
MultiMix: A Multi-Task Deep Learning Approach for Travel Mode
Identification with Few GPS Data

Xiaozhuang Song, Christos Markos, and James J.Q. Yu, Member, IEEE

Abstract— Understanding how people choose to travel is
essential for intelligent transportation planning and related
smart services. Recent advances in deep learning, coupled with
the increasing market penetration of GPS devices, have paved
the way for novel travel mode identification methods based on
GPS data mining. While many have shown promising results,
most methods have often relied heavily on the few available
labeled data, leaving large amounts of unlabeled ones unused.
To address this issue, we propose MultiMix, a semi-supervised
multi-task learning framework for travel mode identification.
Our framework trains a deep autoencoder using batches
of labeled, unlabeled, and synthetic data by simultaneously
optimizing three corresponding objective functions. We show
that MultiMix outperforms several fully- and semi-supervised
baselines, achieving a classification accuracy of 66.2% on
Geolife using just 1% of labeled data, with accuracy reaching
84.8% when incorporating all available labels. We also verify
the necessity of its components through an ablation study
designed to provide insights into the proposed approach.

I. INTRODUCTION

The objective of travel mode identification is to discover
users’ modes of travel by analyzing their mobility data.
Such information is key for Intelligent Transportation Sys-
tems (ITSs) [1], [2], guiding the optimization of complex
processes like transportation scheduling and smart service
delivery [3]. Ultimately, successful travel mode identification
could improve a number of significant issues faced by
modern cities, including traffic accidents, congestion, and
pollution. To do so, however, requires both fine-grained
mobility data and powerful learning models [4].

In the earlier days of transportation research, mobility data
were obtained through expensive and tedious methods such
as questionnaires or telephone interviews [5]. However, these
approaches depend on travelers’ memory and motivation,
often leading to unreliable data. Although later studies lever-
aged more accurate data produced by fixed-position sensors,
they were still limited by narrow city coverage, as such
sensors require significant installation and maintenance costs.
Recently, with the integration of Global Positioning System
(GPS) sensors into most smartphones, acquisition of user
travel data has become ubiquitous and cost-effective [6], [7].
This has promoted research on various transportation-related
issues [8].

This work is supported in part by the General Program of Guangdong
Basic and Applied Basic Research Foundation No. 2019A1515011032 and
in part by Guangdong Provincial Key Laboratory No. 2020B121201001.
(Corresponding author: James J.Q. Yu.)

The authors are with the Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and
Engineering, Southern University of Science and Technology, Shenzhen,
China. Christos Markos is also with the Faculty of Engineering and
Information Technology, University of Technology Sydney, Australia.

GPS data have also driven a growing body of travel mode
identification research. Typically, since raw GPS data are
unsuitable for training machine learning models, preprocess-
ing starts with extraction of motion-related features such as
velocity and acceleration. These are then fed to machine
learning models, e.g. support vector machines or decision
trees [9]. More recently, several studies have also explored
deep learning models including multi-layer perceptrons [10],
as well as recurrent [11], [12] or Convolutional Neural
Networks (CNNs) [13], often achieving better classification
performance. However, to the best of our knowledge, most
existing work on travel mode identification from GPS data
has only used labeled data in fully-supervised training.

Although effective, training only with labeled data is not
without shortcomings. First, acquisition of enough labeled
data to train deep neural networks requires considerable
time and human effort. Second, the process of labeling may
contaminate datasets with false labels, thereby diluting the
effectiveness of model training. Third, unlabeled data are just
as likely to contain useful information as labeled data, hence
ignoring them means not utilizing all available resources.
Indeed, several semi-supervised training approaches in other
fields have shown that further mining the information in
unlabeled data and using them together with labeled ones can
improve models’ generalization capacity. Examples include
adding noise to unlabeled data for consistency regularization
[14], [15], generating pseudo-labels for unlabeled data and
performing supervised training [16], [17], averaging model
parameters during training [18], [19], or jointly learning from
labeled and unlabeled data [20], [21]. In the area of travel
mode identification, the authors in [22] were among the first
to include unlabeled data for semi-supervised training of
a convolutional autoencoder. As GPS sensors only capture
timestamped positional information, having no knowledge
of users’ travel modes, it is crucial to develop travel mode
identification methods that produce highly accurate results
without being overly reliant on labeled GPS data.

In this work, we propose MultiMix, a multi-task deep
learning approach to travel mode identification. MultiMix
is trained using batches of the few available labeled data,
mixed with the much larger amount of unlabeled ones. This
particular form of data augmentation [21], combined with the
three corresponding learning tasks, results in MultiMix sig-
nificantly outperforming several fully- and semi-supervised
approaches. Using only 1% labeled data, MultiMix attains
66.2% accuracy on the Geolife dataset [23], while inclusion
of all available labels boosts accuracy to 84.8%. Finally, we
conduct an ablation study to quantify the effect of the pro-



posed framework’s components on classification accuracy.
The rest of this paper is organized as follows. Section II

presents the techniques that were used for feature extraction,
division of trajectories into fixed-size segments, and outlier
removal. In Section III, we explain our method for synthetic
data generation and analyze the components of MultiMix.
Section IV presents the results of our experiments, as well
as an ablation study measuring the contribution of individual
components to the success of the proposed approach. Finally,
conclusions and future work are presented in Section V.

II. PRELIMINARIES

This section first introduces the methods used for extract-
ing motion-related features from GPS data and removing
anomalous instances. Then, it describes the process of trip
segmentation, whereby GPS trajectories are divided into
segments of the same length. This is a necessary step, as the
deep convolutional architecture of MultiMix requires fixed-
size input.

A. Feature Extraction and Outlier Removal

The raw GPS trajectory data used in this work are
organized in sequences of triples containing timestamps,
latitudes, and longitudes. We define GPS point pi =
(lati, longi, ti), where lati and longi are its latitude and
longitude in decimal degrees, as captured at date and time
ti. However, raw spatio-temporal information is not ideal for
training machine learning models. Indeed, for such a model
to generalize to any location, it would need to be trained on
samples containing all possible latitudes and longitudes.

In the travel mode identification literature, it is thus
common to extract motion-related features such as relative
distance or velocity from the available GPS data. To obtain
the former, we use Vincenty’s formula [24], which calculates
the distance between any two points on a sphere. It is also
trivial to calculate the elapsed time from pj to pj+1, by
subtracting their timestamps. In this work, we use relative
distance, velocity, acceleration, and jerk as input features,
inspired by [22]. For pj , they are calculated as follows:

∆tj = tj+1 − tj , (1)
RDj = Vincenty(latj , longj , latj+1, longj+1), (2)
Vj = RDj /∆tj , (3)
Aj = (Vj+1 − Vj)/∆tj , (4)
Jj = (Aj+1 −Aj)/∆tj , (5)

where ∆tj , RDj , Vj , Aj , and Jj represent the elapsed
time, relative distance, velocity, acceleration and jerk of pj ,
respectively.

Often, signal interference can cause GPS sensors to trans-
mit inaccurate information. This may occur as a result of
proximity to tunnels, airplanes, or even high cloud density.
Thus, before using the extracted motion features to train our
model, it is necessary to first remove any abnormal instances
in each segment [25]. For labeled data, we set velocity and
acceleration thresholds for each travel mode, as per [22]. Any
instances that do not satisfy these thresholds are removed.

For unlabeled data, since we have no knowledge of their
corresponding travel modes, we remove instances whose
velocity or acceleration exceeds or falls short of 1.5 times
the interquartile range between the first and third quartiles;
this was also inspired by [22]. Finally, we discard any out-
of-order GPS data points, that is, points whose timestamp
exceeds that of the next point.

B. Trip Segmentation

As will be detailed in Section III-B, MultiMix uses a
CNN-based architecture. By default, CNNs require fixed-
size input; hence, we need to segment the arbitrary-length
trajectory data into fixed-size blocks. A naive approach
would be to extract a new segment every M instances. In
doing so, however, there could be more than one travel mode
in several of the obtained segments. In such cases, even
if we considered the dominant travel mode to be the final
one, we would be introducing unnecessary noise to the data.
Therefore, before dividing the available GPS trajectories into
segments of fixed length, we must first divide them by
transportation mode.

Inspired by the seminal work of [26], [27], we first
preprocess labeled trajectories by splitting them at the GPS
points where the travel mode changes, according to the
available labels. This process results in GPS segments of
varying lengths, denoted as sequences Seg =< p1, ..., pn >,
where label(pi) = label(Seg) for every pi ∈ Seg. Then,
to satisfy the fixed-size input requirement for CNNs, we
further split the above segments into segments containing
exactly M points each. For segments with length less than
M , we artificially increase the number of points using a
zero-padding strategy. Given that segments with very few
points might not be informative enough to identify the
corresponding travel mode, a minimum threshold is also set
here; if the segment length before zero-padding is less than
this minimum threshold, the segment is discarded. As in [22]
this threshold is set to 20 points, while M is set to 248.

III. PROPOSED METHODOLOGY

MultiMix simultaneously optimizes the sum of three
hyperparameter-controlled objective functions, which are
used to incorporate labeled, unlabeled, and synthetic data
during training. In this section, we first introduce the methods
for generating synthetic data. Next, we analyze the three
models that compose MultiMix and their respective loss
functions, and conclude by explaining how they are com-
bined for multi-task learning.

A. Synthetic Data Generation

The design choice of training on synthetic data is inspired
by the work of [20], [21]. In [20], the authors proposed
Mixup, a supervised method that achieved better perfor-
mance than merely training on labeled data by learning
from both labeled data and linear interpolations thereof. This
practice was shown to improve model generalization, as well
as sensitivity to adversarial samples and false labels [28]. In
[21], the authors extended Mixup by proposing MixMatch, a



labeled data unlabeled data

𝑥𝑙 , 𝑦𝑙 𝑥𝑢

(𝑥𝑢, 𝑦𝑢)(𝑥𝑙 , 𝑦𝑙) 1 − 𝜆𝜆
(𝑥𝑣, 𝑦𝑣)

1 × 248 × 4

1 × 3968

1 × 992

𝑙𝑜𝑠𝑠𝑙 = −

𝑖=1

𝑁

𝑦𝑙,𝑖 log 𝑝𝑖

𝑙𝑜𝑠𝑠𝑣 = −

𝑖=1

𝑁

𝑦𝑣,𝑖 log 𝑝𝑖

autoencoder_output:

𝑂𝐴𝐸(1 × 248 × 4)
𝑙𝑜𝑠𝑠𝐴𝐸 = 𝑂𝐴𝐸 − 𝑥𝑢𝑙

2

synthetic data

conv(relu)

conv(relu)

pool

conv(relu)

conv(relu)

conv(relu)

conv(relu)

pool

flatten

fc(relu)

fc(softmax)

deconv(relu)

deconv(relu)

unpool

deconv(relu)

deconv(relu)

unpool

deconv(relu)

pseudo-label

classifier_output:

𝑃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(1 × 5)

deconv(relu) pool

unpool

1 × 248 × 32

1 × 248 × 32

1 × 124 × 32

1 × 124 × 64

1 × 124 × 64

1 × 62 × 64

1 × 62 × 128

1 × 62 × 128

1 × 31 × 128

1 × 62 × 128

1 × 62 × 128

1 × 62 × 64

1 × 124 × 64

1 × 124 × 64

1 × 124 × 32

1 × 248 × 32

1 × 248 × 32

Fig. 1. The architecture of MultiMix.

semi-supervised method which produced synthetic data not
only from labeled but also from unlabeled data. The inclusion
of the latter in the process of synthetic data generation
resulted in significant performance gains compared to the
original approach [20].

In this work, we obtain synthetic data by simply mixing
unlabeled and labeled data in each batch during training.
Synthetic samples xs and labels ys are generated as follows:

xs = λxu + (1− λ)xl, (6)
yu = PClassifier(y|xu; θ), (7)
ys = λyu + (1− λ)yl, (8)

where real-valued hyperparameter λ ∈ [0, 1], xl are samples
with corresponding labels yl, and xu are unlabeled samples.
On every training iteration, pseudo-labels yu are set to the
class index of the the maximum softmax value in the model’s
output. This output is the model’s predicted distribution
PClassifier(y|xu; θ), where θ refers to the model’s learned
parameters, i.e. layer weights and biases.

B. Multi-Task Learning

1) Labeled Data Classifier: The architecture of the la-
beled data classifier is inspired by [13]. It consists of
convolution, max pooling, and fully-connected layers. Every
combination of two convolution layers and a pooling layer
may be regarded as a module; by adopting this view, the
main structure of the network consists of three such modules.
The input layer dimensions are (1,M, 4), while the filter
size in each convolution layer is (1 × 3) with a unit stride.
We set the number of filters in the first module to be 32,
doubling with every subsequent module. Since we apply
“same” convolutions, we use zero-padding to ensure that
channel height and width are not changed by the convolution
operation. In each module, a pooling layer is connected to

two convolution layers. The filter size of the pooling layer
is (1× 2), and the stride is 2. The last module is connected
to a fully connected layer, whose output passes through a
dropout layer before finally being fed into a final softmax
layer [29]. The latter generates a probability distribution over
the classes, i.e. P = {p1, ..., pN}, where N is the number of
travel modes; in this work, N = 5. The labeled data classifier
uses the categorical cross entropy loss function:

lossl = −
N∑
i=1

yl,ilog(pi), (9)

where yl,i is the binary ground-truth value corresponding to
class i in the one-hot label yl of Segi.

2) Synthetic Data Classifier: The synthetic data classifier
uses the exact same structure as the labeled data classifier,
and both are trained concurrently while sharing layer param-
eters. The synthetic data classifier also uses the categorical
cross entropy loss function:

lossv = −
N∑
i=1

yv,ilog(pi), (10)

where yv,i is the binary pseudo-ground-truth value corre-
sponding to class i in the one-hot pseudo-label yv of Segi.

3) Autoencoder: To integrate the unlabeled data, we
perform unsupervised training of an autoencoder model.
Autoencoders are neural networks typically trained to recon-
struct their input under deliberate limitations that promote
learning useful features [30]. They generally consist of two
symmetrical parts: an encoder and a decoder. The encoder
outputs a latent representation of the input, which the decoder
uses to try and reconstruct the original input.

Autoencoders may use fully-connected, convolutional, or
recurrent layers. In this work, we adopt a convolutional au-
toencoder architecture similar to [22]. The encoder consists
of consecutive convolutional and max pooling layers, while
the decoder instead has deconvolutional and upsampling
layers. During training, the autoencoder is fed with unlabeled
data xu, while its loss function is defined as:

lossAE = (oAE − xu)2, (11)

where oAE refers to the autoencoder’s output, i.e. the recon-
structed input.

4) Unified Model: The proposed method trains a labeled
data classifier, an unlabeled data classifier, and an autoen-
coder, all at the same time. Their model parameters are
shared during training; in multi-task learning, this is referred
to as hard parameter sharing [31]. Our multi-task learning
method is mainly achieved by minimizing the combination of
these three loss functions. Specifically, the total loss function
can be expressed as the weighted sum of equations (9), (10),
and (11):

losstotal = α lossl +β lossv +γ lossAE, (12)

where hyperparameters α, β, and γ are used to balance the
strength of lossl, lossv , and lossAE, respectively.



TABLE I
ACCURACY FOR PERCENTAGES OF LABELED DATA

Method 1% 5% 10% 25% 50% 100%

Supervised-KNN 0.481 0.560 0.572 0.536 0.582 0.579
Supervised-SVM 0.531 0.570 0.585 0.613 0.647 0.654
Supervised-RNN 0.490 0.583 0.605 0.751 0.718 0.796
Supervised-DT 0.478 0.551 0.589 0.600 0.618 0.630

Supervised-CNN 0.571 0.612 0.701 0.756 0.796 0.824

Semi-Two-Steps 0.543 0.527 0.556 0.534 0.575 0.593
SECA 0.612 0.655 0.734 0.757 0.808 0.837

MultiMix 0.662 0.698 0.742 0.787 0.821 0.848

TABLE II
F1-SCORE FOR PERCENTAGES OF LABELED DATA

Method 1% 5% 10% 25% 50% 100%

Supervised-KNN 0.517 0.519 0.540 0.525 0.559 0.568
Supervised-SVM 0.443 0.483 0.519 0.569 0.620 0.626
Supervised-RNN 0.388 0.478 0.512 0.734 0.684 0.767
Supervised-DT 0.482 0.553 0.586 0.600 0.620 0.631

Supervised-CNN 0.467 0.612 0.679 0.733 0.786 0.820

Semi-Two-Steps 0.446 0.423 0.451 0.434 0.478 0.494
SECA 0.537 0.633 0.712 0.743 0.801 0.831

MultiMix 0.625 0.650 0.726 0.775 0.815 0.832

IV. EXPERIMENTS

In this section, we first introduce the details of our
experimental setup. We then compare the performance of
our model with that of established supervised baselines, as
well as recent semi-supervised ones specifically proposed for
travel mode identification. Finally, as MultiMix combines
a variety of components, we conduct an ablation study to
evaluate their impact on the selected performance metrics.

A. Implementation Details

We evaluate MultiMix on Microsoft’s Geolife dataset [23],
which has been commonly used in transportation research
[3]. It contains 17,621 GPS trajectories, of which only a
small fraction are labeled by travel mode. Furthermore, even
though Geolife contains multiple classes, the majority do not
have enough data to train a deep learning model. Therefore,
we select five traffic modes, namely “walk”, “bike”, “bus”,
“drive” and “train” as the modes to be identified.

After preprocessing the data as described in Section II,
we obtain 14,424 labeled segments and 135,573 unlabeled
ones. Using 5-fold cross-validation, we select 80% and
20% of the labeled segments as the training and test sets,
respectively. In addition, 10% of the training set is extracted
and subsequently used as a validation set for hyperparameter
tuning. All unlabeled segments are used during training.

Except for our model’s final softmax layer, all others
others use the Rectified Linear Unit (ReLU) function as their
activation function. The dropout layer before the softmax
one uses a dropout rate of 0.4 to reduce overfitting. When
training, we empirically set hyperparameters α, β, γ, and λ
to 1.0, 0.5, 1.0, and 0.8, respectively; these were found to per-
form best on a separate validation set. We minimize losstotal
using the default Adam optimizer, and train MultiMix for

a maximum of 50 epochs; using the same validation set as
above, we found that training usually converged in about
20 epochs. The experiments were conducted on a server
with an Intel Xeon Silver 4210 CPU and eight NVIDIA
RTX 2080Ti GPUs. The simulation was implemented using
Python and the proposed network structure was modeled with
the TensorFlow machine learning platform.

B. Baselines and Evaluation Metrics

We select seven methods used in [9], [13], [22], [32] as our
baselines. These are five supervised methods, i.e. K-Nearest
Neighbors (KNN) [9], Support Vector Machine (SVM) [9],
Decision Tree (DT) [9], Recurrent Neural Network (RNN)
with the long short-term memory module [32], CNN [13],
and two semi-supervised methods, namely Semi-Two-Steps
and SEmi-supervised Convolutional Autoencoder (SECA)
[22]. Semi-Two-Steps is implemented using the same con-
volutional autoencoder proposed in [22]. First, it pretrains
the autoencoder on labeled and unlabeled samples, then
extracts the learned data representation from the encoder’s
final layer, and finally uses that representation for supervised
autoencoder training by attaching a softmax layer.

We evaluate classification performance using the estab-
lished accuracy and F1-score metrics. Accuracy is measured
as the ratio of correctly identified samples to the total number
of samples in the dataset:

Accuracy =
TP + TN

TP + TN + FP + FN
, (13)

where TP, FP, TN, FN are the number of true positives,
false positives, true negatives, and false negatives.

The F1-score, defined as a function of the precision and



TABLE III
MULTIMIX CONFUSION MATRIX

Predicted Mode Recall
Walk Bike Bus Drive Train

Tr
ue

M
od

e Walk 1094 19 3 1 0 0.979
Bike 55 454 20 7 1 0.845
Bus 48 32 727 52 11 0.836
Drive 23 12 153 320 26 0.599
Train 17 8 27 33 466 0.846

Precision 0.884 0.865 0.782 0.775 0.925

recall metrics, is calculated as follows:

precision =
TP

TP + FP
, (14)

recall =
TP

TP + FN
, (15)

F1-score = 2× precision× recall

precision + recall
. (16)

C. Experimental Results

As shown in Tables I and II, MultiMix achieved higher
accuracy than all evaluated baselines when using any per-
centage of labeled data. It is evident that all supervised
methods performed poorly when trained on just 1% or even
5% of the labeled data. The only supervised model that
significantly benefited from the inclusion of more labeled
data appears to be the CNN.

Among the semi-supervised baselines, Semi-Two-Steps
did not achieve competitive results compared to SECA.
Furthermore, MultiMix outperformed SECA for all percent-
ages of labeled data, with its advantage being particularly
prominent when using just 1% of labeled data. In this case,
both the accuracy and F1-score of MultiMix were higher
than those of SECA at 66.2% and 62.5%, respectively. When
using all labeled data, MultiMix still achieved the best results
with an accuracy of 84.8% and F1-score of 83.2%.

For more insights into the per-class performance of Mul-
tiMix when trained on all labeled data, Table III shows the
confusion matrix as obtained by evaluating our framework
on the test set. We note that classes for which Geolife
contains more labeled samples generally achieved higher
precision and recall than those with fewer ones. This is part
of the reason why MultiMix did better at identifying “walk”
instances than “drive” ones. On the other hand, it is also
due to pedestrians and cars having quite dissimilar motion
patterns. It is possibly for the same reason that, although
“bike” has about half the number of samples than “walk”
does, MultiMix still demonstrated high precision and recall
for the former. As also noted by [22], the relatively high
precision and recall for buses and trains may be due to the
fact that these travel modes tend to follow predefined routes.
However, cars were most often mistaken for buses; this is not
surprising, as both may have similar velocity and acceleration
in congested traffic scenarios.

D. Ablation Study

The performance of MultiMix depends on multiple factors.
First, it incorporates synthetic training samples generated us-
ing both labeled and unlabeled data. Second, it is trained by
optimizing the sum of three losses. To evaluate the influence
of the above on classification accuracy, we iteratively remove
one of them while maintaining the rest and train MultiMix
using 1%, 10%, 25%, and 100% of the available labeled data.
These ablations are defined as follows:

• A: Generate synthetic data using only labeled data xl,
yl.

• B: Generate synthetic data using only unlabeled data
xu.

• C: Remove the loss of the synthetic data classifier,
lossv , from the total loss.

• D: Remove the loss of the autoencoder, lossAE, from
the total loss.

• E: Remove the loss of the labeled data classifier, lossl,
from the total loss.

The results of our ablation study are shown in Table IV.
It seems that generating the synthetic data only from either
labeled or unlabeled ones caused a decrease in accuracy
for all percentages of labeled data. Specifically, between
ablations A and B, we note that the former resulted in the
biggest reduction in accuracy. This could be due to the fact
that the labeled data were fewer than the unlabeled ones to
begin with, meaning that in ablation A, the synthetic data
were generated from a distribution having fewer samples.
This intuition is supported by the results of ablation B,
demonstrating accuracy almost as high as that of MultiMix.
Since our proposed approach achieved higher accuracy than
ablations A and B, especially when using 1% labeled data,
it is evident that synthetic data should be generated from all
available data.

Next, we evaluated the impact of removing either of
the proposed loss terms on the accuracy. According to the
experimental results, this also caused varying degrees of
accuracy reduction. It seems that MultiMix is most robust to
the removal of lossv and lossAE, while being very sensitive
to the elimination of lossl. Indeed, we note that disregarding
all labeled data in the training set (ablation E) resulted in
the model essentially producing random guesses, with an
accuracy roughly corresponding to the inverse number of
classes. Therefore, all three proposed loss terms contribute
significantly to the performance of the proposed framework,
especially in the case of few labeled data.

V. CONCLUSIONS

In this work, we proposed a multi-task learning framework
for deep semi-supervised travel mode identification from
GPS data. To address the problem of classifying users’ travel
modes from few labeled trajectories, MultiMix was trained
on mixed batches of labeled, unlabeled, and synthesized data
by minimizing the weighted sum of three corresponding
loss functions. Compared with previous approaches, both
supervised and semi-supervised, MultiMix exhibited the best



TABLE IV
ACCURACY FOR ABLATIONS AND PERCENTAGES OF LABELED DATA

Ablation 1% 10% 25% 100%

A 0.642 0.739 0.758 0.839
B 0.654 0.752 0.781 0.841
C 0.613 0.732 0.755 0.838
D 0.592 0.713 0.741 0.825
E 0.183 0.201 0.192 0.205

MultiMix 0.662 0.758 0.787 0.848

overall performance; on Geolife, it achieved an accuracy of
66.2% while only using 1% of the available labeled data.
In addition, when leveraging all labels, its accuracy reached
84.8%. We also conducted an ablation study, which showed
that removing any of the proposed model components re-
sulted in lower accuracy. In future work, we will explore new
ideas in semi-supervised learning to improve MultiMix, and
will assert its effectiveness on datasets from other research
areas, i.e. in transfer learning.

REFERENCES

[1] L. Wu, B. Yang, and P. Jing, “Travel mode detection based on gps
raw data collected by smartphones: a systematic review of the existing
methodologies,” Information, vol. 7, no. 4, p. 67, 2016.

[2] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-
driven intelligent transportation systems: A survey,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–1639,
2011.

[3] S. Dabiri and K. Heaslip, “Transport-domain applications of widely
used data sources in the smart transportation: A survey,” arXiv preprint
arXiv:1803.10902, 2018.

[4] Y. Zheng, Q. Li, Y. Chen, X. Xie, and W.-Y. Ma, “Understanding
mobility based on gps data,” in Proceedings of the 10th International
Conference on Ubiquitous Computing. ACM, Seoul, Korea, 2008,
pp. 312–321.

[5] J. L. Wolf, “Using gps data loggers to replace travel diaries in the
collection of travel data,” Ph.D. dissertation, Citeseer, 2000.

[6] L. Gong, T. Morikawa, T. Yamamoto, and H. Sato, “Deriving per-
sonal trip data from gps data: A literature review on the existing
methodologies,” Procedia-Social and Behavioral Sciences, vol. 138,
no. Supplement C, pp. 557–565, 2014.

[7] L. Montini, S. Prost, J. Schrammel, N. Rieser-Schüssler, and K. W.
Axhausen, “Comparison of travel diaries generated from smartphone
data and dedicated gps devices,” Transportation Research Procedia,
vol. 11, pp. 227–241, 2015.

[8] M. J. Duncan, H. M. Badland, and W. K. Mummery, “Applying gps to
enhance understanding of transport-related physical activity,” Journal
of Science and Medicine in Sport, vol. 12, no. 5, pp. 549–556, 2009.

[9] Z. Xiao, Y. Wang, K. Fu, and F. Wu, “Identifying different transporta-
tion modes from trajectory data using tree-based ensemble classifiers,”
ISPRS International Journal of Geo-Information, vol. 6, no. 2, p. 57,
2017.

[10] Y. Endo, H. Toda, K. Nishida, and A. Kawanobe, “Deep feature
extraction from trajectories for transportation mode estimation,” in
Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, Auckland, New Zealand, 2016, pp. 54–66.

[11] T. H. Vu, L. Dung, and J.-C. Wang, “Transportation mode detection on
mobile devices using recurrent nets,” in Proceedings of the 24th ACM
international conference on Multimedia, Amsterdam, The Netherlands,
2016, pp. 392–396.

[12] J. V. Jeyakumar, E. S. Lee, Z. Xia, S. S. Sandha, N. Tausik, and M. Sri-
vastava, “Deep convolutional bidirectional lstm based transportation
mode recognition,” in Proceedings of the 2018 ACM International
Joint Conference and 2018 International Symposium on Pervasive and
Ubiquitous Computing and Wearable Computers, New York, USA,
2018, pp. 1606–1615.

[13] S. Dabiri and K. Heaslip, “Inferring transportation modes from gps
trajectories using a convolutional neural network,” Transportation
research part C: emerging technologies, vol. 86, pp. 360–371, 2018.

[14] M. Sajjadi, M. Javanmardi, and T. Tasdizen, “Regularization with
stochastic transformations and perturbations for deep semi-supervised
learning,” in Advances in Neural Information Processing Systems,
Barcelona, Spain, 2016, pp. 1163–1171.

[15] M. K. Takeru Miyato, Shin-ichi Maeda and S. Ishii, “Synthetic
adversarial training: a regularization method for supervised and semi-
supervised learning,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 41, no. 8, pp. 1979–1993, 2018.

[16] P. Bachman, O. Alsharif, and D. Precup, “Learning with pseudo-
ensembles,” in Advances in Neural Information Processing Systems,
Montreal, Canada, 2014, pp. 3365–3373.

[17] D.-H. Lee, “Pseudo-label: The simple and efficient semi-supervised
learning method for deep neural networks,” in Workshop on Chal-
lenges in Representation Learning, 30th International Conference on
Machine Learning, vol. 3, Atlanta, USA, 2013, p. 2.

[18] A. Tarvainen and H. Valpola, “Mean teachers are better role models:
Weight-averaged consistency targets improve semisupervised deep
learning results,” In Advances in Neural Information Processing Sys-
tems, pp. 1195–1204, Long Beach, California, USA, 2017.

[19] B. Athiwaratkun, M. Finzi, P. Izmailov, and A. G. Wilson, “There are
many consistent explanations of unlabeled data: Why you should av-
erage,” in 7th International Conference on Learning Representations,
New Orleans, Louisiana, USA, 2019.

[20] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
Beyond empirical risk minimization,” in International Conference
on Learning Representations, Vancouver, British Columbia, Canada,
2018.

[21] D. Berthelot, N. Carlini, I. Goodfellow, N. Papernot, A. Oliver, and
C. A. Raffel, “Mixmatch: A holistic approach to semi-supervised
learning,” in Advances in Neural Information Processing Systems,
Vancouver, British Columbia, Canada, 2019, pp. 5050–5060.

[22] S. Dabiri, C.-T. Lu, K. Heaslip, and C. K. Reddy, “Semi-supervised
deep learning approach for transportation mode identification using
gps trajectory data,” IEEE Transactions on Knowledge and Data
Engineering, 2019.

[23] Y. Zheng, X. Xie, W.-Y. Ma, et al., “Geolife: A collaborative so-
cial networking service among user, location and trajectory.” IEEE
Data(base) Engineering Bulletin, vol. 33, no. 2, pp. 32–39, 2010.

[24] T. Vincenty, “Direct and inverse solutions of geodesics on the ellipsoid
with application of nested equations,” Survey Review, vol. 23, no. 176,
pp. 88–93, 1975.

[25] L. Shen and P. R. Stopher, “Review of gps travel survey and gps data-
processing methods,” Transport Reviews, vol. 34, no. 3, pp. 316–334,
2014.

[26] Y. Zheng, L. Liu, L. Wang, and X. Xie, “Learning transportation
mode from raw gps data for geographic applications on the web,”
in Proceedings of the 17th International Conference on World Wide
Web. ACM, Beijing, China, 2008, pp. 247–256.

[27] C. Truong, L. Oudre, and N. Vayatis, “Selective review of offline
change point detection methods,” Signal Processing, p. 107299, 2019.

[28] Y. Carmon, A. Raghunathan, L. Schmidt, J. C. Duchi, and P. S. Liang,
“Unlabeled data improves adversarial robustness,” in Advances in
Neural Information Processing Systems, Vancouver, British Columbia,
Canada, 2019, pp. 11190–11201.

[29] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: a simple way to prevent neural networks from
overfitting,” The Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014.

[30] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons
and singular value decomposition,” Biological Cybernetics, vol. 59, no.
4-5, pp. 291–294, 1988.

[31] R. Caruana, “Multitask learning,” Machine Learning, vol. 28, no. 1,
pp. 41–75, 1997.

[32] G. Asci and M. A. Guvensan, “A novel input set for lstm-based
transport mode detection,” in 2019 IEEE International Conference
on Pervasive Computing and Communications Workshops (PerCom
Workshops), Kyoto, Japan, March 2019, pp. 107–112.


