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Graph Construction for Traffic Prediction:
A Data-Driven Approach
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Abstract— Graph learning-based algorithms are becoming the
prevalent traffic prediction solutions due to their capability of
exploiting non-Euclidean spatial-temporal traffic data correla-
tion. However, current predictors primarily employ heuristically
constructed static traffic graphs in forecasting, which may not
describe the latent traffic dynamics well. Existing attempts on
dynamically generated traffic graphs also face challenges like
prolonged model training time and undermined model express-
ibility. In this paper, a novel data-driven graph construction
scheme based on graph adjacency learning is proposed for
graph learning-based traffic predictors. The proposed scheme
explores inter-time-series dependency with the graph attention
mechanism to embed the sensor correlation in a latent attention
space, which determines the correlation of any possible sensor
pairs for traffic graph construction. Comprehensive case studies
on three real-world traffic datasets reveal that the proposed
scheme outperforms state-of-the-art static and dynamic graph
construction baselines. Additionally, time-varying and sparse
graph construction schemes are devised and assessed to boost
the efficacy, and a hyper-parameter test develops guidelines for
parameter and model architecture selection.

Index Terms— Traffic graph construction, traffic prediction,
graph attention, intelligent transportation systems, deep learning,
data mining.

I. INTRODUCTION

INTELLIGENT transportation systems (ITS) are among
the vital infrastructure in modern smart cities with the

rapid urbanization process [1]. Benefit from the boom of
big data collected by a variety of sources, the community is
embracing a rise in new data-driven solutions to transportation
problems [2]. Within the diversity of ITS sub-domains, traffic
prediction is among the essential support to the daily commut-
ing and traveling of millions of people [3]. Accurate and timely
traffic prediction data are highly valued in enhancing traffic
management and implementing congestion prevention and
remediation operations [4], [5]. Motivated by the indispensable
role in smart city transportation, both academia and industry
are devoting efforts to devising traffic prediction algorithms in
favor of their significant social influence.

Among the plethora of recent literature on traffic pre-
diction, deep learning methods have engrossed significant

Manuscript received June 19, 2021; revised October 15, 2021; accepted
December 14, 2021. This work was supported in part by the Stable
Support Plan Program of Shenzhen Natural Science Fund under Grant
20200925155105002 and in part by the Guangdong Provincial Key Laboratory
of Brain-Inspired Intelligent Computation under Grant 2020B121201001. The
Associate Editor for this article was M. Mesbah.

The author is with the Guangdong Provincial Key Laboratory of
Brain-Inspired Intelligent Computation, Department of Computer Sci-
ence and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China (e-mail: yujq3@sustech.edu.cn).

Digital Object Identifier 10.1109/TITS.2021.3136161

attention [6]. Due to the nature of traffic prediction being
high-dimensional, irreducibly complicating, and massive in
data volume, the utilization of deep learning methods is
justified by its capability of modeling highly complex and
non-linear functions from data. In the past a few years, ITS
scholars are witnessing a gradual and steady transition of
deep learning techniques from using recurrent neural networks
for multivariate time-series forecasting to using convolutional
neural networks for exploiting spatial data correlation, and
more recently to adopting graph learning-based networks, e.g.,
graph convolution networks (GCN), to facilitate learning from
traffic data aligned in non-Euclidean spaces [6], [7]. This
transition advances the performance of traffic predictors by
incorporating more latent information from the data but is
also introducing a presumption — the inter-series traffic data
correlation follows heuristically generated adjacency matri-
ces, typically based on the distance between traffic sensors
or the topology of underlying transportation networks [7].
Graph learning-based predictors rely heavily on the quality
of traffic graphs derived from the adjacency matrices. Despite
the improving predictions over canonical methods, there is no
proof showing that these heuristically generated matrices lead
to optimal performance [7], [8].

To rebut the presumption, a number of learning-based
traffic graph construction approaches are proposed in the
literature [7]. As will be detailed in the next section, these
approaches can be generally classified into three categories.
A most straightforward approach is to use a fully learn-
able matrix to substitute the original adjacency or Laplacian
matrix during graph convolutions in the spectral domain [9].
For regularization, the fully learnable matrix is sometimes
replaced by multiplying two learnable node embedding
matrices [10], [11]. The second line of research exploits the
spatial design of graph convolution operations and employs
the attention mechanism to refine the heuristic adjacency
matrix and develop a more precise nodal correlation [12], [13].
Finally, there is also a series of investigations concentrating
on superimposing a learnable local graph Laplacian over the
global one derived from the adjacency matrix [14], [15]. All
three classes of approaches are reported to outperform graph
learning-based predictors using static and heuristic traffic
graphs.

However, there are still open challenges in constructing
graphs for graph learning-based traffic predictors [6], [7].
While fully learnable adjacency matrices render predictors the
largest model capacity, the corresponding parameter searching
space is drastically extended, which leads to notably prolonged
model training time. Furthermore, the learned matrices are not
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Fig. 1. Data flow of the proposed GALEN. The three alternative graph
construction mechanisms are differently styled and colored.

guaranteed to be positive semi-definite, which cannot serve
as the graph Laplacian and undermines the expressibility of
graph learning models [16]. The attention-driven spatial graph
convolution circumvents this positive semi-definite constraint
but still suffers from its lengthy offline training and online
inference time. Additionally, it can only work on existing
nodal connections defined by the adjacency matrix despite
that informative graph edges may be missing [17]. Last but
not least, the local graph Laplacian and the aforementioned
fully learnable Laplacian have minuscule differences from the
perspective of model training, and the learned matrices lack
interpretability.

To bridge the research gap and address these challenges,
we devise a Graph Adjacency LEarning Network (GALEN)
to construct traffic graphs for graph learning-based traffic
predictors. Fig. 1 presents an outline of the proposed graph
construction scheme. The proposed scheme can capture the
inter-sensor correlation from raw historical traffic data using
attention on graphs. As interpretable indicators of data depen-
dency strength, The learned attention coefficients are employed
to construct traffic graphs for graph learning-based traffic
predictors. GALEN tackles previous challenges by offloading
the additional model training effort in an individual pre-offline
adjacency learning phase, effectively reducing the predictor
model training and inference complexity. This model is also
not restricted to available edges derived heuristically as canon-
ical graph attention-based models do. Note that the primary
objective of this work is not to devise a new traffic predictor,
but instead to rethink the physical meaning of the graph
attention values and to use them to dynamically create graphs
for traffic prediction. This is among the pioneer work of traffic
graph construction using attention. The proposed scheme
can be applied to existing and future graph learning-based
traffic predictors with static or dynamic graphs as an add-
on, leading to potential performance improvement almost for
free. The main contribution of this work is summarized as
follows:

• We propose an adjacency learning mechanism to capture
the inter-sensor correlation from the raw data, which is
embedded by attention coefficients for generalization.

• We devise a graph construction scheme to build traffic
graphs for graph learning-based predictors. The graphs
are computationally efficient and provide outstanding
abstraction on the underlying data correlation.

• We design a time-varying dynamic graph construction
algorithm and a sparse graph construction mechanism
to cope with traffic dynamics and achieve quadratic
speed-up.

• We carry out comprehensive case studies on three large-
scale real-world traffic datasets with three state-of-the-
art graph learning-based traffic predictors to show the
efficacy of the proposed graph construction scheme.

The remainder of this paper is organized as follows.
Section II presents a literature study on traffic graph con-
struction and graph link prediction state-of-the-arts. Section III
elaborates on the proposed adjacency learning mechanism
with a comprehensive analysis of the design principle and
alternative designs. Section IV introduces the proposed graph
construction scheme together with its time-varying and sparse
graph construction algorithms. Section V demonstrates the
numerical results of the case studies with detailed discussions.
Finally, this paper is concluded in Section VI.

II. RELATED WORK

Graph learning-based traffic prediction has received much
research attention in the past few years. In this section,
we present a brief summary on the development of
such predictors, emphasizing their utilization of static or
dynamic traffic graphs. Interested audiences are referred to
recent surveys for a more thorough investigation in this
context [6], [7].

In the last decade, the renaissance of deep learning gathered
attention from the transportation industry and research com-
munity to re-visit transportation problems from the data-driven
perspective [2]. Deep learning techniques overcome difficulties
in handcraft feature engineering and resolve the linearity
and stationary assumptions of statistical methods such as
ARIMA and Kalman filter [7]. As introduced in Section I,
learning-based traffic predictors are experiencing a shift from
recurrent neural networks to convolutional neural networks
and, more recently, to graph learning-based neural networks.
Among them, the recurrent neural network family, including
but not limited to the widely adopted long short-term mem-
ory (LSTM) and gated recurrent unit (GRU), concentrates
more on exploiting the temporal correlation within the traffic
data [18]. In the meantime, convolutional neural networks and
variants are generally more focused on capturing the spatial
latent correlation embedded in grid-based traffic systems [6].
Considering that transportation networks, e.g., road and sub-
way networks, are typically graph-structured, graph neural
networks are natural fits to handle such complicated data
correlation in non-Euclidean space [7].

Contemporary graph learning-based traffic predictors come
into two flavors regarding the underlying convolution
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operation, namely, spectral and spatial graph convolutions.
The former performs an eigendecomposition of the graph
Laplacian to help deep learning models understand the graph
structure. Common representatives are ChebNet [19] and
GCN [16] who employ k-order Chebyshev polynomials of
graph Laplacian Tk(2L/λmax − I) and their first-order approx-
imation deg(Â)− 1

2 Â deg(Â)− 1
2 to dictate how data signals dif-

fuse in the graph, respectively, where L is the graph Laplacian,
λmax is the maximum eigenvalue, and Â = A + I is the graph
adjacency matrix with self-loops. The latter works on nodal
locality and understands the properties of a node based on its
local neighbors according to the adjacency A. In this context,
GraphSage [20] and graph attention network (GAT) [17] are
widely recognized as effective alternatives of spectral graph
convolutions.

A major difference of graph learning-based traffic predictors
is the explicit adoption of non-Euclidean topology information,
typically embedded in the graph adjacency [8]. While sensors
that produce traffic data may be fixed by physical constraints,
traffic predictors have control over the design of the graph,
either static or dynamic. Current static traffic graphs are
primarily constructed data-agnostically, following 1) the road
network topology, including connection [21]–[23], transporta-
tion connectivity [24], and direction matrices [25], 2) the
spatial closeness between sensors, e.g., the famous thresholded
Gaussian kernel [26] commonly used for METR-LA and
PeMS datasets, or 3) the traffic pattern and functional similar-
ity [24]. Nevertheless, static graphs all impose the assumption
that these heuristically generated matrices can capture the
non-Euclidean spatial-temporal data correlation, which is still
disputable. In this context, dynamic graphs provide alternatives
to these predictors.

Constructing dynamic graphs for graph learning-based traf-
fic predictors can be generally classified into three categories.
The first category adopts the hypothesis that graph structure
directly learned from raw data outperforms heuristic ones and
uses a fully learnable network parameter matrix S or two
node embedding matrices E1E�

2 to replace the adjacency A,
see [9]–[11], [27] for some examples. This approach, however,
cannot ensure that the learned matrix is semi-definite, let
alone a feasible graph Laplacian, rendering the theoretical sup-
ports to spectral graph convolution invalid. Additionally, the
learnable matrices remarkably expand the parameter searching
space, leading to prolonged model training time. The sec-
ond category employs the attention mechanism to adaptively
distinguish neighbors from each other, making the traffic
graph dynamic. A most prominent technique falling into this
category is to utilize GAT and siblings to formulate learning
models, see [12], [28]–[31] for some examples. Nonetheless,
such approaches are based on a pre-defined graph topology
to enhance nodes with larger impact and fade out the rest.
They cannot establish new edges within the traffic graph, thus
limiting their graph construction efficacy. Finally, the third
category incorporates learnable local Laplacian matrices in
addition to the heuristically generated static ones to refine the
static graphs, see [14], [15], [32] for some examples. While
these approaches partially resolve the semi-definite issue of
the first category, the parameter searching space is as ample,

and spatial graph convolution cannot benefit from this graph
Laplacian-oriented modification.

In this work, inspired by the interpretability of the attention
mechanism, we propose a new graph construction scheme for
graph learning-based traffic predictors. The proposed scheme
overcomes the aforementioned challenges and can be applied
in existing and future graph learning-based traffic predictors
as an addon for possible performance improvement.

III. GRAPH ADJACENCY LEARNING NETWORK

To overcome the challenges in graph construction for traffic
prediction, we propose GALEN to construct traffic graphs
based on the historical data dynamically. Different from the
existing efforts, the proposed GALEN model constructs traf-
fic graphs from a new perspective. GALEN is capable of
extracting the interdependence among traffic sensors from the
raw data instead of the traffic network structure. Additionally,
GALEN performs the extraction in an offline manner, distin-
guished from subsequent traffic prediction learning to alleviate
the model training complexity.

In this section, we first present an overview of GALEN
with illustrations on the design principle. We then elaborate
on the key concept that drives the model to capture traffic data
correlation, i.e., attention on graph. Subsequently, we present
the detailed learning process of GALEN.

A. GALEN Overview

The main objective of this model is to train a data-driven
deep learning model to capture transferrable interdependence
information among traffic sensors. Such information is capa-
ble of identifying whether a latent but strong correlation
can be observed between pairs of traffic sensors based on
their sampled time-series. GALEN follows the hypothesis
that if two traffic sensors demonstrate significant correlation
according to the historical data, they shall be connected
when constructing traffic graphs for traffic prediction with
graph neural networks. Note that this hypothesis serves as the
foundation of the contemporary graph-based traffic prediction
approaches, in which traffic information is propagated along
the connections, see [33], [34] for some examples.

Fig. 2 presents the architecture of the proposed data-driven
GALEN model for traffic graph construction. There are two
major phases in GALEN to construct graphs for traffic pre-
diction, i.e., adjacency learning (Section III-C) and graph
construction (Section IV-A), roughly resembling the training
and inference phases of typical learning systems. In the former
phase, sensor correlations are extracted and resembled by the
attention mechanism (Section III-B). Stronger dependencies
are perceived if the attention mechanism concentrates only
selected edges on the sub-graph of sensors. We utilize this
characteristic to learn the latent adjacency information among
traffic measurements, which can be further adopted to con-
struct graphs for traffic prediction (Section IV-A).

B. Attention on Graph

As previously introduced in Section I, the recent state-of-
the-art performance of data-driven traffic prediction is pri-
marily developed based on graph learning techniques. The
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Fig. 2. Overview of GALEN on adjacency learning and graph construction.

literature focuses on investigating the non-Euclidean data
correlation among nodes, which are the counterparts of traffic
sensors or road segments in a transportation network. Nonethe-
less, GCN — arguably the most popular graph learning model
for traffic prediction — suffers from two limitations that hinder
its efficacy: 1) subpar performance on inductive learning tasks
due to the embedded static adjacency matrix, and 2) all
neighboring nodes are equal, which deviates from the nature
of transportation where connecting roads can have a different
influence, e.g., arterial versus collector roads.

In view of these two defects, GAT [17] is a notable
alternative that has been recently adopted in the context.
By incorporating the attention mechanism initially designed
for neural machine translation, GAT achieves better neighbor
aggregation through adaptively learning the weight (attention
coefficient) for each neighboring node. Besides, the attention
also grants partial model interpretability to typical graph
learning models [8], which serves as the basis of GALEN.
Considering a graph G(N , E), GAT defines the attention
coefficient on an edge (i, j) as follows:

ei j = LeakyReLU
(
�a� [

W�hi�W�h j

])
, ∀(i, j) ∈ E, (1)

where �hi and �h j are the node features of nodes i and
j , respectively, �a and W are the learnable attention vector
and weight matrix, respectively, � denotes concatenation, and
LeakyReLU(·) is the Leaky Rectified Linear Unit [35]. This
attention coefficient indicates the importance of node j ’s
feature to node i , which resembles the influence of sensor
j on its connecting sensor i . Furthermore, the influences on
the same node i are normalized using the softmax function
for easy computation and comparison as follows:

αi j = softmax(ei j ) = exp(ei j )∑
k∈Ni

exp(eik)
, (2)

where Ni = {k ∈ N : (i, k) ∈ E} ∪ {i} is the self-containing
neighboring set of node i . With the relative influence of
neighboring nodes, the new node feature of i , denoted by �h�

i ,
can be aggregated by

�h�
i = σ

(∑
j∈Ni

αi j W�h j

)
, (3)

where σ is a pre-determined non-linear activation function,
and ReLU is adopted herein. In this process, the weight matrix
W is reused from (1) to reduce the model complexity. This
aggregation resembles the intuition that the traffic speed or
flow of a road can be determined by its connecting ones
of different impact due to the spatio-temporal correlation of
transportation networks [6].

C. Adjacency Learning

When GAT is employed in time-series regression tasks
(e.g., traffic prediction), the model training process learns the
inter-dependency between nodes and their neighbors explicitly
embedded in attention coefficients. Connecting roads with
greater influence render their corresponding αi j values larger.
Previous research takes advantage of this characteristic and
follows an intuitive “Previous Data + Adjacency = Future
Data” equation to perform traffic prediction, see [10], [11]
for some examples. Meanwhile, a hypothesis is developed
by observing this equation: adjacency1 information can be
obtained from both previous and future traffic data. GALEN
proposes an adjacency learning phase to reconstruct this
information.

In the adjacency learning phase, two schemes are launched
sequentially to reconstruct the traffic data dependency, namely,
neighbor graph construction and graph attention learning.
Given a collection of N traffic sensors with their position
and optional the underlying traffic network topology, GALEN
first employs a neighbor selection scheme to construct N
complete sub-graphs.2 In particular, each sub-graph starts with
an arbitrary node i . All other nodes within a pre-defined
distance d from i are gathered to formulate a neighbor
candidate set N near

i . If nodes correspond to road segments
instead of traffic sensors, their midpoints are employed in this
step. Furthermore, the k-hop neighbors of i , denoted by set
N hop

i , is incorporated as candidates granted that the relevant
information (i.e., road connectivity) is available. Otherwise,

1“Adjacency” here and in the sequel refers to the traffic data dependency
in non-Euclidean space instead of the canonical road connectivity.

2A complete (sub-)graph is a graph in which each pair of graph nodes is
connected by an edge.
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Fig. 3. A illustration of the self-containing neighbor set of node i .

N hop
i = ∅. The self-containing neighbor set of node i is

accordingly developed by Ni = N near
i ∪ N hop

i ∪ {i}, which
is later used to override its original definition in (2) and (3).
Fig. 3 depicts an example of a neighbor set with nodes within
1 km and 2-hop neighbors. Finally, an enclosing sub-graph of
i is constructed as Gi (Ni , Ei ), where Ei = {(i, j) : ∀i, j ∈
Ni }. The generation of these sub-graphs is critical to the
subsequent graph attention learning scheme, which presumes
that near-distance data dependency of i is within the coverage
of Ni .

In the second scheme of adjacency learning, a deep neural
network based on stacked GAT is adopted to predict the
traffic data and exploit the latent node adjacency information.
Let X = (xi,t ) ∈ R

N×|T | be the available traffic data of
the transportation network during the discrete time horizon
T = {0,−1,−2, · · · }. Given a sub-graph Gi and an arbitrary
time t , the past traffic data within T time instances from t
can be aggregated as Xi,t = (�x�

i,t−T , �x�
i,t−T +1, · · · , �x�

i,t−1) ∈
R

|Ni |×T , where �xi,t = (x j,t) j∈Ni . Subsequently, Xi,t is input
into an L-layer GAT model to predict the following traffic
data at t , i.e., �x�

i,t . In this model, (3) is calculated L times for
every node j ∈ Ni , in which the l-th layer takes the output of
the previous layer �h�

j as its input �h j , i.e., �h(l)
j ≡ �h(l−1)�

j where
the super-indices indicate the layer index. Adopting Xi,t as the
model input by �h(1)

j ≡ (x j,t−T , x j,t−T+1, · · · , x j,t−1)
�,∀ j ∈

Ni and �x�
i,t as the output by �h(L)�

j ≡ (x j,t), all learnable para-
meters �a and W can be trained by minimizing the L2 predictive
error

L(ϑ, i, t) =
∑

j∈Ni
�x j,t − x̂ j,t�2, (4)

where ϑ is the collection of all learnable parameters in the L
GAT layers and x̂ j,t is the reconstructed prediction of ground
truth x j,t using Xi,t . Consequently, the optimal layer-wise
attention vector �a(l) can be obtained.

There is one key observation on the model training process.
Equations (1) and (3) suggest that only the attention coef-
ficients between connecting roads or sensors are computed
and employed in predicting future traffic data. Nonetheless,
(1) does not mathematically prohibit one from calculating
the attention coefficient of any arbitrary pair of nodes in
the graph. In this equation, W and �a are not syntactically
mergeable: W serves the purpose of casting the nodal features
�hi into an embedding space, while �a focuses on deriving the
correlation between two embeddings [17]. This nature offers

the possibility of inductive attention learning, where the edge
attention is calculated on nodes and graphs that are unseen
during training. This is one of the major breakthroughs of GAT
over other graph learning models and is utilized to construct
traffic graphs in GALEN.

D. Discussion

There are also alternative designs of the aforementioned
adjacency learning, e.g., including all the N nodes in Ni or
removing edges in Ei that do not involve i . Notwithstanding,
GALEN explores the node adjacency information following
the design in Section III-B considering the following reasons.
When all nodes are included in the enclosing “sub-graph”,
GAT degenerates into a global graph attention model, arguably
equivalent to a multilayer perceptron. This design leads to
significantly higher computational complexity, and the conver-
gence capability is notably undermined due to the increased
data volume and complexity. Furthermore, the invariant graph
structure poses a great challenge in the model generality, which
is the key to inductive learning. It is true that the “boundary”
nodes have relatively less number of neighbors than others
if only the distance metric is employed. However, this can be
countered by adaptively increasing the d value for a larger cov-
erage. Adopting a global graph attention may also mitigate this
issue, but the previously discussed training difficulty becomes
a more significant challenge. On the other hand, using smaller
enclosing sub-graphs reduces the model capacity requirement,
improves the graph structure variety, and helps reducing over-
fitting by data augmentation. Removing inter-connections in
Ei also removes the data inter-dependency among nodes in
Ni , rendering difficulties in convergence. While the proposed
adjacency learning is based on the distance and/or topological
connectivity, the subsequent graph construction phase to be
introduced in the next section relax the limitation of using only
“local” dependency, enforcing exploitation of long-range data
correlation. Offline experiments on these alternative designs
also indicate that the models can barely converge to much
inferior performance and the learned attention vectors are not
applicable to the subsequent graph construction phase.

It is also worth noting that this adjacency learning is not
without limitations. Among others, a significant issue is that
the size of nodal neighbor set is heuristically determined by
two hyperparameters d and k as elaborated before. While
extensive hyperparameter search as will be demonstrated in
Section V-E can develop guidelines for setting their values,
it imposes notable computation burden to achieve the best
performance. Therefore, developing a self-adaptive neighbor
set generation scheme is a good addition to GALEN, and we
plan to further investigate this topic in future research.

IV. GRAPH CONSTRUCTION FOR TRAFFIC PREDICTION

With the previous adjacency learning phase, GALEN is
capable of extracting the relative influence between pairs of
traffic sensors or road segments from a data-driven perspec-
tive. In this section, we propose a novel graph construction
algorithm based on the graph attention learned from historical
data. We then discuss the possibility of time-varying graph
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construction and its integration to existing traffic prediction
models. Finally, we devise a sparse graph construction mech-
anism to alleviate the computation burden of GALEN.

A. Graph Construction

Credited to GALEN’s graph attention learning capability,
the model can determine the influence between any pairs of
nodes in a new sub-graph within the transportation network.
Accordingly, GALEN constructs traffic prediction graphs fol-
lowing an enumerative approach.

In particular, we consider a set of sensors or roads N ,
the corresponding historical traffic data X, and the optional
underlying road connectivity. GALEN iterates over all pos-
sible node pairs in {∀i, j ∈ N : i �= j} and determines
whether a uni-directional connection shall be created from
j to i . The model adopts the neighbor graph construction
scheme elaborated in Section III-C to respectively create two
enclosing sub-graphs Gi and G j . These two sub-graphs are
subsequently connected to further create a new sub-graph
Gi j

(
Ni j , Ei ∪ E j ∪ {(i, j), ( j, i)}), where Ni j = Ni ∪ N j .

In principle, Gi j is constructed by merging Gi and G j with
a bi-directional bridge between nodes i and j .

Subsequently, we select R different time instances t ∈ T .
The respective past traffic data of Ni j are input into the trained
L-layer GAT using the connectivity of Gi j and develops the
corresponding predictions {x̂k,t }k∈Ni j using (3). At each time
instance t , we have two sets of attention-related information:

1) Softmaxed layer-wise attention coefficients α
(l),t
i j indi-

cating the influence of nodes j on i at time t , which is
calculated by (2).

2) Node i reconstruction percentage error �i,t = (x̂i,t −
xi,t )/xi,t between prediction x̂i,t and ground truth xi,t .
This error evaluates the reliability of the influence on i .

The influence and reliability are jointly considered by defining
an attention score of a possible edge from j to i as follows:

ri j = 1

L R

L∑
l=1

t∑
α

(l),t
i j �i,t , (5)

which is the average value of all layer-wise attention coeffi-
cients multiplied by the corresponding reconstruction percent-
age error.

The construction of graph edges follows the intuition of
graph-based traffic prediction that strong influence shall be
represented as an edge. Therefore, we sort all ri j for every
i, j pair within N in descending order, and the ones with
top S × N scores are adopted to construct the edge set E of
N , where S is a control parameter regulating the degree of
each node. Consequently, a traffic graph G(N , E) is created
for traffic prediction, whose adjacency matrix can be naturally
derived. By this graph construction process, we note that
both short- and long-range data correlations can be validated
thanks to the iteration over {∀i, j ∈ N : i �= j}, regardless
of the corresponding node distance or physical connectivity.
Two unrelated nodes on the surface can also be connected
if they exhibit similar correlation as neighboring ones do.
We demonstrate the efficacy of such data correlation in the
subsequent case studies.

One may note that as all edges in {∀(i, j) ∈ N ×N : i �= j}
have attention scores ri j , it is possible that the constructed
traffic graph comprises virtual connections between roads that
are not physically connected. Such connections are indeed
important in traffic prediction as they indicate strong traffic
dynamics correlations learnt from data. Contemporary geo-
metric deep learning techniques, e.g., graph convolution and
graph attention networks, rely on these connections to perform
information propagation, see [36], [37] for some examples.

B. Time-Varying Graph

In the previous sub-section, we proposed the graph construc-
tion algorithm based on the trained L-layer GAT, where the
attention coefficients on randomly selected time instances are
averaged for computation. Albeit this scheme can effectively
capture the time-invariant adjacency information that describes
the general spatio-temporal data correlation in the traffic data,
we argue that such correlation is indeed time-varying. For
instance, peak hours demonstrate a strong correlation between
residential and commercial/industrial regions, while distant
shopping areas may exhibit high similarity during weekends.

To capture the time-varying traffic data correlation, a simple
yet effective time-varying graph construction algorithm is
devised whose potency will be evaluated in Section V-B.
Instead of randomly selecting R time instances from the past
time horizon T , we aggregate all time instances in each hour
of a day and compute hourly reliability scores by averaging
the corresponding layer-wise attention score within the hour,
denoted by rHoD,DoW

i j where HoD and DoW are placeholders
for the hour of the day and day of the week, respectively. For
example, if X contains the traffic data of the past four weeks,
r18,Tue

i j is calculated by taking the mean of 1
L

∑L
l=1 α

(l),t
i j �i,t

values at all time instances from 6 PM to 7 PM (exclusive) in the
past four Tuesdays. The subsequent edge construction scheme
still follows the original design, and multiple time-varying
graphs GHoD,DoW are created and used to predict traffic data
during specific periods.

C. Sparse Graph Construction

As introduced in Section IV-A, GALEN computes
N × (N − 1) attention scores for all possible edges in G.
Since each calculation of ri j requires R forward-passes on the
L-layer GAT, obtaining the scores can be highly computation-
ally expensive when N is large (e.g., greater than a thousand).
Although the graph construction process is conducted offline,
a lengthy computation time may hinder GALEN from frequent
updates with the latest traffic data.

To alleviate the computation burden of GALEN, we propose
a sparse graph construction mechanism for fast edge creation.
We consider an intuitive but effective principle that similar
traffic sensors can be grouped as a meta-sensor, and data cor-
relation can be abstracted among meta-sensors with minuscule
loss. Following this principle, we first cluster all traffic sensors
into K = �√N� equal groups using k-medoids algorithm with
respect to the historical traffic data at the beginning of the
graph construction phase. Subsequently, the edges between
nodes within each group are created using the aforementioned
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TABLE I

SUMMARY OF PEMS-BAY, NAVINFO BEIJING,
AND NAVINFO SHANGHAI DATASETS

graph construction algorithm, and K disjoint union of graphs is
produced. Finally, the traffic graph G is constructed by creating
edges on all possible pairs of medoids in the K groups with the
same algorithm. This simplification can significantly reduce
the total number of GAT forward-passes from N2 − N to
roughly N2/K − K , i.e., approximately

√
N times speed-up.

The time efficiency and performance drop of this sparse graph
construction mechanism will be investigated in Section V-D.

V. CASE STUDIES

In this work, we propose a novel GALEN model to con-
struct traffic graphs for graph learning-based traffic prediction.
We carry out a series of comprehensive case studies on three
real-world datasets to evaluate the efficacy of GALEN using
three state-of-the-art graph learning-based traffic prediction
approaches. Specifically, we first investigate the performance
improvement of GALEN over existing static and dynamic
graph construction schemes. Then, we conduct an ablation
study to verify the necessity of multiple constituting compo-
nents of GALEN. Subsequently, the sensitivity of GALEN
hyper-parameters is evaluated. Finally, we demonstrate the
efficiency of the proposed sparse graph construction with
meta-sensor clustering.

A. Experimental Configurations

We employ three practical traffic speed datasets for test-
ing in this work: NavInfo Beijing,3 NavInfo Shanghai, and
PeMS-BAY4 datasets. In particular, the NavInfo Beijing and
Shanghai datasets comprise proprietary floating car data of
Beijing, China and Shanghai, China from Jan. 2019 to Jun.
2019 with a 5 min sample interval. The respective default
adjacency matrices are derived from the road connectivity
information, and sensors are assumed to be midway-located.
The PeMS-BAY dataset is generated based on 325 traffic speed
sensors in the Bay area of California, US from Jan. 2017 to
May 2017. Following previous work [10], [34], all traffic
speed readings are aggregated into 5 min windows. The default
adjacency matrix is constructed by the pairwise road network
distances with a thresholded Gaussian kernel, and there is no
connectivity information available. Z-score normalization is
applied to all datasets, which are split in chronological order
with 70% for training, 10% for validation, and 20% for testing.
A summary of the datasets is presented in Table I.

3https://nitrafficindex.com/
4https://pems.dot.ca.gov/

We adopt the widely used Root Mean Square Error (RMSE)
and Mean Average Percentage Error (MAPE) as the perfor-
mance metrics in all case studies. Data from the past 12 time
instances are used to predict 5 min, 15 min, 30 min, and 60 min
ahead traffic data for all dataset and predictor combinations.
Unless otherwise stated, the distance of neighboring sensors
d is set to double the average road length, the number of
neighboring hops k = 2, the number of GAT layers in
GALEN L = 3 with 128 neurons in each layer, the number of
attention-averaging time instances R = 8, and the average
number of nodal edges S = 8. GALEN is optimized by
Adam optimizer with a learning rate 10−4. All case studies are
conducted on computing servers with two Intel Xeon E5 CPUs
and 128 GB RAM. The simulation is developed in Python and
PyTorch. Eight nVidia GTX 2080 Ti GPUs are employed on
each server for neural network computing acceleration.

B. Quantitative Results

In this case study, we employ the proposed GALEN on all
three testing datasets to forecast traffic speed data. As GALEN
produces traffic graphs for graph learning-based traffic pre-
diction approaches, we adopt the following three state-of-the-
art traffic predictors and assess the performance improvement
developed by incorporating GALEN:

• T-GCN [33]: Temporal Graph Convolutional Network
(T-GCN) model is a traffic prediction approach combining
GCN and GRU to build the spatial-temporal correlation
among traffic data.

• STSGCN [36]: Spatial-Temporal Synchronous Graph
Convolutional Network (STSGCN) captures the com-
plex localized spatial-temporal traffic correlation by
a spatial-temporal synchronous modeling mechanism,
which effectively learns from the heterogeneities in local-
ized spatial-temporal graphs.

• GA2 [22]: Generative Adversarial Graph Attention (GA2)
network captures the geometric traffic data dependency
with graph convolution and attention mechanisms, and
the temporal data correlation is extracted and expanded
using the encoder-decoder architecture within a genera-
tive adversarial learning framework.

For all three predictors, we adopt the source code provided
in the respective literature with minuscule changes. As all
approaches by default employ the static traffic graph devel-
oped by either geographical adjacency or connectivity infor-
mation, multiple variants with different graph construction
schemes are incorporated for a more comprehensive compari-
son. Besides GALEN and the default static adjacency matrices
as introduced above, the following dynamic graph construction
scheme baselines are employed:

• Attn: Instead of the typical spectral graph convolution
adopted in the original formulation, GAT is incorporated
to capture the inter-dependency among sensors during the
model training process using the attention mechanism on
the default adjacency matrix.

• LocLap: Besides the global Laplacian matrix developed
from the default adjacency matrix, an additive local
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TABLE II

RMSE PERFORMANCE COMPARISON OF GALEN WITH GRAPH CONSTRUCTION SCHEMES

TABLE III

MAPE PERFORMANCE COMPARISON OF GALEN WITH GRAPH CONSTRUCTION SCHEMES

Laplacian matrix is trained in real-time and serves as a
short-term perturbation.

• SlfAdp: A self-adaptive adjacency matrix defined by Ã =
softmax(ReLU(E1E�

2 )) is utilized in graph convolution,
where the source node embedding E1 and target node
embedding E2 are multiplied to derive the spatial depen-
dency among sensors.

We follow a “Predictor + GraphScheme” naming pattern to
tag all tested approaches. For example, “T-GCN + GALEN”
stands for using GALEN to generate graphs for T-GCN,
“STSGCN + LocLap” refers to including local Laplacian in
STSGCN, and “GA2 + Default” means that the original GA2
algorithm with the default adjacency matrix is tested.

Tables II and III presents the traffic prediction MAPE
and RMSE of T-GCN, STSGCN, and GA2 using GALEN
and other graph construction schemes. The best performing
results are highlighted by underlines. When constructing traffic
graphs for data prediction, GALEN outperforms compared
graph construction scheme baselines on all three predictors

and datasets. In particular, an average 5.60% prediction error
reduction in RMSE can be observed by substituting the default
traffic graphs with ones generated by GALEN across all
tested datasets and predictors. The advantage is maintained
compared with the state-of-the-art dynamic graph construction
schemes, where GALEN can facilitate generating predictions
with 4.37% (Attn), 3.25% (LocLap), and 3.06% (SlfAdp) less
error. This statistical summary of raw results indicates that a
tailor-made traffic graph construction scheme considering the
transportation domain knowledge like GALEN can notably
improve the performance of traffic predictors with trivial
additional effort. The comparison also shows that both global
adjacency information given by the transportation topology
and adaptive adjacency information learned from the data is
critical to traffic prediction as LocLap and SlfAdp imply,
where the former makes use of both, and the latter only
utilizes the local one. GALEN takes a step forward beyond
LocLap and learns the adaptive adjacency information from
both the topology and the data. Therefore, the trade-off of
balancing the two adjacencies can be avoided, and better
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Fig. 4. Traffic speed prediction of West Chang’an Avenue with T-GCN in NavInfo Beijing dataset.

performance is achieved. At the same time, attention is another
viable solution to exploit the latent inter-sensor data correlation
further. Both GALEN and Attn helps predictors to capture
the heterogeneous edge dependencies in traffic graphs. Fig. 4
provides the predicted speed values of West Chang’An Avenue
in NavInfo Beijing dataset using GALEN and baseline graph
construction approaches for a direct illustration.

Furthermore, due to the unique design of GALEN
pre-training and training phases as illustrated in Fig. 1, the
training time of all predictors is not significantly increased
(<5% difference). Attn, LocLap, and SlfAdp all notably
increase the neural network parameter searching space, ren-
dering approximately 25% to 90% training time increase on
all three predictors, respectively. Take T-GCN and NavInfo
Beijing as an example, GALEN requires 1200.53 s as the
additional computation time to construct the traffic graph,
which can be read as a 3.75% increase on the model training
time (from 31 960.95 s, default FP32 implementation). Its time
footprint is minuscule compared to Attn (+34.42%), LocLap
(+49.15%), and SlfAdp (+77.90%). Therefore, GALEN is an
effective and efficient graph construction scheme. It can be
easily adopted in any traffic predictors that use traffic graphs
in the forecast and incurs negligible additional offline training
or online inference time.

From the comparison, another interesting observation can
be developed. While GALEN consistently improves the traf-
fic prediction performance, the magnitude differs across the
three datasets. In particular, NavInfo Beijing and Shanghai
datasets witness an average 6.89% and 6.38% improvement,
respectively, while PeMS-BAY is ameliorated to 3.03%. This
difference can be credited to the complexity of the underlying
transportation networks. For PeMS-BAY, the traffic sensors are
located along the same multiple highways, and the correlation
among geographically adjacent sensors is notably significant.
In addition, the respective traffic dynamics, or rather speed
changes, are much “smoother” than in urban environments.
In this context, it is sufficient to construct sensors according to
their relative distance for traffic prediction. Notwithstanding,
the incorporation of GALEN can still further exploit the latent
sensor correlation that is not covered by the aforementioned
default graph construction scheme, leading to a slight but
not negligible performance improvement. On the other hand,
NavInfo Beijing and Shanghai significantly benefit from the
proposed data-driven graph construction scheme. These two
datasets describe the traffic dynamics of two metropolitan
areas and thus contain more complex spatial correlations. The

traffic dynamics are more diverse, and random traffic factors
exhibit stronger influence than on highways. By GALEN,
distant but highly correlated areas can be connected to allow
information propagation during the prediction. To conclude,
GALEN can be applied to any traffic prediction dataset, and a
more significant performance augmentation is expected when
the spatial data correlation is complex and cannot be fully
captured by geographical adjacency.

C. Time-Varying Graph Performance

In Section IV-B, we propose a novel time-varying graph
construction scheme for traffic predictors based on GALEN,
following the hypothesis that the spatial-temporal traffic data
correlation may vary at a different time of a day. In this section,
we employ the time-varying graph construction scheme on
NavInfo Beijing dataset to illustrate its efficacy. Fig. 5 depicts
the MAPE and RMSE performance comparison.

From the comparative results, it can be concluded that
time-varying graph construction based on GALEN can further
reduce the prediction error when employed in all three state-
of-the-art traffic predictors and potentially more general graph
learning-based traffic predictors. Additionally, the performance
improvement is more apparent for mid-term predictions com-
pared to short-term ones. Take T-GCN (Fig. 5a) as an example,
while 2.52% and 2.28% error reductions are achieved for
5 min and 15 min ahead predictions, 5.13% and 3.66% of
the residuals are eliminated for 30 min and 60 min ones,
respectively. This result follows the intuition on urban trans-
portation, where the spatial-temporal dependency is dynamic
throughout the day. Therefore, dynamic graphs tailored for
specific periods can better capture the correlation than a static
one. Due to the error accumulation nature of multi-stage
traffic predictions [23], 60 min performs worse than 30 min
in both RMSE and MAPE. Nevertheless, the improvement
of time-varying graphs over the original GALEN and default
graph construction schemes still indicates the superiority of
using dynamic adjacency information in graph learning-based
traffic predictors.

In the proposed time-varying graph construction scheme
with GALEN, an important hyper-parameter influences the
model performance, i.e., the length of time period for traf-
fic predictors to use each traffic graph. Fig. 6 presents the
result of a comparative study utilizing time-varying graphs
with 1 h, 2 h, 4 h, 5 min, 15 min, and 30 min graph chang-
ing intervals, respectively. Due to space limit, only results
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Fig. 5. Performance comparison of time-varying graph construction on
NavInfo Beijing dataset.

developed from T-GCN are presented; STSGCN and GA2
demonstrate similar trends as in Fig. 6. Note that the curve
labeled by “1 h” is identical to that of “GALEN-TV” in
Fig. 5 and is the default configuration in Section IV-B. Two
observations can be developed from the result. On the one
hand, large intervals, e.g., 2 h and 4 h, lead the performance
curve to converge towards that of the static graphs by GALEN.
Along with the increased time period length, more complex
spatial-temporal traffic correlation spanning a more extended
period of time needs to be embedded in one adjacency
matrix, which overwhelms its information capacity and renders
inferior performance. On the other hand, small intervals, e.g.,
5 min and 15 min, also undermine the prediction accuracy.
As the interval shortens, the traffic dynamics reflect more

Fig. 6. Performance comparison of time-varying graph construction with
T-GCN and different graph changing intervals on NavInfo Beijing dataset.

on the transient instead of the trend of the traffic flow, the
former of which is highly stochastic. Therefore, an adequately
configured graph changing interval is required for the proposed
time-varying graph construction scheme to work well for graph
learning-based traffic predictors. Following the results and
discussion, we recommend an interval between 30 min and
1 h as a desirable option.

D. Sparse Graph Performance

To further alleviate the computation complexity of graph
construction in GALEN, we propose a sparse graph construc-
tion scheme in Section IV-C. In this section, we compare the
performance degradation and computation speed improvement
of the proposed sparse graph construction. Particularly, both
the complete and the sparse graphs constructed by GALEN
are used to train T-GCN on NavInfo Beijing dataset, which
is later employed to examine the accuracy of prediction.
The simulation results are presented in Table IV, where the
proposed GALEN sparse graph construction scheme is labeled
by “+Sparse” under the “Scheme” column. A straightforward
conclusion can be developed from the comparison that the
sparse graph scheme can dramatically accelerate the graph
construction progress without notable performance degrada-
tion. On the three investigated datasets, 38.84, 41.69, and
18.95 times speed-up can be obtained, respectively. Consid-
ering that 40, 43, and 19 meta-sensors (�√N�) are created for
each dataset, the sparse graph construction scheme is highly
effective.

E. Hyper-Parameter Sensitivity

In the design of GALEN, several hyper-parameters are
incorporated to orchestrate the graph construction process. The
selection of these hyper-parameters is crucial in determining
the quality of the generated traffic graphs and, subsequently,
predictor accuracy. In this sub-section, we carry out a series
of hyper-parameter sweep tests to illustrate the sensitivity
of GALEN on them. Specifically, we consider four GALEN
hyper-parameters: neighboring sensor distance d , number
of neighboring hops k, number of attention-averaging time
instances R, and number of average nodal edges S. Multiple
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TABLE IV

SPARSE GRAPH PERFORMANCE COMPARISON

Fig. 7. Model sensitivity of neighboring sensor distance d.

Fig. 8. Model sensitivity of neighboring hop number k.

values of each hyper-parameters are tested on T-GCN and
NavInfo Beijing dataset, and all other simulation configura-
tions are identical to the previous case studies.

We first discuss the sensitivity of neighbor graph con-
struction hyper-parameters, i.e., d and k as introduced in
Section III-C. Besides the default doubled average road length
for d , namely, d = 2×, we further test the performance
of GALEN with d set to 1×, 1.5×, 3×, 4×, and 5× of
the average road length in NavInfo Beijing. Additionally,
k ∈ {1, 3, 4, 5} are tested besides the default k = 2 setting. The
simulation results are presented in Figs. 7 and 8. A general
conclusion can be developed from these two figures that
GALEN is relatively less sensitive to d than to k. In particular,
3.31%, 2.54%, 0.71%, 1.27%, and 1.80% more prediction

Fig. 9. Model sensitivity of attention-averaging time instance number R.

errors are introduced by changing the d value to 1×, 1.5×,
3×, 4×, and 5×, respectively, while setting k to 1, 3, 4,
or 5 renders 8.40%, 0.20%, 1.42%, or 4.11% more error.
The worst performing parameter values, namely, d = 1×
and k = 1, both notably shrink the size of the neighboring
sensor set. This may further hinder GALEN from learning
the complex spatial-temporal traffic correlation via more local
sensor edges. In the meantime, we also notice performance
degradation if either of the two parameters is set to a large
value, e.g., d = 5× or k = 5, albeit not as significant. This
is due to the adjacency learning design of GALEN, where the
neighboring sensor set is fully connected to learn the graph
attention. While this nature advocates the model to exploit
data inter-dependency, the complete graph also degenerates the
multilayer GAT into a multilayer perceptron, which requires a
drastically increased volume of training data for training and
avoiding over-fitting. Apart from configuring extreme values,
GALEN is insensitive to d and k, and we recommend 2× and
2 respectively as a general setting for typical traffic datasets.

We further present the sensitivity of the other two hyper-
parameters, i.e., R and S as introduced in Section IV-A
in Figs. 9 and 10, where R ∈ {1, 2, 4, 16, 32} and S ∈
{1, 2, 4, 16, 32} are tested besides the default R = 8 and
S = 8. The simulation results indicate that GALEN does
require the attention coefficients derived from multiple time
instances to construct a well-performing traffic graph. The
7.36% deterioration of R = 1 notably deviates from the others,
where 2.48% and 1.01% degradation are observed for R =
2 and R = 4. This result can be credited to the volatile and
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Fig. 10. Model sensitivity of average nodal edge number S.

TABLE V

GRAPH ATTENTION LEARNING VARIANTS COMPARISON

stochastic nature of traffic. In principle, R = 1 and adopting
time-varying traffic graphs every 5 min (Section V-C) catalyze
the same issue: the transient traffic flow characteristics are
captured instead of the trend. On the other hand, increasing R
value beyond the default 8 can further improve the prediction
accuracy, namely, by 0.34% for R = 16 and 0.50% for
R = 32. Nevertheless, neither option is preferred due to the
computation time concern. According to the design of graph
construction phase in GALEN, the construction time is lin-
early proportional to R. Considering the time performance in
Table IV, doubling or quadrupling the graph construction time
may potentially undermine the real-time nature of GALEN
in huge transportation systems. Therefore, the selection of R
depends on the computation burden of graph construction, and
we choose R = 8 as the default value with the aforementioned
experimental configuration.

For the number of average nodal edges S, a similar perfor-
mance deviation can be observed when the parameter value
is reduced. As graph learning models heavily rely on graph
edges for nodal information propagation and exchange, a small
S typically renders a sparse traffic graph that cannot captures
the spatial-temporal data correlation. Meanwhile, increasing
S beyond the default 8 cannot further improve the prediction
accuracy as opposed to R. This can also be accredited to the
overfitting issue of the degenerated multilayer perceptron, sim-
ilar to the scenarios with large k values albeit less significant.

F. Graph Attention Learning Architecture

GALEN employs a stacked GAT neural network for graph
attention learning when constructing traffic graphs. In this
section, we propose a series of stacked GAT variants with

different number of layers and neurons as the graph attention
learning neural network for an architecture test. Particularly,
Table V presents a summary of the GALEN variants and
their respective traffic prediction performance on T-GCN and
NavInfo Beijing dataset. The labels under the “Neurons”
column refer to the number of GAT layers and neurons. For
example, “3 × 128” refers to the default configuration where
three layers of GAT are utilized to learn the graph attention and
each layer has 128 neurons. From the comparison, it can be
concluded that the performance of GALEN is not sensitive to
the neural network architecture as long as the model capacity
is saturated, which is derived by observing and comparing the
performance of variant models B, E, F, and H. Considering
that the graph construction time is linearly proportional to the
number of layers L but not the number of neurons due to
the parallel computing nature of neural networks, the default
architecture is preferred over these variants. On the other
hand, reducing L renders remarkably attenuation on the model
capacity (models A and C), even if the number of neurons is
doubled (model G). As model capacity is crucial in capturing
the spatial-temporal correlation among traffic data, which is
adopted to construct traffic graphs, these variants lead to
inferior prediction accuracy is thus not favored despite the
reduced graph construction time.

VI. CONCLUSION

In this paper, we propose a novel Graph Adjacency Learning
Network to dynamically construct traffic graphs based on the
historical traffic data for graph learning-based traffic predic-
tors. This research is grounded on the hypothesis that traffic
network topology-based or relative distance-based adjacency
matrices cannot fully exploit the complex spatial-temporal
correlation of traffic data, which is empirically verified by the
comprehensive case studies. The proposed graph construction
scheme is capable of capturing such correlation from a data-
driven perspective. By adopting a stacked graph attention
neural network, the dependency among traffic sensors is
embedded in the layer-wise attention coefficients, which are
later employed to determine the necessity of incorporating an
edge between an arbitrary pair of sensors in the traffic graph.
Subsequently, a time-varying graph construction scheme is
proposed to cater to the dynamic traffic data correlation for
performance improvement. We further devise a sparse graph
construction scheme to alleviate the computation burden of the
proposed graph construction scheme without compromising
the quality of traffic graphs. To evaluate the efficacy of the
proposed schemes, a series of comprehensive case studies are
conducted on three real-world traffic datasets of both urban
and highway transportation networks. The results indicate that
the proposed scheme can outperform typical traffic graphs
by 5.60% prediction error reduction with negligible time
performance degradation, and time-varying graphs can further
improve the accuracy by 2.28% to 5.13% under different
scenarios. Furthermore, the proposed sparse graph scheme
drastically accelerates the graph construction process. Finally,
hyper-parameter sensitivity tests are carried out to illustrate
the impact of and develop guidelines for hyper-parameter and
neural network architecture selection.
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In the future, we plan to explore other attention learning
mechanisms from both the spatial and the spectral graph
theory perspectives. We look forward to follow-up research
on developing further general schemes for boosting graph
learning-based traffic predictors, including but not limited to
the construction of traffic graphs.
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