], and
recently-emerged Deepfake techniques [129]: they extract sensitive information (e.g., biological characteristics of
a person) and generate fake examples which may further be used to fool the detection for illegal purposes.

Attacker’s capabilities. From the perspective of attackers’ capabilities (or attacker’s observations), there
are three diferent scenarios of attacks: white, grey, and black boxes. A while-box attack assumes the attacker
has full information about the model assets. On the contrary, a black-box attack supposes the attacker has no
information about the model assets, but (s)he can query from the victim model by API services which are usually
provided by Machine Learning as a Service (MLaaS) platforms. Comparatively, a grey-box attack comes
somewhere in between; the attacker knows partial information6. It is a common pattern that the attacker uses a
surrogate model (shadow model) to mimic the target model locally and develop speciic examples that can afect
the target model due to the diiculty of directly manipulating the target model. White-box settings allow the
attacker to construct an identical model to the target model. In contrast, in grey- and black-box settings, the
attacker can only employ an architecture- or function-analogous mode, or distill a model [130]. Accordingly, the
dangerous level of the three attacks is: Black > Grey > White.

Attack Speciication. Furthermore, according to the speciication of the attack, we can also categorize the
threat model into targeted and untargeted attacks (also known as dodge attack). Targeted attacks mean the
attack is forged towards an assigned and clear instance, while the untargeted attack is not. For an evasion attack
that targets a multiple-classiier that classiies an animal image, a targeted evasion attack could be making the
output label which is originally łdogž to łcatž. In contrast, untargeted attacks only concern if the output is correct
and arbitrary incorrect labels are acceptable. For an inference attack, a targeted attack can be the attacker who
wants to infer a speciic class of data examples. Note that the attack speciication is a major consideration for
classiication tasks, and particularly, attacks to binary classiication task is naturally deemed as targeted. In
addition, membership inference attacks are regarded as targeted as the łmembershipž is undoubtedly a speciic
objective.

Target System. The threat model can target centralized or decentralized ML systems. From the level of the
system, the threat model could target at centralized or decentralized ML systems.

In traditional ML, the eiciency and accuracy of models are determined by computational power and training
data available on a centralized computing device (e.g., a server). With the increase in data volume and model
complexity, a centralized system limited by computational power is arduous to undertake such complicated
computing tasks. In addition, centralized systems are also struggling with S&P issues. For one thing, data
holders may be reluctant to contribute their data to a centralized system since their data may contain a mass
of private and sensitive information. For another, a centralized system stores all sensitive information in a
central custodian (usually a central server), presumably encountering single-point failure. To overcome these
problems, decentralized systems have grown in popularity over the years due to their distributed storage and
parallel computing naturesÐ especially the recently emerged federated learning has been a research hotspot
due to its precise stroke on S&P issues of ML [135]. Federated learning (FL) is among the most widely-adopted
decentralized ML system [78]. FL assumes a scenario that there are N data holders (in diferent tasks, they may
be named as łclientsž, łworkersž, or łparticipantsž), all of whom hope to train a ML model by merging their data
{X1,X2, . . . ,XN }. However, the privacy policies such as GDPR [117] do not allow any direct exposure of raw data,
i.e., they cannot directly consolidate their data by Xsum = X1

⋃

X2, . . . ,
⋃

XN and use it to train a model fsum. In
such a condition, a FL system describes a learning process where data holders train a model fFed collaboratively
without sharing their respective raw data, and ffed should achieve an accuracy very close to that of fsum. To
this end, [78] proposed an algorithm named FedAvg that allows the training data to be kept locally and learns a

6Many studies merge the grey-box setting into the white box or black box settings [11, 17, 84]. For a rigorous deinition, we difer the three

terms by deining the white box and black setting as extreme situations.
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Fig. 4. S&P threats of GAN to ML from diferent perspectives.

shared model7 by aggregating locally-computed updates by a central server. It is also worth mentioning that all
participants of a FL system are actually operating in a grex-box setting, i.e., they can observe the changes of the
shared model based on the received model parameters but nothing about the raw data. While FL can provide a
certain level of data privacy by preventing a single entity from having a complete view of all training data, it
is important to note that the ideal privacy-preserving efect can only be achieved under the assumption of all
participants being trustworthy and the absence of malicious external parties. However, in practical scenarios,
this ideal situation is often unattainable. Therefore, S&P attacks are also nonnegligible for FL systems.

3 GAN-BASED ATTACKS

In this section, we irst review the existing studies in terms of GAN-based attacks according to their corresponding
threat models, including the description of the attack patterns in diferent threat models. Subsequently, from an-
other aspect, we discuss and compare the strategy of GAN-based attacks combing diferent properties/advantages
of GANs. Lastly, we elaborate on and discuss GAN-based attacks against decentralized ML systems.

What are threats brought by GANs? Before our elaboration, given the properties of GANs and the S&P
concerns in machine learning, we irst identify several key reasons why GANs could pose signiicant threats,
including the general principles of GAN-based attacks:

• Data manipulation and generation: GANs can be used to generate synthetic data that resembles real data.
This poses risks when the generated data is used as adversarial examples to manipulate or deceive machine
learning models. On the other hand, these data can also be used as illegitimate sample forgeries.
• Detection evasion: GANs can be used to generate examples speciically designed to evade detection by
machine learning models. Leveraging the generator’s ability to generate subtle modiications, attackers can
create examples misclassiied or ignored by detection systems, bypassing the defenses.
• Privacy breach: GANs can be used to learn and replicate sensitive information from private data, leading
to privacy breaches. This becomes particularly worrisome in the context of MLaaS or decentralized ML
systems due to the shared data and model information.

7In this paper, shared model, global model, and federated model are used interchangeably in the context of decentralized ML systems.
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Fig. 5. GAN-based evasion atacks. Two typical paterns of GAN-based adversarial examples generation are illustrated in
the dashed box: (1) Generate perturbations which are subsequently added to the genuine examples. (2) Generate complete
adversarial examples. To improve the atack efect, the atacker generally integrates LGAN and Ladv and optimizes them in a
bilevel manner where LGAN here is used to encourage the adversarial examples to appear similar to the original data X by
GAN while Ladv is used to prompt the adversarial examples to deviate the classification result of the target model.

Fig. 6. GAN-based data synthesis for membership inference atacks [107]. Scenario 1 assumes that the atacker has a limited
number of original data [144]. Scenario 2 assumes that the atacker has some unlabeled data records and can query the
target model. Scenario 3 assumes that the atacker only can query the target model and use some randomized/guessed data
to approximate the original data [5].
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We list the potential S&P threats of GAN to ML systems from diferent aforementioned perspectives, as shown
in Figure 4Ðwe highlight the aspects that GANs are particularly useful that break the limitations of traditional
attack methods. In the following section, we will provide more in-depth discussions.

3.1 GANs in Diferent Threat Models

In this survey, we organize existing studies of GAN-based attacks based on the taxonomy illustrated in Figure 4.
In this subsection, we irst introduce related studies accordingly, which is also summarized in Table 2.

3.1.1 GANs in Evasion Atack and Poisoning Atack. GANs are widely adopted in generating adversarial
examples for evasion attacks [6, 20, 58, 67, 72, 76, 109, 122, 123, 128, 130, 134, 139, 150, 151, 154, 155, 159]. Towards
a trained model f ∗ (), GAN-generated adversarial examples XA are expected to be classiied as f ∗ (XA) , YT
(untargeted attack), where YT denotes the true label; or f (XA) = YTar (targeted attack) where YTar denotes
the target class. Furthermore, GANs are usually expected to develop adversarial examples XA, which are more
plausible (looks more natural) to avoid detection compared with traditional methods [154]. Conventional practices
in evasion attacks attempt to generate perturbations (e.g., noises or backdoors) denoted by δ and add them to
genuine test data samples as adversarial examples, i.e.,XA = X +δ [15, 36, 46]. Similar works based on GAN can be
referred to [20, 72, 122, 128, 130, 150, 151, 155] (see upper dashed box in Figure 5). Diferently, [6, 109, 123, 154] took
full advantage of GANs that synthesize adversarial examples entirely from scratch (cf. adversarial autoencoding
in [6], and see lower dashed box in Figure 5). Beyond simple image classiication tasks, Wang et al. [122] devised
a multi-task GAN whose generated adversarial examples can fool holistic scene understanding tasks (including
semantic segmentation, object detection, and classiication). As practical applications, Mangaokar et al. [76]
proposed a method that can produce fake medical images to deceive both the machines and human beings
(doctors) to the point of making incorrect diagnoses; [58, 67, 139] developed GAN-based models can generate
malware that can bypass detection algorithms; Targeting at the image retrieval systems, [150, 151] attempted to
generate adversarial examples that make retrieval results completely dissimilar from the query image.

On the other hand, [20, 64, 83, 134, 142, 143] employed GANs in the poisoning attacks. A general pattern can
be described as follows. The generator G targets at generating poisoning data samples XA which maximizes the
error of the target model, meanwhile minimizes the accuracy of discriminator D that distinguishes the poisoning
data samples from genuine data samples. The target model f (·) seeks to minimize the training loss evaluated on
a training dataset that incorporates several poisoning data samples. The attacker attempts to generate adversarial
training samples plausible to genuine data, and these poisoning data samples will be injected into the target

model’s training dataset. The model trained with poisoning examples can be formulated as f ∗p (·)
XA
←−− f (·), which

is expected to yield wrong outputs given genuine test samples. Muñoz-González et al. [83] proposed an approach
that adopts CGAN with assistant target label information to generate poisoning samples, which can be referred to
as a typical pattern of GAN-based poisoning attack (see Figure 8). Zhang et al. [142, 143] introduced a GAN-based
poisoning attack in a federated learning scenario by deploying GAN locally to generate poisoning data samples
to corrupt the shared model. With the assistance of reinforcement learning, the GAN-based method proposed
by Yang et al. [134] signiicantly improves the generation rate of poisoning data compared with gradient-based
attack methods. Kasichainula et al. [64] applied GAN-based poisoning attack to corrupt text-to-image tasks.
Comprehensively speaking, GAN-based poisoning attack methods share a similar philosophy with GAN-based
evasion attack methods, where the diference only lies in the usage of the generated adversarial examples.

3.1.2 GANs in Inference Atack. The model information, such as parameters and gradients, are informative
intermediaries that establish connections between the input and output of a model. GANs can efectively exploit
these traces left by the training data within the model to extract private information. This characteristic makes
GANs practical for conducting inference attacks [55, 56, 96, 108, 111, 125, 154] proposed to infer the class
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representation of data using GANs. To develop more natural adversarial examples, Zhao et al. [154] introduced an
inverter (denoted as I (·)) replacing the discriminator in the GAN to learn dense representations of given samples.
The learning process involves minimizing the reconstruction error γ of real samples X , which can be formulated
as

min
γ

E
X∼pdata (X )

∥G (Iγ (X )) − X ∥ + λ E
Z∼pZ (Z )

[L (Z , Iγ (G (Z )))]. (7)

Hitaj et al. [55] and Wang et al. [108, 125] attempted to infer class representation of other participants’ training
data in federated learning (FL) scenarios. In a similar FL scenario, Ren et al. [96] treated the attack as a regression
problem by integrating GANs and a gradient-based method [158]. Aiming at cybersecurity, Hitaj et al. [56] also
proposed to use GANs to extract the representation of genuine passwords from password information leaks and
to further produce high-quality password guesses.
For a more ine-grained goal, [2, 8, 96, 106, 111, 148] used GANs to conduct the preimage (model inversion)

inference. The basic idea among these studies is using the generator of GANs to reconstruct the target examples
Xre by Xre = G (Z ). Basu et al. [8] tried to recover input data analogous to those used to train the target model by
training a surrogate model, and Aïvodji et al. [2] investigated the same case in a black box scenario. Shi et al.
[106] proposed to irst mount an exploratory attack on the target model and collect returned labels to construct
training data examples, and then use these data to train an adversarial model that is functionally and statistically
equivalent close to the target model. Zhang et al. [148] introduced partial public information into their GANs
to improve the inversion efect. Furthermore, they provided theoretical evidence to support the notion that
highly predictive models are more susceptible to preimage inference attacks. Ren et al. [96] leveraged the concept
of GAN to develop a generative model at the central server of a FL system and demonstrated it could recover
image-based privacy data from the shared gradient only. Sun et al. [111] investigated a malicious client which
can use GANs to recover the training data of other clients from the shared model.

[5, 108, 125, 132, 144] leveraged GANs to conduct membership inference attacks. Following the attack pattern
in a restricted black-box scenario [107], Bai et al. [5] proposed to use GAN to augment the training data used
to train a surrogate model and further predict the membership of the synthesized data sample. The concept of
utilizing GANs for data augmentation has also been embraced in subsequent studies concerning GAN-based
membership inference attacks. Targeting at FL systems, Wang et al. [108, 125] proposed a GAN with a multi-task
discriminator owned by a malicious server which is enabled to infer the client identity of a training sample. On
the other hand, Zhang et al. [144] proposed a client-launched membership inference attack whose targets are
other clients in a FL system. The local training data of a client may come from multiple data sources (e.g., a
person or certain environment) ÐXu et al. [132] proposed a client-launched membership inference attack to infer
the source-level membership of other clients’ local data records.

Observations. We have several direct or indirect observations from our investigation on the referenced
GAN-based attack studies, such as:

• For black-box and targeted attacks, latent space-enhanced GANs like CGAN seem to be requisite in related
studies.
• When considering more restricted black-box scenarios, unsupervised GANs like InfoGAN are usually
adopted.
• In black-box evasion attacks, a common procedure for the attacker involves querying the target model to
obtain labels for generated adversarial examples and subsequently training the discriminator.
• While GANs have shown the ability to generate entire adversarial examples, most studies prefer using
GANs to generate adversarial perturbations for evasion attacks.
• In poisoning and inference attacks, GANs are adopted for large-scale data synthesis/augmentation.

We further discuss these observations and identify the factors behind them in the next Section.
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Table 2. Summary of studies in terms of GAN-based atack.

Authorship & Year
Threat Model

System GAN Model
8

GANs’ Usage Countermeasure-inclusive
A-C A-S A-Obj

Hitaj et al. [55] 2017 ■ T CRI DeC CGAN Generate adversarial examples ✓

Baluja et al. [6] 2017 □ T EA C GAN Generate adversarial perturbations/examples −

Hu et al. [58] 2017 ■ T EA C InfoGAN Query the target model for labeling generated examples −

Yang et al. [134] 2017 □ UnT PA C GAN Generate adversarial examples ✓

Zhao et al. [154] 2018 ■ UnT EA,CRI C WGAN Generate adversarial examples −

Xiao et al. [130] 2018 ■ ■ T, UnT EA C CGAN Generate adversarial perturbations ✓

Song et al. [109] 2018 □ ■ T, UnT EA C ACGAN Generate adversarial examples ✓

Shi et al. [106] 2018 ■ T, UnT PreI C CGAN Augment data examples for inversion ✓

Zhang et al. [142, 143] 2019 ■ ■ T, UnT PA DeC Semi-GAN Generate adversarial examples ✓

Wang et al. [108, 125] 2019 ■ T CRI, MI DeC CGAN Reconstruct data examples with multiple properties −

Wang et al. [123] 2019 ■ T,UnT EA C ACGAN Generate adversarial examples ✓

Zhu et al. [159] 2019 □ T,UnT EA C CycleGAN Generate style-difered adversarial examples −

Aïvodji et al. [2] 2019 ■ T PreI C BEGAN Reconstruct label-speciic data examples −

Basu et al. [8] 2019 □ T CRI C GAN Reconstruct label-speciic low-dimensional data representations −

Muñoz-González et al. [83] 2019 ■ ■ T PA C CGAN Generate adversarial examples −

Hitaj et al. [56] 2019 ■ T PreI C WGAN Reconstruct data examples −

Zhao et al. [151] 2019 ■ UnT EA C CGAN Generate adversarial perturbations −

Li et al. [67] 2019 ■ T EA C InfoGAN Query the target model for labeling generated examples ✓

Liu et al. [72] 2019 ■ ■ UnT EA C InfoGAN Generate life-like adversarial perturbations −

Wei et al. [128] 2019 ■ UnT EA C CGAN Generate adversarial perturbations −

Xu et al. [132] 2020 ■ T MI DeC CycleGAN Reconstruct mapping between gradients and data examples −

Zhang et al. [144] 2020 ■ T MI DeC GAN Augment data for training attack model −

Zhang et al. [148] 2020 □ T PreI C InfoGAN Reconstruct label-speciic data examples −

Chen et al. [20] 2020 □ ■ T, UnT EA C CGAN Generate adversarial perturbations ✓

Mangaokar et al. [76] 2020 □ ■ T EA C CycleGAN Style-transfer the prediction-related information but preserves the identity information ✓

Yuan et al. [139] 2020 ■ T EA C InfoGAN Query the target model for labeling generated examples ✓

Zhou et al. [155] 2020 ■ ■ T EA C CGAN Generate adversarial perturbations ✓

Zhao et al. [150] 2020 ■ T EA C CGAN Generate adversarial perturbations −

Bai et al. [5] 2021 ■ T MI C GAN Augment data for training attack model −

Kasichainula et al. [64] 2021 ■ UnT PA C GAN Generate feature space-difered adversarial examples −

Ren et al. [96] 2021 ■ T PreI, CRI DeC WGAN Reconstruct label-speciic data examples ✓

Sun et al. [111] 2021 ■ T PreI, CRI DeC GAN Reconstruct label-speciic data examples −

Wang et al. [122] 2021 □ ■ T EA C Multi-task GAN Generate data examples with multiple properties −

Abbreviation: A-CśAttacker’s Capabilities, □śWhite-box Attack, ■śGrey-box Attack, ■śBlack-box Attack,
A-SśAttack Speciication, TśTargeted Attack, UnTśUntargeted Attack

EAśEvasion Attack, PAśPoisoning Attack, CRIśClass Representation Inference, MIśMembership Inference, PreIśPreimage Inference,
CśCentralized System, DeCśDecentralized System

3.2 GANs Properties and Advantages in Atacks

3.2.1 Stealthiness and Utility. The adversarial learning and mimicry-synthesis nature of GANs, as elaborated on
in Section 2.1, makes it a promising technique for conducting stealthy and data-utilizable attacks. Generally, an
adversarial attack does not tamper with the target model but adds subtle disturbances imperceptible to humans
to the input samples, causing the model to give an incorrect output with high conidence. Thus, GAN-based
attacks inherit this property that naturally makes themselves circumvent model-oriented defense mechanisms
such as intrusion detection or anomaly diagnosis [17, 89]. That is also the reason why perturbation generation
(see Figure 5) is more popular among GAN-based attacks since such perturbations are usually pixel-level, which
is more diicult to be identiied.
On this basis, GANs outperform conventional generative models in adversarial attacks in many ways. For

evasion or poisoning attacks, while some generative models such as variational autoencoder (VAE) can develop
adversarial examples exhibiting łblinding stainsž in ML models, they may be unnatural (e.g., the examples
generated by VAE are much more blurred than GAN’s9) Ð as the worst case, its utility is slashed, and even out
of the instances that the classiier can handle. Especially in complex domains such as linguistics, enforcing
grammar and semantic similarity is diicult when perturbations are unnatural [68]. Additionally, these unnatural
examples will likely be recognized by machines or human beings, making the attack rumbled [154]. For GANs,
even if the generator develops perturbations rampantly, the discriminator can regulate the generation to ensure

8Note that the GAN model adopted in the literature may not be fully the same as the associated GAN’s prototype; however, the notion of the

associated GAN’s prototype is at least borrowed to a great extent. Table 3 is explained in the same way.
9https://github.com/hwalsuklee/tensorlow-generative-model-collections
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Fig. 7. Comparison of examples generated by GANs and other methods. (a) In evasion atack [154]. The referenced gradient-
based approach is Fast Gradient Sign Method (FGSM) [46]. We can observe that the examples generated by GAN resemble
more closely the real ones. (b) In preimage inference from masked images [148]. The referenced preimage inference method
(the third row) is from [39]. When most of the identifiable features (eye, nose, and mouth) are hidden, the primitive preimage
inference method [39] fails to reconstruct the original image. Comparatively, GAN-based approaches can recover the original
image to a great extent, even beter than image inpainting.

that the generated examples are small and unnoticeable. Massive prior studies have demonstrated that samples
generated by GANs show a remarkable resemblance to the real samples in the training data, primarily due
to the efectiveness of adversarial training (refer to Figure 7(a) for an example), which enables more stealthy
attacks. Meanwhile, considering that to minimize the diference between generated examples and real ones, the
optimization process of a stealthy attack usually introduces constraints respecting the level of perturbation such
as ∥X −XA∥ ≤ ϵ , GANs can more efectively search the corrupting/deviating spots in such a narrow candidature
space [38].

For preimage inference attacks, attackers try to reconstruct the private data samples from the leak gradients or
outputs; however, the reconstructed examples may slightly resemble the actual data that determined the class or
identity [148]. The reason is that conventional approaches accurately classify the broad areas of the input space.
However, they may overlook or miss some other components or ine-grained details shown in the data [65]. Then
the attacker may mistakenly believe that (s)he has reconstructed important information for that class when, in
fact, (s)he has only obtained useless data. In comparison, GANs can recover a larger portion of the space that
contains the targeted sensitive information with greater certainty (see an extreme instance in Figure 7(b)
where sensitive information of the original image is masked), making the generated examples more utilizable.

From the perspective of attack eiciency, GANs are capable of parallelizing the generation while some other
approaches (e.g., autoregressive-based generative models [101, 116]) are not, which can accelerate the attack
process and makes the attack completed before the defense reaction in practical scenarios.

3.2.2 Transferability. An important criterion of traditional perturbation-based attacks is their transferability
across diferent classiiers, and GANs have demonstrated their eicacy in terms of the transferability [76, 109,
123, 130, 134, 159].

On the one hand, the transferability is with regard to the accessibility to the target model or data,
which depends on the attacker’s observations. Simpler conditions happen in white- or grey-box attacks where
the attacker can fully access or at least have some partial knowledge of the target model or data. In this case,
GANs can create high-quality adversarial examples that apply to the target model without confronting any
insurmountable barriers to the input-output relations. For black-box attacks, the concept and practice of surrogate
models (a.k.a. shadow models) are introduced as a transferability strategy to bypass the information barrier [94].
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Fig. 8. An instance of GAN-based poisoning atack using auxiliary information [83].

A surrogate model can mimic the target model’s behavior at the attacker’s side, and a naive selection method
could be empirical (e.g., a CNN is suitable for image classiication while a recurrent neural network (RNN) is
suitable for time series prediction). For evasion or poisoning attacks, it enables an attacker can irst train a
surrogate model and then generate adversarial examples against it, hoping the same adversarial examples will
also be able to attack the other models [73, 82]. For inference attacks, the attacker constructs such a surrogate
model to infer useful information about the target data or model. As the scenarios of membership inference attack
illustrated and summarized in Figures 6, GAN can prompt massive data synthesis/augmentation guaranteed no
matter under which conditions. For instance, even in a very restricted scenario (cf. Scenario 3 of Figure 6), GANs
can produce utilizable data using the initially randomized data to train the surrogate model so that the prediction
of a surrogate model can serve an accurate membership classiication. Meanwhile, for a stronger black box attack
efect, researchers are endeavoring to develop a better surrogate model matching algorithm [146] or avoid the
adoption of surrogate model [100] in the restricted cases, which is to release the potential further and improve
the GAN-based black box attack’s efect.

On the other hand, transferability refers to the ability of knowledge learned from an accessible data source by
the attacker to be applied in attacks. GANs have been proven to have a strong transfer capacity due to their deep
neural network nature [24, 74, 127]. For the GAN-based attacks in which accessible information about the target
model/data is limited, the integration with transfer learning techniques plays a signiicant role. The attacker can
use a pre-trained GAN with massive prior knowledge to generate plentiful, high-quality, and diverse adversarial
examples with great rapidity [123]. For example, Zhu et al. [159] transferred non-makeup images to makeup
images where the perturbation information of the attack is hidden in the makeup areas. Mangaokar et al. [76]
devised a transfer framework that takes a biomedical image of a patient as input and translates it to a new image
that indicates an attacker-chosen disease condition. Some attack methods adopted the style-transfer-enabled
variants of GAN for their attack purpose. For example, Pix2Pix is based on CGAN, designed for image-to-image
translation and can construct a mapping between the source and target domains with paired training examples
[59]. Wei et al. [128] leveraged a loss-enhanced Pix2Pix to generate adversarial examples, which shows good
transferability when evaluated on diferent target models. CycleGAN is another transfer-enabled variant of GANs
for image-to-image translation, which can handle the unsupervised challenge without paired training examples.
Considering the condition of unpaired training examples in federated scenarios, Xu et al. [132] treated property
vector as the source to obtain gradient as the target by CycleGAN. Another applicable technique regarding
transferability is knowledge distillation. As many MLaaS platforms allow query accesses to the model, Xiao et

al. [130] proposed to seize query-based accesses to distill the target model (model distillation) into a GAN to
construct adversarial samples, whose eiciency surpasses the conventional transferability-based attack.
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3.2.3 Latent Representation and Auxiliary Information. A signiicant advantage of GANs over some other gen-
erative models is the ability to eiciently utilize latent representations and auxiliary information [13]. As
introduced in Section 2.1, the generator of GANs is designed by taking latent code (e.g., random noise) as the
input, which processes a transition from low to high dimension. Such dimension-up problems are involved in
diferent attack tasks, and thus GANs can play a part. For example, an attacker attempts to produce completely
new images as adversarial examples for evasion attacks [109, 154] or synthesize a relatively high-dimensional
gradient vector from a relatively low-dimensional feature vector as did in [132].
GANs can be used for more ine-grained and targeted attacks [20, 109]. We know that the primitive GAN is

typically fed with random noise Z without intended semantic information. As a result, there is no guarantee that
the generated examples will exhibit high interpretability or convey meaningful indications. Therefore, primitive
GAN is not quite capable when adversarial examples with an assigned class representation are expected to be
developed, or high-idelity deceptive examples are required. Latent space-enhanced GANs, as introduced in
2.1.2 signiicantly solve the problem by introducing additional information (e.g., class labels) as constraints to
intervene in the GANs’ training. Such a pattern can be seen in the poisoning attack method proposed in [83] (see
Figure 8). The attacker selects a set of target class labels YP . YP is used to constrain the input noise Z and real
data X , and thus the input data will be sampled from distribution X ∼ pdata (X | Yp ) and Z ∼ pZ (Z | Yp ). The
objective function of GAN is

V (D,G ) = E
X∼pdata (X |Yp )

[logD (X | YP )] + E
Z∼pZ (Z |Yp )

[log(1 − D (G (Z | YP )))]. (8)

In this way, the generator can produce poisoning examples with speciic classes.
Furthermore, the demanding granularity requirement for auxiliary information in GANs poses a challenge,

limiting the applicability of GANs to certain restricted scenarios. For instance, Zhang et al. [148] demonstrated
the validity that only leveraged partial public information as auxiliary information, which can be very generic,
to learn a distributional prior via generative adversarial networks (GANs) and use it to guide the inversion
process. In an unsupervised manner, Liu et al. [72] considered the perceptual sensitivity of the target model to the
adversarial patch and leveraged the attention mechanism to learn an efect attack area of an image as auxiliary
information; with the learned auxiliary information, the attacker can develop powerful adversarial examples by
placing the generated adversarial patch to this attack area. Both the above methods employed InfoGAN as it can
exploit unrestricted latent code as auxiliary information (e.g., the learned target areas of an image by attention
mechanism in [72]) when no speciic auxiliary information (e.g., labels) can be used. In a nutshell, GAN-based
attacks can be efective in both a warm start (the attacker has some knowledge) and a cold start (the attacker has
little or no knowledge).

3.3 GAN-based Atacks in Decentralized Systems

Table 3. Comparison of GAN-based atacks in FL systems.

Authorship & Year Attacker Victim Threat Model Abidance of FL Protocol GAN Model

Hitaj et al. [55] 2017 Client Targeted client CRI Passive, Active CGAN
Zhang et al. [142, 143] 2019 Client Central server, Client PA Active GAN
Wang et al. [108, 125] 2019 Central server Targeted client CRI, MI Passive, Active CGAN
Xu et al. [132] 2020 Client Targeted client MI Passive, Active CycleGAN
Zhang et al. [144] 2020 Client Arbitrary client MI Passive GAN
Ren et al. [96] 2021 Central server Targeted client PreI, CRI Passive WGAN
Sun et al. [111] 2021 Client Targeted client PreI, CRI Active GAN

Abbreviation: PAśPoisoning Attack, CRIśClass Representation Inference, MIśMembership Inference, PreIśPreimage Inference
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Decentralized ML systems have gained widespread adoption in practical scenarios due to their scalability
and privacy-preservation ability. However, attacks on decentralized ML systems are a cause for concern [75].
Particularly, the data distribution mimicry-enabled property of GANs can efectively help attackers cross the
barriers among diferent entities of decentralized ML systems, even if the entities exist as łinformation-isolated
islandsž. Therefore, we investigate GAN-based attacks against decentralized ML systems in this subsection. As
one of the most typical, prevalent, and extensively researched decentralized ML systems [135], we primarily
focus on federated learning (FL) systems. In addition to diferent attack objectives (e.g., poisoning attack and
inference attack), the attacks against FL systems can be categorized into passive and active attacks. Meanwhile,
the attacks can be launched by inner participants (i.e., client and central server) or outsiders (e.g., eavesdroppers).
In this section, we summarize the existing studies according to the above taxonomy in Table 3 and discuss them
in detail as follows.

3.3.1 Atack from Insider v.s. Atack fromOutsider. GAN-based attacks can be conducted by outsiders or insiders
of a FL system. Given the typically large number of participants in a federated learning system, it is highly likely
that one or more participants may act maliciously. Insider attacks comprise those conducted by the central server
and the clients of FL systems. Generally, insider attacks intend to be more impactful than outsider attacks. This is
because insiders can easily and imperceptibly acquire valuable information from the FL system. They can utilize
this privileged access to develop more efective attack models [75]. FL does not allow the participants to share
their raw data; however, some may cast greedy eyes on others’ data. In horizontal FL, the attacker, who is one of
the clients, may target the identity information of other clients. In vertical FL, the targets of the attacker may be
other clients’ data features that (s)he does not have [135]. GANs empower attackers to locally produce mimic
data samples. More devastating attacks could be orchestrated through the collusion of multiple malicious clients,
such as in the case of a Byzantine attack [37]. In Byzantine attacks, one potential threat is that the clients can
manipulate their outputs that mimic the distribution of the expected model updates by GANs; this allows clients
to conceal their malicious activities efectively. Furthermore, an attacker can launch the Sybil attack [41] that
simulates multiple forging clients to conduct more disruptive attacks than the single one. In another case, the
attacks can be from the central server. The malicious central server can have similar motives to the clients, as
the central server generally knows nothing about the data, making it covet the raw data from clients. As the
federated scenario assumed in [125], the clients are required to upload their local model updates to the central
server, which enables the central server to utilize GANs to recover the local data based on these local model
updates.
Outsider attacks, similar to the term łman-in-the-middle attacksž, are initiated by eavesdroppers who lurk

within the communication channel between the central server and clients, or among the actual service users
of the federated model in a MLaaS platform. Outsiders typically lack prior knowledge about the shared model,
resulting in the attacks are usually black-box [58]. Furthermore, considering the lack of legitimacy for outsiders,
their intrusive behaviors are typically subject to stringent system monitoring. Accordingly, the challenges of
GAN-based attacks from outsiders reside in two main aspects: black-box inference and the ability to evade the
detection mechanisms [97].

3.3.2 Privacy Atack v.s. Security Atack. Privacy attacks are a major threat to FL systems. Not only do malicious
participants exist, but there are also honest-but-curious participants who attempt to infer the private information
of other participants. We know that attackers need to query target model assets as much as possible to infer
privacy information; however, for centralized systems, frequent queries from attackers who are outsiders to the
target model inevitably raise alerts. By contrast, the protocol of FL system allows participants to access the shared
model in each training iteration. If this is the case, an attacker who is in the disguise of a benign participant in a
FL system can legitimately and repeatedly access the shared model, enabling them to execute the inference attack
unobstructedly. A pioneering work of inference attacks against FL systems based on GANs can be referred to
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[55], which is developed according to the above intuition. An illustration of the scheme proposed in [55] is shown
in Figure 9(a). The attacker pretends to be a benign participant (client), who tries to steal private information
from other participants. Given that GANs can learn the distribution from the classiier’s output without the
knowledge of the data, the attacker secretly deploys a GAN to induce the victim into disclosing more knowledge
about a class that the (s)he is unfamiliar with. As the generated samples increasingly resemble the target class, it
becomes increasingly challenging for the global model to accurately classify the target class. Consequently, this
facilitates the disclosure of more information about the target class. Thus, the attacker can leverage the disclosed
information to improve the generator, generating samples that closely resemble the target class for the purpose
of privacy theft.
However, the inference attack approach proposed in [55] is limited. First, the global model’s architecture is

modiied, and thus the learning process is impacted where a powerful attacker has to be assumed in this scenario.
Second, the attack cannot obtain the exact samples from the victims but rather general samples that describe the
properties of the targeted class, which cannot achieve a user-level privacy attack. Wang et al. [125] proposed to
stride the two limitations. The schematic of the proposed approach is shown in Fig. 9(b). The attacker in this
work is assumed to be the central server which covertly employs a GAN to create fake samples that confuse
the clients. To achieve a user-level privacy attack, a multi-task-enabled GAN is introduced where the victim’s
reality, category, and identity are all considered. The principle of the multi-task-enabled GAN draws inspiration
from CGAN, where the noise input to the generator and the real samples input to the discriminator are both
conditioned on category and identity information. For the identity information, since the central server cannot
directly access the samples from diferent clients, a gradient-based data reconstruction approach is adopted
to recover the clients’ local data at the central server, which is subsequently utilized for training the GAN. To
provide GAN with auxiliary information, the attacker employs a dataset with real samples. In this scheme, the
attacker can train the GAN imperceptibly and ilch the clients’ privacy information without modifying the global
model and compromising the FL system.

FL systems have also been investigated as vulnerable to security attacks such as poisoning attacks [9, 142]. This
is because FL systems ask the participants not to share their data. Consequently, the data and training process
is invisible to the central server, and the security authenticity of a certain client’s update cannot be veriied.
Nevertheless, conventional poisoning attack approaches assume that attackers possess the validation dataset that
shares the same distribution as the training dataset [83], which is considered impractical in federated scenarios.
A GAN-based poisoning attack method against FL systems is proposed by Zhang et al. [142] (see Figure 10).
The attacker uses GAN to generate suicient labeled examples and transform them into poisoning samples by
label lipping. The attacker’s objective is to compromise the global model by uploading poisoned local model
parameters; this act subsequently distorts the original distribution of raw data and inluences the inferences made
by the learning model.
Summarily, it is also worth noting that the architectures of the above-introduced poisoning attack and the

aforementioned GAN-based inference attack [55] exhibit similarities. First, both approaches employ GANs to
generate samples that mimic the ones of the victim. Second, they employ label lipping techniques to change
the labels of these generated samples to a speciic class, where the attackers’ models are trained using these
manipulated data to generate specially-crafted gradients. However, their targets and the underlying motivations
for employing the technique are signiicantly diferent. GAN-based poisoning attacks aim to maximize the attack
efects (e.g., model performance degradation), such as causing model performance degradation, by uploading
speciically crafted gradients. In contrast, GAN-based inference attacks, such as [55], strive to utilize meticulously
designed gradients to maximize the amount of leaked information from the victim’s local data in a deceptive
manner. More generally, for whichever approach, we can conclude that while the attacker has no prior knowledge
about the victim in a FL system, (s)he can leverage the shared model and GAN’s synthesizing capacity to
compromise the victim indirectly.
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(a)

(b)

Fig. 9. Two instances of GAN-based inference atack in FL systems. (a) The atack launched by a client [55]. The victim
declares his label set [a,b]. The atacker declares his label set [b, c]. If this, then that class b is the shared one. The objective
of the atacker is to deduce as much meaningful knowledge about components in class a without any prior knowledge.
The atacker uses a GAN to create samples that resemble the victim’s samples from class a and introduces these synthetic
samples labeled a into the FL procedure. Consequently, the victim needs to diferentiate between classes a and c as far as
possible, making him expose more knowledge about class a than supposed. The łshieldsž highlight three countermeasures to
this atack (refer to Section 4.2). (b) The atack launched by the central server [125]. The discriminator of the devised GAN can
handle three tasks: real-fake classification, categorization classification, and, most importantly, identification classification
that can diferentiate the victim from other participants, which cannot be handled by the method in [55]. X ′victim and X ′

client
denote the recovered training data of the victim and other clients, respectively. The discriminator at the central server is
developed by sharing the same model structure of the global model or further aggregating with the victim’s updates (except
the output layer).
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Fig. 10. An instance of GAN-based poisoning atack in FL systems [142]. The atacker first receives the global model fglobal
and develops a secret replica of fglobal as the initialized discriminator D. Then, the generatorG synthesizes fake data samples
and thereater inputs these samples to D. The fake data samples are classified as corresponding classes YO by D. These
samples are assigned to the target class labels YP by label flipping and finally stored in the training dataset of the atacker.
Since the FL is executed iteratively, the generatorG of the atacker can produce plenty of synthetic samples analogous to the
original samples. The atacker can train its current local model with the poisoned data and upload ∆fA to corrupt the global
model.

3.3.3 Active Atack v.s. Passive Atack. For the cases in which insiders launch attacks, according to their abidance
of FL protocol, the attacks could be active or passive. In passive cases, attackers would not break the FL protocol Ð
simply observe the updated model parameters and performs inference without changing anything in the local or
global collaborative training procedure. Contrarily, in active cases, attackers would break the FL protocol and
perform a more powerful attack against other participants. In addition to the case introduced in Section 3.3.2,
Wang et al. [125] introduced an active case that the attacker (central server) conigures an ailiated server that
is only connected to the victim. In this manner, the victim is efectively isolated from other clients, enabling
the central server to launch more targeted attacks toward the victim. Thus, GANs can generate higher-quality
samples (see the comparison in the right part of Figure 9(b)) attributed to the concentration on the target real
samples. Comparatively, passive attacks are more challenging than active attacks due to attackers’ restricted
capabilities and authority.

4 COUNTERMEASURE TO GAN-BASED ATTACKS

To mitigate or eliminate the adverse impact on the utility, performance, and privacy of model assets and stake-
holders caused by GAN-based attacks, diferent strategies have been adopted or devised as countermeasures
(defenses) against the attacks. In this section, we review and discuss the countermeasures to GAN-based attacks,
which are performed as follows: we irst introduce the conventional and commonly-adopted countermeasures
to the attacks on ML models/systems. Then, we present some speciic countermeasures to general adversarial
attacks and GAN-based attacks. Lastly, we particularly introduce some countermeasures to GAN-based attacks
against decentralized systems. A collection of countermeasure studies to GAN-based attacks can be seen in Table
4.
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Table 4. Summary of studies with regards to countermeasures to GAN-based atack .

Authorship & Year Threat Model System Initiative Strategy

Yang et al. [134] 2017 PA C Passive Assess the training loss of an indeterminate training example.
Yan et al. [133] 2019 CRI DeC Active Add backdoor layer to the shared model and observe its change.
Ching et al. [23] 2020 CRI, PreI DeC Passive Partition the shared model and make the partitions trained by the both client and server.
Xiong et al. [131] 2020 CRI DeC Active Detect abnormal gradient updates to identify the attacker.
Zhang et al. [147] 2020 CRI DeC Passive Create fake samples by GAN to train the shared model and further obfuscate the attacker.
Chen et al. [22] 2020 CRI DeC Passive Isolate the participants from the actual model parameters by introducing a trusted third party.
Chen et al. [20] 2020 EA C Passive Combination of adversarial training [46], thermometer encoding [16], and large-margin GM loss [120].
Mangaokar et al. [20] 2020 EA C Active Check disparities in color components [66] (blind); mesoscopic-level examination [1] (supervised).
Jiang et al. [62] 2020 EA C Passive Use CycleGAN to improve attack and defense capacity mutually.

Abbreviation: EAśEvasion Attack, PAśPoisoning Attack, CRIśClass Representation Inference, PreIśPreimage Inference,
CśCentralized System, DeCśDecentralized System

4.1 Generic Countermeasures

The threat of GAN-based attacks has garnered signiicant research attention and raised widespread concerns.
The conventional defense approaches against S&P attacks can be generally categorized into hardware-assisted
approaches, cryptographic approaches, and diferential privacy-based approaches.
Hardware-assisted approaches such as Trusted Execution Environment (TEE) [98] and Dynamic Root of

Trust Measurement (DRTN) [33] are developed from underlying architecture, which involves developing separate
hardware modules or operating systems for executing ML tasks. In this way, malicious actions can be blocked
to a great extent and thus systems can ofer strong S&P guarantees to all model assets. Notwithstanding, the
requirement of speciic hardware conigurations impedes their applicability on diferent computing devices.

Homomorphic Encryption (HE) [4] is a cryptographic technique widely adopted in data privacy-protection
of ML that enables computation to be directly performed on encrypted data (i.e., ciphertext) with no need for
decrypting the data, thereby making the computation’s result maintain encrypted. Albeit the protection of data
privacy, HE is computationally expensive, especially for decentralized systems where clients are usually edge
devices (e.g., smartphones), and may signiicantly reduce the training eiciency of the shared model [140].

Diferential Privacy (DP) [31], and similar approaches such as k-Anonymity [112] harness the addition of
noise to the data or the use of generalization techniques to obfuscate certain sensitive attributes to the point
where a third party cannot distinguish the individual, rendering the data unrecoverable. The most primitive and
widely-known DP is ϵ-DP [32], which is formulated as

Pr [A (X1) ∈ S] ≤ exp(ε ) · Pr [A (X2) ∈ S] (9)

whereA is a randomized algorithm (e.g., adding random noise); X1 and X2 are two datasets that difer on a single
element; ϵ is the privacy budget (level of DP). Given a speciic output set S ,A endeavors to make the distributions
of output A (X1) and A (X2) undistinguishable. Compared with the above two branches of approaches, DP
is considered a more feasible countermeasure to privacy attacks due to its ease of operation and negligible
computational overhead. Nonetheless, recent research has also disclosed the limitations of DP [52]. First, adding
noise naturally depreciates the utility of the data for model training [61, 153]. Furthermore, [2, 55, 96, 148]
revealed the inefectiveness of DP as a countermeasure against GAN-based attacks. Speciically, Zhang et al.

[148] and Aïvodji [2] et al. ascribed the failure to that DP (canonical record-level DP) only hides the presence of
a single data record in the training setÐ limiting the learning of individual training instances, in return, may
facilitate the learning of generic features of a class and thus actually contribute to preimage inference. Hitaj et
al. [55] argued that in FL systems, applying diferential privacy (DP) to the model parameters is not efective as
the noise introduced through DP is not retained once the model is well-trained. Thus, pruning or obfuscating
shared parameters by DP will not contribute to defending the GAN-based attacks since the GAN-based models
can retain their efectiveness so long as the target model on the client side has high accuracy. Particularly, Hitaj et
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Fig. 11. CycleGAN-based atack and defense process [62]. Gat and Gdef denote the generators of atacker and defender,
respectively. Dat and Ddef denote the generators of atacker and defender, respectively. The generator of CycleGAN is
designed to translate an example from a source domain to a target domain, and the two domains here are the feature spaces
of benign and adversarial examples. Denote the benign and adversarial examples as X and XA. In the atack cycle, Gat takes
X as the input and generates fake adversarial examples X ′

A
. Then, X ′

A
is sent to Ddef, which is used to distinguish X ′

A
and

XA. The defense cycle is symmetric to the atack cycle. Gdef takes XA as the input and generate fake benign examples X ′.
Next, X ′

A
is sent to Dat, which is used to tell X ′ and X apart. Furthermore, a white-box atack is considered that the target

model F is considered here, which takes X ′
A
and X ′ as the inputs where the measured losses are used to optimize the atack.

al. also indicated that while DP aims to prevent attackers from distinguishing whether a data record X is part of
the training set, GANs have the capability to generate a synthetic example XA that is indistinguishable from the
original X , thereby circumventing this defense. As the results presented in the right part of Figure 9(a), whether
with small or big privacy budgets (ϵ), GANs can generate semantic-distinguishable results, which has satisied
the demand of low-idelity attack tasks such as class representation inference.

4.2 Pointed Countermeasures

Countermeasures can be explicitly designed for diferent threat models. For countering adversarial attacks, many
methods were proposed to modify training or test samples. Revolving around the test data examples, Guo et

al. [48] and Das et al. [26] applied image transformations such as bit-depth reduction and JPEG compression
to test examples before fed to the classiier, which achieves a fast removal of most adversarial perturbations.
However, useful information may be sacriiced in the image transformation. In a diferent approach that aims at
enhancing classiiers’ resilience against adversarial examples, Papernot et al. [93] employed distillation to extract
additional knowledge about the training examples. This additional knowledge helped to identify perturbations
that the classiier is sensitive to, which were then utilized during classiier training. By reducing sensitivity to
input perturbations, the approach enabled the development of smoother classiier models. Bhagoji et al. [10]
leveraged linear transformation such as Principal Component Analysis (PCA) to achieve the useful information
identiication of the training examples to improve the robustness of the trained classiier further. For countering
gradient-based preimage inference attack, Fredrikson et al. [39] proposed to reduce the precision where conidence
scores are developed (e.g., the scores generated by softmax functions). However, this countermeasure is only
available in the black box setting since the model information is accessible to the attacker in the white box setting.
When countering a GAN-based attack, this countermeasure would also reduce the approximation capability of
the surrogate model to the target model’s decision boundaries [2]. For black-box attacks where the attackers
always have to perform a large number of queries to the MLaaS platforms, Shi et al. [106] indicated that limiting
the number of queries or identifying a large number of queries as malicious could be simple yet efective
countermeasures.
The adversarial learning nature of GAN enables to counter GAN-based attacks using another GANÐ

łlike cures likež. Leveraging the cycle consistency notion of CycleGAN, Jiang et al. [62] integrated GAN-based
attack and defense (both attacker and defender operate a respective GAN) in a CycleGAN by taking the output of
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a GAN as the input of another (see Figure 11). Following the terms in Figure 11, the objective functions of the
attacker and defender’s generators can be formulated as

L(Gatt ) (Gatt,Ddef) = E
X∼pdata (X )

[logDdef (XA)] + E
Z∼pZ (Z )

[log(1 − Ddef (Gatt (X )))],

L(Gdef ) (Gdef,Datt) = E
X∼pdata (X )

[logDatt (X )] + E
Z∼pZ (Z )

[log(1 − Datt (Gdef (XA)))].
(10)

In such a way, the attack and defense capacity could promote mutually. A further insight is that GANs are
born with a privacy-preserving peculiarity since only the discriminator can access real samples directly while
the generator cannot during the training process of GAN. That is to say: if the victim adopts a GAN to handle
his learning tasks, there is a natural cover for privacy defense [50, 102]. For readers interested in GAN-based
techniques for safeguarding S&P in machine learning, a comprehensive resource to explore is the work by Cai et
al. [17].

Furthermore, according to the countering initiative of defenders (victims), the countermeasures can be either
passive or active. Passive defenses are usually performed at the victim side, aiming to minimize the attacks’
inluence locally. The majority of previously mentioned cryptography-based, DP-based, and data transformation
approaches can be classiied into this category. On the contrary, active defenses mean actively detecting the
potential threats and blocking them ofshore (usually implemented at the side of potentially malicious users or
the communication channels connected to them)Ð or, more aggressively and thoroughly, striking back on the
attacker to knock out their attack models.

4.2.1 Countermeasures to GAN-based Atacks in Decentralized Systems. The countermeasures to GAN-based
attacks in decentralized systems can be greatly strategized by the aforementioned passive or active patterns.
We take three countermeasures to the inference attack proposed in [55] to exemplify in the sequel. For passive
defense, computation-eicient approaches are highly favored. Ching et al. [23] proposed a defense approach that
utilizes model partition (see Countermeasure 2 in Figure 9(a)). Instead of training the entire model at the client
end, the proposed approach conceals the model from users and edge servers. This enables the concealed parts of
the model to be trained with the assistance of these entities. By employing this approach, the attacker is unable
to steal integral information from the FL system to generate samples resembling the victim’s. Particularly, to
mitigate the risk of data leakage, it is essential to perform the computations of the irst and last layers of the model
on the client end. In [147], the authors introduced another strategy that inherits the aforementioned łlike cures
likež idea to defend against GAN-based inference attacks (see Countermeasure 3 in Figure 9(a)). As the threat
model intends to learn the distribution of the victim’s data using GAN, this study introduces a GAN at the victim
end that manipulates the victim’s training data by generating fake data before inputting them into the shared
model for training. The purpose is to prevent the attacker from learning the real distribution. By employing this
approach, the attacker is restricted to learning the distribution of the manipulated data, rather than the actual
distribution of the victim’s data. Particularly, to ensure that the manipulated data obfuscates the attacker, making
the recovered examples by the attacker’s GAN indistinguishable from human beings, an unsupervised learning
pattern is employed. This pattern formulates a corresponding objective function as maxZ L(obf) = logVar (G (Z )),
where the variance ofG (Z ) is expected to be maximized to distort the generated samples. Moreover, addressing
the concern that the manipulated data could potentially decrease the accuracy of the shared model, the objective
function of the generator of the victim’s GAN is modiied to minimize the feature distance between the generated
samples and the original samples, which is formulated as minZ L(G ) = ∥G (Z ) − X ∥22 .

In contrast to passive defense, active defense in decentralized ML systems ofers timely and accurate warnings
prior to attacks. It usually aims to build a resilient defense system in real-time to mitigate, transfer, and reduce
the risks faced by the clients. Active defense can substantially decrease the overall computational overheads of
defense systems [28]. Xiong et al. [131] presented an approach that actively detects GAN-based attacks during
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the initial training phase of the victim model (see Countermeasure 1 in Figure 9(a)). The threat model assumed
the same as the one in [55] as well. However, they assumed that the central server knows information about the
distribution of data classes among clients, without having access to the speciic data itself Ð the practicality of
this assumption is disputable. This approach leverages the diference between victims’ and survivors’ gradient
updates at each global epoch to detect the anomaly. Speciically, this approach commences by extracting the
feature from gradient update vectors using multiple auto-encoders [54], and then uses an unsupervised clustering
approach [35] to identify the class that a client should not have based on the central server’s knowledge. This
makes it more diicult for attackers to evade detection during the initial stages of the attack. Notably, this early
detection prevents the further spreading of the attack efect, thus enabling the protection of more training data.

5 FUTURE RESEARCH OUTLOOK

Although it has been many years since GAN irst appeared, GAN-related studies never fade out from research
hotspots. In particular, with the evolution of GAN-based techniques, their threats regarding the security and
privacy of machine learning systems are expected to be further investigated. This section provides an outlook for
promising future research directions to ill the existing research gap further.

5.1 Further Advances on GANs Models

In addition to strategic considerations such as when and where to use GANs, the efectiveness of GAN-based
attacks and defenses relies heavily on the capabilities of the GAN models themselves. In the context of attack
scenarios, the operational space and efectiveness of GANs can be signiicantly restricted compared to normal
usage. This limitation arises from the need for stealthiness and the potential countermeasures they may face.
Model collapse and training diiculty are two main issues of existing GANs. Although GANs have shown

their potential for generating considerably natural examples, they commonly sufer the curse of mode collapse,
meaning they can capture only a limited variety of modes in the data. GANs, in particular, fail to learn some
of the modes when trained with multi-modal distribution data samples. Consequently, GANs could only reach
sub-optimal solutions in most cases rather than the true equilibrium. The mode collapse renders the generated
samples often lacking diversity. As illustrated in Section 2.1.2, many variants of GANs have been devised with
more stable architectures, improved learning objectives, and so on, to solve these problems. It has been studied that
loss function-enhanced GANs variants often show more improvement in training than architectural-enhanced
GANs; however, they still cannot prompt mode diversity in the generated samples. Although the proper design
of architecture and loss function can be orchestrated in a GAN to address the problems, their efectiveness is
inherently limited. To tackle the training diiculty of GANs, researchers also experiment with diferent tricks
such as training strategies bettering and hyperparameters tuning, etc. Unfortunately, some good results of these
solutions conversely sacriice the quality or diversity of the generated samples. On the other hand, some GANs
variants, especially the loss function-enhanced GANs, ask for stringent training requirements, which cannot
adopt the tricks.

Comprehensively speaking, the trade-of relationships between the existing solutions are pronounced, and no
such a well-rounded solution exists to diferent problems. Technical breakthroughs of existing GANs are more
likely to be achieved by fundamental and theoretical analysis, which is extremely desired in the community.

5.2 GANs Threats to More Applications

5.2.1 Regression Learning. GANs have been mainly studied and applied to the computer vision ield, where
classiication tasks are the preoccupation. Meanwhile, researchers have started to generalize GANs to regression
tasks. Regression tasks describe several predictor variables exploited to predict one or multiple numerical response
variables with, usually, sequential data [60]. Compared to classiication tasks with a large structured output space,

ACM Comput. Surv.



111:26 • Zhang et al.

the output space of regression tasks is relatively smaller. It has been demonstrated that semi-supervised GAN
can be used to handle diferent types of regressions models (e.g., deep neural networks, XGboost, and Gaussian
process) by the involvement of auxiliary or constraint information [88].

From the perspective of the application, regression learning is widely applied to tasks that may involve a great
deal of private sequential information: loan or insurance risk estimation, personalized medicine dispensation,
inancial market analysis, etc. For privacy attacks on these tasks, GANs could be used to infer a sequence of data
records from the regression models such that compromise the data holders’ privacyÐ or at a coarse granularity,
the sequential pattern, which can also be used for trend prediction. Little efort has been made to investigate the
GAN-based attack/defense in terms of regression tasks, which could be a worthy future research direction.

5.2.2 Graph-structured Data and Graph Learning. The capability of handling non-Euclidean data such as social
networks point cloud data make geometric deep learning, especially graph learning, attract broad research
attention in recent years. Manifold GAN-based graph generation approaches have emerged in this trend, which
has been applied to but is not limited to, node feature generation, link generation, and complete topology (graph
structure) generation. Related attack methods have been proposed using GAN to generate additional nodes or
edges that modify the original graph structure or perturb their features or weights, demonstrating considerable
destructiveness. The challenges lie in how to make attacks more eicient as graph-structured data usually renders
related learning involving considerable modeling depth and breadth, which is computationally costly.
On the other side, the connectivity existing in diferent graph entities renders its privacy protection a prob-

lematic task. For example, it has been shown that edges with more signiicant inluence are more likely to be
recovered. Generic approaches such as diferential privacy can hardly defend without dropping the task accuracy
[149]. One possible way is extracting high-level, structure-free graph representation (i.e., does not contain explicit
graph structure information). However, the challenge lies in inding representations that can efectively deceive
the powerful learning capabilities of GANs, while also preserving the utility for downstream tasks. These issues
are deserving of further investigation.

5.2.3 More Complex ML Systems. As introduced in Section 3.3, there have been several studies investigating GAN-
based attack/defense in federated learning systems, which shows the eicacy of GANs to attack decentralized
ML systemsÐ especially the capacity of reconstructing information from the untouchable data source (i.e., other
clients in a FL system). However, existing studies have two main limitations. On the one hand, most of them
focus on simple-framework systems. Taking the example of a federated learning (FL) system, although it is often
perceived as a decentralized system, the utilization of centralized aggregation methods such as FedAvg implies
that the system retains some centralized aspects. Typically, the system topology follows a star-like or tree-like
structure when multiple hierarchies are involved. Recent research shifts their attention to fully-decentralized
FL (conceptualized as swarm learning [126]) in which a central server does not exist and, instead, participants
communicate in a mesh topology. One concern is as such systems involve more dense connections, and thus
more frequent communication among participants possibly results in privacy leakage during communication can
be caught by the attacker. If this is the case, for GAN-based attacks, it is of necessity to explore what would be
good entry points to maximize the attack efect.
On the other hand, most existing GAN-based studies only evaluate their proposed methods when there

are no or very simple defense measures. Nevertheless, real-world industrial ML systems are equipped with
comprehensive protective mechanisms. For instance, cryptography-based defense methods, often overlooked in
academic research due to their computational cost, are extensively utilized in industry. How to design GAN-based
attack methods against ML systems with complex structure, functionality, and more powerful defense would
deserve researchers’ attention for improving the practicability of current research.
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5.3 Interpretability Studies on GANs

While GANs have been widely applied to various attack approaches, there is still a lack of comprehensive
theoretical studies in this domain. Particularly, the generator of GANs possesses the nature of deep learning,
which is in essence a black-box function. To understand: why the method can work, what is the upper bound of
the method, and what data features would be utilized for attacks (i.e., vulnerability), it would be better to conduct
interpretability research.
One possible solution is using information theory. Recent years have witnessed many studies that used

information bottleneck (IB) [113] to explore the interpretability of ML. IB mainly provides a principle for learning
useful representation Z of original data X , which encourages Z to be maximally informative about the target Y
to develop accurate prediction; meanwhile, it discourages Z from mingling with additional information from X

that is irrelevant for predicting Y . The above-mentioned InfoGAN was a successful attempt to apply IB to latent
representation disentanglement. For GAN-based attacks, it is also interesting to know if the IB theory could claim
the computational beneit of the attack model with diferent GAN architectures, etc. Another possible solution is
leveraging quantitative analysis, which was previously widely adopted in the inancial ield. Recent research
attempted to use the Shapley value as a metric to quantify the value of each training example of a ML model
to the model performance. Revealingly, Ghorbani et al. [44] found that, in their training data poisoning (noisy
labeling) case study, low Shapley value data examples efectively capture the poisoned points. Related research is
still at the early stage; investigating the vulnerability of data to GAN-based inference or adversarial attack by
quantitative analysis can be a future research direction to explore. On the lip side, by making us understand the
key factors in models and data in the S&P context, interpretability research can help us develop more efective
defense mechanisms.

6 SUMMARY

Nowadays, GANs have been regarded as powerful tools with the potential to pose threats to security and privacy
due to their remarkable generation capabilities. This survey aims to systematically analyze the security and
privacy threats of GANs to machine learning. To ensure non-expert readers can grasp the concepts, we begin by
providing a background on GANs, including an overview of the technical principles of primitive GANs and some
notable variants. Subsequently, we provide a novel taxonomy that categorizes the threats posed by GANs to ML
systems and discuss existing related works in each category. Considering both centralized and decentralized
ML systems, we then explore the speciic properties of GANs that make them advantageous for attacks and the
underlying strategies employed in existing attack methods. In addition, from the opposite side of things, we
investigate the countermeasures to GAN-based attacks, including indicating existing methods’ limitations. Lastly,
drawing from the insights gained and the current research trends in the community, we propose promising
directions for future exploration by researchers.
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