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Abstract—Connected Electric vehicles (CEVs), as promising
core factors in smart cities, take a substantial role in advancing
the quality of core transportation services in Intelligent Trans-
portation Systems (ITSs). The application of CEVs triggers the
transportability and sustainability of smart cities, especially for
ride-sharing and dynamic scheduling operations. Additionally,
the combined optimization of the application of these schemes can
further contribute to the potential benefits in smart cities. In this
paper, an online CEV system for joint ride-sharing and dynamic
V2G scheduling is proposed. Specifically, the joint problem is
formulated as a mixed-integer quadratic programming (MIQP)
problem. To deal with the forecast uncertainties, an online
scheduling problem is thereby formulated, which also accounts
for the communication effect to the real-time interactions. In the
meantime, a bi-level system algorithm is devised to coordinate
the CEV operations through the Benders decomposition. The
case studies demonstrate that the proposed model can effectively
provide high quality citywise ride-sharing and V2G regulation
services through reliable vehicular communications. In addition,
the computational time of the proposed online bi-level algo-
rithm can be greatly reduced under different network scales.
Furthermore, the sufficient utilization of coordinated CEVs can
significantly decrease the system operation cost by approximately
43.71% while alleviating city grid stability issues.

Index Terms—Connected electric vehicles, dynamic wireless
charging, online framework, ride-sharing, vehicle-to-grid.

I. INTRODUCTION

EMPOWERED by recent data sensing, communication,
and processing methods in traffic networks, Intelligent

Transportation Systems (ITS), as one of the crucial compo-
nents in smart cities, are capable of providing various reliable
and efficient core transportation services. The aim of ITS
is to improve reliable and efficient transportation operations.
Compared to conventional ITS, they require the core elements
of several emerging technologies by means of connected
vehicles (CVs) [1]. Considering the utilization of vehicle-
to-everything (V2X), CVs can trigger their installed smart
sensors to enable the real-time exchange of self-sensed data
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information [2], so as to improve the awareness of the sur-
rounding environment of each individual vehicle. Besides, by
interacting with the centralized ITS control center under ultra-
reliable and low-latency communications, the timely sensing
and control for applications of CVs can be guaranteed, e.g.
autonomous driving operations [3]. The main purpose is to let
the operator to leverage the sensed information for CV driving
instructions, while completing the desired ITS objectives, e.g.,
[4]. For instance, the utilization of CVs in ITS is expected
to help reduce traffic congestion through managing a safer
and efficient vehicle movement. In the meantime, the related
public services can also be facilitated, such as ride-sharing and
dynamic wireless charging.

In ITS, ride-sharing is capable of providing passengers
with efficient, convenient, and on-demand transportation [5],
[6]. Specifically, the ride-sharing scheme is defined as the
provision of one vehicle ride service in traffic networks for
multiple passengers who have overlapping travel plans. In gen-
eral, this service is offered through smartphone applications,
e.g. Lyft and Uber ride-hailing platforms [7]. Considering the
deployment of shared CVs in ITS, ride-sharing operation leads
to considerable energy savings and social interactions [8].
Considering the limited vehicles being ultimately deployed
in traffic networks while maximizing their occupancy, there
are several existing studies [9]–[14] focusing on path-planning
strategies while providing ride-sharing services. These ap-
proaches achieve promising solutions in the effectiveness of
ride-sharing schemes. In [9], [10], autonomous ride-pooling
systems were proposed to meet the passengers’ demand, and
these approaches can also alleviate traffic congestion on the
city major roads effectively. Moreover, in [11], by applying a
deep reinforcement learning method, the best route was deter-
mined based on the sampled historical service requests. Then,
a genetic algorithm was devised in [12] for tackling admission
control by means of bi-level optimization framework. Besides,
in [13], a public vehicle system was built to provide real-time
ride-sharing services. This work devised a greedy algorithm
to solve the problem that covers the limited number of AVs
and system operational costs. Furthermore, an AV dispatching
system was proposed in [14] for accounting dynamic taxi trips
and capacity adjustment. The aforementioned studies succeed
to indicate the benefit of providing ride-sharing services in the
modern ITS operation. However, they does not investigate the
energy management strategies of the battery-driven CVs when
providing ride-sharing services in ITS, e.g. connected electric
vehicle (CEV) charging operations.
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Since the incorporation of remarkable renewable genera-
tions in the city smart grid system, the inevitable random
and uncorrelated power fluctuations can be occurred due to
the intermittency and uncertainty characteristics of renewable
generations. In addition, these issues can further jeopardize
the stability of the city power grid. In this case, the batteries
of CEVs can be collectively utilized to tackle such the issues.
In particular, dynamic wireless charging systems become the
promising applications to enable CEVs to perform charging
when CEVs are moving over the charging facilities. For
instance, power supply units, called power tracks (PTs), are
installed beneath the traffic roads for facilitating the process
of energy transfer [15] so that CEVs can be coordinated
to charge in motion. Additionally, [16], [17] developed a
vehicular energy network (VEN) based on the operation of
dynamic wireless charging to allow the energy transfer from
the sources to destinations through electric vehicles (EVs)
along appropriate vehicular routes. With the implementation
of such facilities, some existing researches have developed
dynamic wireless charging protocols by means of EVs [18]–
[20]. In [21], a holistic review for EV charging protocols was
assessed. [18] investigated and assessed the feasibility of a
dynamic charging system under the conditions of EV slow-
moving traffic. In [19], an EV dynamic charging system was
built to evaluate the EV economic and smart routing operation.
The related system model is implemented the fulfillment of
the battery energy requirement of these EVs. Moreover, an
electric roadway system with limited EV battery capacities
and charging rates was proposed in [20] to consider long-
distance EV travels. However, the above researches neglect the
interaction between the city smart grid and EVs. In practice,
improper EV coordinations can further jeopardize the stability
of the city smart grid.

The consideration of battery energy demand shall be in-
cluded when they are connecting to the city smart grid, e.g.
vehicle-to-grid (V2G) technologies that enable EVs to store
or release energy at appropriate moments and then allow
the power exchange between power grid and EVs [22]. [23]
examined that according to [24], wireless charging systems
can be activated under reliable vehicular communications so
as to complete V2G requirements. In addition, CEVs are able
to provide various V2G services under coordinated systems
[25], which further stabilize the city smart grid system [26],
[27]. In this case, V2G coordination refers to an efficient
approach of utilizing CEV batteries to restore electricity back
to the power system. EVs can be regarded as distributed
energy storages that follow the power control signals from
the energy market to provide a variety of auxiliary services,
e.g. frequency regulation service [26]. Afterwards, the grid
fluctuations can be alleviated by the provisioning of V2G
regulation services, thereby keeping the grid frequency at its
nominal value. [28] developed a hierarchical model to consider
the provisioning of joint voltage and frequency regulation
services by using EVs. This framework is operated only for
EV stationary charging. Considering dynamic EV wireless
charging schemes, [29] proposed a dynamic wireless charging
system for EVs to consider both the optimal placement of PTs
and V2G scheduling with ancillary services. However, these

studies solely involve EV charging mechanisms with related
tackling strategies to cope with the issues of grid fluctuations.
In practice, CEVs can be applied for operating in a multi-
service mode in ITS, which includes the provision of at least
two or more different public services. In this way, an effective
system with multiple types of CEVs is considered.

CEV multi-service mode accounts the interactions among
various public services, which can effectively respond to
many different demands rather than the conventional way that
provides a unilateral service in ITS [30]. By utilizing CEVs,
the proposed system framework leverages the interactions and
dependencies between the ITS and the city smart grid through
efficient information sharing. Several existing studies focus on
designing the system models of EVs to provide multiple public
services, i.e. [31]–[35]. [31] proposed a joint re-balancing and
V2G coordination strategy for the autonomous vehicle (AV)
public transportation system. In addition, a novel framework
was proposed in [32] for EV optimal parking allocation and
charging scheduling, which also considered the provision of
the V2G frequency regulation service. In [33], by developing
an autonomous vehicle logistic system, AVs can be operated in
a joint eco-routing and eco-charging way, as well as providing
logistic services. Furthermore, [35] proposed a framework
to leverage decentralized deep reinforcement learning and
centralized decision making through linear assignment of ride-
hailing services for EVs. However, these approaches did not
consider the effect of the city wireless communication net-
work. Specifically, the performance of CEV multi-service op-
erations in smart cities can be affected in a substantial manner,
since the Internet service has a number of desirable properties,
such as decentralization, security, transparency, immutability,
and automation [36]. In practice, one of these properties can
indeed affect the performance of CEV multi-service operations
in ITS, such as unsafe and inefficient lane-changing operations
under imperfect communication [37]. By accounting for such
effect, a joint routing and charging scheduling optimization
problem for the Internet of EVs was formulated in [34] to op-
timize the system performance. [38] assessed the effect of the
communication reliability of a proposed optimal coordinated
scheduling framework for EVs. Thus, by implementing the
communication factors into the multi-service scheme of CEVs,
the reliable and efficient system can be further achieved.

To conclude, the aforementioned works unilaterally provide
one single public service for CEVs or execute multi-service
operations without the assessment of the communication relia-
bility. To bridge the research gaps, in this work, an online CEV
system is developed with the consideration of the joint ride-
sharing and dynamic V2G scheduling approach. In particular,
the determination of the best CEV commitments is focused
for the joint services. Meanwhile, the potential communication
effect of CEVs is accounted so as to assess the reliability of
the entire system. The main efforts are summarized as follows:

1) The proposed online model encapsulates the featured
joint operation for both CEV ride-sharing and dynamic
wireless charging in smart cities. Compared to the
existing studies, the proposed joint system model can
provide high quality multiple CEV services with limited
number of CEVs.
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2) An online CEV protocol is implemented between CEVs
and the system control center for real-time operations,
which is more realistic than [31], [33], [34]. This im-
proves the CEV multi-operation system by formulating
a generic problem so as to adapt the model to various
citywise traffic networks and energy markets.

3) A bi-level system algorithm is devised to scalably solve
the formulated problem through the Benders decom-
position method, which can help obtain near-optimal
solutions. The benefit of using CEVs in achieving the
optimal system social welfare with the provisioning
of joint ride-sharing and V2G regulation services is
evaluated by the proposed online model.

The rest of this paper is organized in the followings. Section
II presents and illustrates the proposed system model. Then,
Section III introduces a joint ride-sharing and dynamic V2G
scheduling problem. To deal with the forecast uncertainties,
Section IV thereby formulates an online problem, as well as
the devised bi-level solution. In Section V, the proposed system
model is evaluated via different case studies. Finally, this work
is concluded in Section VI.

II. SYSTEM MODEL

The proposed online CEV system incorporates two major
components in ITS, namely, transportation network and CEVs,
which will be detailed as follows.

A. Transportation Network

The physical distance of the transportation network is basi-
cally determined from one specific location to another inside
a particular region. Specifically, the network is modeled as
a directed graph G(V, E), in which the set of road segment
intersection points is denoted as V with the connected edges
E . In this case, nodes i ∈ V and j ∈ V are the locations of
the intersection points in the traffic network, which follows
(i, j) ∈ E . Besides, PTs, known as the near-field electro-
magnetic induction-based wireless power transmission (WPT)
devices, are embedded beneath every road segment (i, j) ∈ E .
Based on [39], the type of magnetic and electrostatic induction
is considered based on the relevant power levels and gap
separations. Moreover, the charging limit to 7.7kW is set by
referring to the WPT standard in [40].

B. CEVs

The set of participating CEVs is denoted as N . Each CEV n
aims to accomplish either the ride-sharing or dynamic charging
requests by moving every road segment (i, j) ∈ E . For ride-
sharing services offered by CEVs, the index set of ride-sharing
service requests and passengers are denoted as Rs and Z ,
respectively. Each service request shall be accomplished within
assigned deadline T ddl

n .

C. System Operations

The entire system operation is comprised of two following
stages:

A

C

B

Power Track

Departure Point

Destination Point

Fig. 1. A simplified example of joint operations.

• Planning: The control center initially collects the geo-
metric information of the city road network, the timely
ride-sharing requests, and the real-time status of CEVs.
Then, it determines the optimal route for CEVs, as well
as consider the provision of the joint ride-sharing and
dynamic V2G charging service. Specifically, the ride-
sharing scheme coordinates the participating CEVs by
considering the current vehicle capacity within the total
time period, as well as the number of on-demand pas-
sengers. Meanwhile, each CEV shall travel more than
once to accomplish multiple ride-sharing requests. For
dynamic charging scheme, it is incorporated into the
execution of the CEV travel plan by providing V2G
regulation services, as well as fulfilling the CEV charging
requirements. Finally, CEVs are operated to execute the
operational plan for implementation.

• Implementation: This stage updates the CEV travel
plans by accounting for real-time traffic conditions. In the
meantime, due to the sudden change of the city traffic
network and vehicular status information, the control
center of ITS is capable of re-assigning the execution
of CEV service plans. The assigning process follows the
first-come-first-served basis.

A simplified example of the joint operational schemes is
presented in Fig. 1. First of all, CEV n starts from the initial
point A and reaches the nearest point to pick up the passenger
1. Then, it travels to point B to pick up the passengers 2 and 3
based on its available capacity. After that, CEV n proceeds to
point C to complete the ride-sharing task since the destinations
of these three passengers are all point C. Meanwhile, the travel
plan from point B to point C needs to consider the charging
service. Hence, the traveling trajectory of CEV n may include
the road segments embedded with PTs, which is labeled as
a blue bold line in Fig. 1. Last but not least, the n-th CEV
approaches its final destination, point C, to accomplish the
ride-sharing service plan before the deadline. In real-world
operation, it is possible that when having a larger on-demand
quantity to pick up more passengers for every request.
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TABLE I
NOTATIONS FOR THE PROPOSED SYSTEM.

Parameters

V Index set of nodes
|V| Total number of nodes
E Index set of road paths
E Total number of road paths
T Index set of timeslot
|T | Total operation time period
∆t Length of a time slot
N Index set of CEVs
|N | Total number of CEVs
Z Index set of passengers
Rs Index set of ride-sharing requests
Ldlv
n Set of delivery node of CEV n

Lsrc
n Departure point (source) of CEV n

Ldst
n Destination point of CEV n

Twait
j Maximum waiting time for passengers at node j

T ddl
n Service deadline of CEV n

Tij,n Travel time of CEV n on road (i, j)
Tmin
n,r Minimum service time for CEV n at request r

Tmax
n,r Maximum service time for CEV n at request r
qi,n Changing number of passengers of CEV n at node i

y(i,j),t Energy indicator of PTs for road (i, j) at time t

P dch
n Maximum discharging power of EV n
P ch
n Maximum charging power limit of EV n

ηch Charging efficiency
ηdch Discharging efficiency

dij,n,t Travel distance of CEV n for road (i, j) at time t
vij,n,t Average speed of CEV n for road (i, j) at time t
βn Unit energy consumption of CEV n
Cn Installed battery capacity of CEV n

S
Ln

src
n SOC of CEV n at departure point
S

req
n Charging requirements of CEV n

Smin
n Lower limit of SOC for CEV n

Smax
n Upper limit of SOC for CEV n
In,t Binary variable of whether CEV n is collected at time t
σt Probability of packet loss
FRS Total ride-sharing cost function
FV2G Total dynamic V2G coordination cost function
P tot
t Total system active power at time t

P
reg
t Regulation signals at time t
et Forecast error at time t
αn Unit routing cost of CEV n
γn Unit transportation service cost of CEV n
λn Charging/discharging cost for CEV n
Rbase Base reward for providing V2G regulation service
ξ Penalty factor for performance of regulation service
rt Ride-sharing service request at time t
D Size of a one-dimensional control variable
ms Number of iteration
FRS
t Total ride-sharing cost function at time t

FV2G
t Total dynamic V2G coordination cost function at time t
Sms
n Margin of safety of CEV n
µ Size of margin of safety
Ωt Representation of Benders cuts at time t
ϵ Optimality gap

FRS
t Upper bound of ride-sharing operation cost

F ∗RS
t Optimal ride-sharing operation cost
Mo Maximum iteration number of online algorithm

Optimization variables

xij,n,t Binary variable of whether CEV n
travels road (i, j) at time t

kj,n Staying duration of CEV n at node j
τj,n Time of arrival of CEV n at node j
Wj,n Capacity of CEV n at node j
Pn,t Active power of CEV n at time t
Sn,t SOC of CEV n at time t

III. PROBLEM FORMULATION

The system framework of the CEV system is developed
based on joint ride-sharing and dynamic V2G scheduling. The
problem formulation is presented as follows. The key variables
and parameters are presented in Table I.

A. Ride-Sharing Constraints

The proposed ride-sharing scheme encompasses two main
operations: CEV routing and ride-sharing. To ensure real-
world applications, CEV operations shall be performed sat-
isfying several constraints shown in the sequel.

A binary variable xij,n,t is first introduced to indicate
whether CEV n ∈ N traverses the road (i, j) ∈ E at time
t, and it includes

xij,n,t =

{
1 if CEV n traverses the road (i, j) at time t,

0 otherwise.
(1)

Then, τj,n ≥ 0 is introduced as the arrival time of CEV n
at node j. This variable also indicates the cumulative time
consumption of CEV n, in which it is different from the
time index t. After each request being assigned, CEV n shall
approach the final destination for the ride-sharing operation.
This indicates that it has to traverse at least one portion of the
traffic network, which can be ensured by∑

t∈T ,i∈V
xij,n,t ≥ 1, ∀n ∈ N , j ∈ {Ldlv

n }, (2)

where Ldlv
n denotes the delivery location set of AV n.

The CEV network flow model is developed based on
the road network topology. Suppose

∑
t∈T ,i∈V xij,n,t and∑

t∈T ,i∈V xji,n,t be the incoming and outgoing vehicular
flows, respectively. The connectivity of multiple consecutive
roads are ensured by

∑
t∈T ,i∈V

(xij,n,t − xji,n,t) =


1 if j = Ldst

n , Lsrc
n ̸= Ldst

n ,

−1 if j = Lsrc
n , Lsrc

n ̸= Ldst
n ,

0 otherwise,
(3)

where Lsrc
n and Ldst

n represent the departure and destination
points of the n-th CEV’s route. According to (3), the first
two conditions guarantee that if CEV n reaches the node
j, there shall be incoming and outgoing vehicular flows
between the departure and destination points, respectively,
which guarantees the connectivity of vehicular routes.

Besides, several road access conditions may be restricted
for certain vehicles. For instance, some particular types of
vehicles are not allowed to travel over certain road portions.
In this work, the implementation of various types of vehi-
cles is considered, e.g. public and private cars. To address
such realistic scenarios, the restricted zone with the set of
nodes V ′ ⊂ V and the connected edges E ′ ⊂ E is first
defined. When there is a restriction on road (i, j) for CEV
n, xij,n,t = 0, ∀i ∈ V ′, j ∈ E ′, t ∈ T is defined to satisfy
this condition. This case indicates that CEV n cannot travel
between point i and point j due to the region of the restricted
zone.
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The proposed ride-sharing operation needs to consider the
waiting time for passenger pickups for the purpose of measur-
ing the provisioning of these services. When CEV n needs to
perform pickup tasks related to certain number of passengers,
the waiting time for this vehicle to load or unload passengers
at node j ∈ V is denoted by

kj,n ≤ Twait
j , ∀n ∈ N , r ∈ Rs, (4)

where Twait
j denotes the maximum allowable waiting time for

passengers at node j.
In addition, τj,n is first defined as the arrival time of CEV

n at node j and it is updated when it accomplish all ride-
sharing service requests Rs. After that, when the CEV n ∈
N travels over (i, j) ∈ E\{E ′}, the variable τj,n is greater
than the required traveling time plus the passengers’ picking-
up/dropping-off time, which is described as

τj,n ≥ τi,n + ki,n + Tij,n, ∀xij,n,t = 1, (5)

where Tij,n is the travel time for CEV n ∈ N . Then, the
time for passengers to approach the destination point can be
represented by

Tmin
n,r ≤ τj,n ≤ Tmax

n,r , ∀r ∈ Rs, (6)

where Tmin
n,r and Tmax

n,r are the allowable minimum and maxi-
mum times at request r, respectively. Then, the deadline for
ride-sharing services at point Ldst

n for the n-th CEV, T ddl
n ,

follows
τLn

dst,n
≤ T ddl

n , ∀n ∈ N . (7)

Furthermore, the vehicle capacity is modeled by considering
the change of the holding number of passengers during ride-
sharing services. Suppose Wj,n be the loading capacity of
CEV n at node j. Then, the residual capacity of CEV n ∈ N
will be no less than the vehicle capacity at node i, which is
described as

Wj,n ≥ Wi,n + qi,n, ∀xij,n,t = 1, (8)

where qi,n is the number of loading capacity of CEV n for
passengers at node i, which is obtained based on the number of
service requests. When CEV n accomplish the service request
r ∈ Rs, the variable Wj,n is also updated.

B. Dynamic V2G Scheduling Constraints

With the known PT placement information in the city traffic
network, the dynamic wireless charging/discharging for the
CEVs can be scheduled for their preference to participate.
The rest of CEVs are regarded as the vehicle fleet that only
traverses in the road network. Hence, by considering the
charging/discharging mechanisms, the charging and discharg-
ing powers of CEV n ∈ N follow

P dch
n ≤ y(i,j),tPn,t ≤ P ch

n , ∀t ∈ T , (9)

where y(i,j),t is the energy activation indicator of PTs that are
installed over road (i, j) ∈ E at time t.

The state-of-charge (SOC) of the participated CEV n ∈ N
at time t ∈ T is further defined and obtained by

Sn,t+∆t = Sn,t +
∆t

Cn
η(Pn,t)Pn,t, (10)

where Cn is the battery capacity. Moreover, η(·) is the
efficiency of the charging and discharging powers, which can
be obtained by

η(Pn,t) =

{
ηch if Pn,t ≥ 0,
1

ηdch if Pn,t < 0,
(11)

where ηch, ηdch ∈ (0, 1] are the related energy efficiencies for
charging and discharging schemes, respectively. In practice,
the changes of the air gap distance can indeed incur the lower
efficiency and instabilities in the system. Hence, based on
[41], ϑ is introduced as the degradation factor for the lower
efficiency case due to the changes of the air gap distance in
each PT. Then, the efficiency of the charging and discharging
powers can be modified as η̃(Pn,t) = ϑη(Pn,t), which further
affects the performance of dynamic V2G scheduling model.

Since CEVs travel over the traffic network, the related
travel distance of CEV n is defined as dij,n,t, which also
follows dij,n,t = vij,n,tTij,n. Then, the real-time battery
energy consumption of CEV n ∈ N is expressed as

Sn,t+∆t := Sn,t −
βn

Cn
dij,n,t (12)

where βn is the unit energy consumption factor of CEV n.
Apart from energy consumption when the participated CEV

n is traveling, it must fulfill the energy requirement associated
with its charging/discharging behaviors. The energy require-
ment of each CEV n is directly obtained by its required SOC
level, which is denoted as Sreq

n . For each CEV n, suppose
Sn,Ln

src
be the initial SOC and Sn,Ln

dst
be the final SOC. Then,

during the entire time period, for the participated CEV n ∈ N ,
it follows

S
Ln

dst
n ≥ S

Ln
src

n + Sreq
n . (13)

Besides, the dynamic V2G scheduling scheme have to
avoid the over-charging and deep-discharging cases. Hence,
the scheme follows the operational bounds of SOC of CEV n
at time t as

Smin
n ≤ Sn,t ≤ Smax

n , (14)

where Smin
n and Smax

n denote the minimum and maximum
limits in SOC of CEV n, respectively.

C. Communication Constraints

The imperfect communication constraints are derived based
on two aspects, including imperfect communications on re-
newable energy resources (RESs) and imperfect CEV com-
munications. According to [42], imperfect communication
can easily lead to a large packet loss probability so as to
affect the RESs prediction and V2G dispatch performance. In
addition, due to the stochastic and intermittency characteristics
of RESs, the actual output of active power signals cannot be
accurate. Thus, the imperfect communication of the regulation
signals is modeled that includes the information errors as
P reg
t = (1+ et)P

reg
t where et ∼ N(0, 0.3), by following [29].

Besides, communication constraints also include the relia-
bility of the smart meters installed in CEV wireless chargers.
Hence, in practice, the imperfect communications are related
to real-time SOC and CEV operational time to the control
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center. The packet loss during the communication phase may
easily occur because of data communication time constraints
[43]. Specifically, if the data packets are unavailable, the
information of SOC and operational status lacks so that the
scheduling performance would be degraded. In such case, the
related communication constraint is modeled as

In,t =

{
1 with probability of σt,
0 with probability of 1− σt,

(15)

where In,t is a binary variable to assess whether CEV n is
collected under the packet loss probability of σt at time t or
not. Then, (15) is implemented over the conditions of (4),
(5), (10), and (12) to indicate the possible travel delay and
unavailability of SOC level due to packet loss during the meter
data communications, whereas it affects the values of kj,n,
τi,n, Pn,t, and dij,n,t by multiplying In,t.

Furthermore, the control center can broadcast the operation
signals centrally to all CEVs after receiving the information
of both the energy market and traffic network. Let D be the
size of a one-dimensional control variable. Due to the potential
for heavy communication between the control center and the
participating CEVs, the large quantity of CEV fleets may
simultaneously generate the communication burden among
the communication nodes. In this case, the communication
overhead in the system framework is defined as

CO = D ·ms · |T |(|N |+ 1), (16)

where ms denotes the number of iterations taken in the
procedure.

D. Formulation of Multi-Objective Problem
The proposed CEV system is developed to account the joint

ride-sharing and dynamic V2G scheduling problem. For the
ride-sharing scheme, the related operation is associated with
the travel distance of the n-th CEV [33]. In addition, it involves
the system operational cost for the ride-sharing operations that
guarantee the satisfaction of the passengers since the residual
service time for each time slot shall be reduced. Therefore,
the related ride-sharing cost function can be described by

FRS =
∑

t∈T ,n∈N

( ∑
(i,j)∈E

αndij,n,txij,n,t + γnτLdst
n ,n

)
, (17)

where γn represents the unit transportation service cost of
CEV n and αn is the unit CEV traveling cost.

Besides, the V2G coordination problem is related to the
CEV dynamic wireless charging operation by fulfilling their
charging requirements, as well as the provisioning of V2G
regulation services. By following [29], the relevant operational
cost is directly associated with the management of the CEV
fleets within T on performing dynamic V2G scheduling,
which can incur the CEV charging/discharging cost. Moreover,
the system stability requirements are kept by means of V2G
regulation services that can smooth out the city smart grid’s
active power fluctuations so as to keep the grid frequency
within a stable range. Based on these aspects, the dynamic
V2G coordination cost function can be calculated by

FV2G =
∑
t∈T

∑
n∈N

λnIn,tPn,t −RN , (18)

where λn is the unit charging cost for CEV n and it varies
with the change of time t. RN represents the reward for the
provisioning of regulation services, which follows:

RN =

(
Rbase − ξ

∑
t∈T

|P tot
t |
)
, (19)

where ξ ∈ (0, 1] is the penalty parameter to investigate
the regulation performance, and Rbase is the base reward. In
addition, the regulation reward is divided based on their battery
capacities among the participated CEVs. In particular, it can
be divided by the certain ratio of |N |, in which the ratio is
related to the battery capacity of CEV n and the entire battery
capacities of all CEVs. This is to ensure the fair regulation
reward allocation for each CEV. P tot(T ) is further denoted as
the grid power profile. This can be calculated by

P tot
T = P reg

T +
∑
n∈N

Pn,T , (20)

where P reg(T ) is the regulation signals and Pn(T ) is the CEV
n power profile. By focusing (19), the proposed V2G coordi-
nation is developed to gaining the reward for the provisioning
of the V2G regulation service, while minimizing the related
charging costs. Thus, the proposed joint problem is formulated
as

minimize FRS + FV2G, (21a)
subject to (2) − (10), (12) − (14). (21b)

E. Linear Transformation
In (21), the constraints (5) and (8) cannot be modeled di-

rectly without prior information on xij,n,t, since the condition
xij,n,t = 1 should hold. Hence, (5) and (8) are attempted to
be converted into the equivalent linear forms. Prior to that, the
following two cases are taken into account:

• Case 1: If xij,n,t = 0, starting from point i through
(i, j) ∈ E , CEV n won’t visit point j. Since τj,n is con-
strained within a feasible region, there is no relationship
between τi,n and τj,n. Similar to this, Wi,n and Wj,n

have no direct relation.
• Case 2: If xij,n,t = 1, τj,n must be greater or equal to

the right hand side of constraint (5).
Then, constraints (5) and (8) are transformed into the

equivalent linear forms by using the big-M reformulation as

τj,n ≥ τi,n + ki,n + Tij,n −M(1− xij,n,t), (22)

Wj,n ≥ Wi,n + qi,n −M(1− xij,n,t). (23)

By having the above linear transformation, the proposed
joint problem is presented as

minimize FRS + FV2G, (24a)
subject to (2) − (4), (6), (7), (9), (10), (12) − (14), (21), (23).

(24b)

IV. ONLINE CEV FRAMEWORK

This section develops the system framework of online
CEV system considering joint ride-sharing and dynamic V2G
scheduling. The problem formulation and the devised online
bi-level algorithm are presented in the following.
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A. Formulation of Online Joint Problem

In real-world operations, the ride-sharing and city power
demands of smart cities are tackled in a real-time manner.
Therefore, it is even realistic to propose an online joint prob-
lem for CEVs. At each time slot, the smart system receives the
real-time ride-sharing requests rt and regulation signal P reg

t ,
and then coordinates the participated CEVs to provide the joint
services immediately. Hence, considering the real-time ride-
sharing operation, (18) can be presented as:

FRS
t =

∑
n∈N

( ∑
(i,j)∈E

αndij,n,txij,n,t+ γn(τLdst
n ,n− t)

)
. (25)

For dynamic V2G scheduling, (18) is transformed as fol-
lowing function for online V2G scheduling:

FV2G
t =

∑
n∈N

λnPn,t −
(
Rbase

|T |
− ξ|P tot

t − P tot
t−1|

)
, (26)

Based on constraints (10), (13), and (14), for online V2G
scheduling, CEV n shall fulfill the charging requirement as

Sn,t + η(Pn,t)Pn,t∆t+ ηchP ch
n (|T | − t− 1)∆t

≥ Sreq
n + Sms

n,t, ∀t ≤ |T | − 1.
(27)

In this constraint, the left-hand side of the inequality above
shows the maximum SOC to be charged for CEV n and the
vehicle power profile Pn,t, while the safety margin, denoted
as µ ∈ [0, 1], is utilized to deal with the real-time information
uncertainty and it is shown on the right-hand side. The aim is
to increase the energy buffer in CEV n to accommodate with
the uncertainty. Then, it holds

Sms
n,t = µ(Smax

n − Sreq
n ). (28)

Furthermore, it is anticipated that the lifespan of CEV
batteries will be affected by their fast and frequent charg-
ing/discharging behaviors while using their V2G capabilities to
provide frequency regulation services. In this case, a penalty
term is introduced to the objective function in (26) to cope
with the battery degradation issue. This term aims to penalize
the fast charging/discharging behaviors of CEV batteries, and
then the modified objective function is updated as F̃V2G

t =
FV2G
t +

∑
n∈N (Pn,t)

2.
To sum up, the online joint optimization problem can be

expressed as:

minimize FRS
t + FV2G

t , (29a)
subject to (24b) and (27). (29b)

B. Decomposition

The ride-sharing and dynamic scheduling constraints are
included in the proposed online joint model. The operational
constraints are mostly related to the CEV mechanism. As
the number of CEVs increases, the constraints appear to be
more complex since the joint operation is accounted. Since
the formulated problem is solved real-time, the system still
explodes with the number of CEVs increasing due to the
complicated CEV constraints. Hence, to solve the problem
in an efficient manner, the Benders decomposition is utilized

to resolve the mixed integer linear programming (MILP)
problem, in which [44] implies that this method is suitable.

By taking xij,n,t as a connecting variable, the original
problem can be transformed as a bi-level problem. The mas-
ter problem (MP) aims to minimize the system cost that
is incurred by the ride-sharing operation with the related
constraints, which is the MILP problem shown as

minimize FRS
t +Ωt, (30a)

subject to Ωt ≥ 0, (30b)
(2) − (4), (6), (7), (21), (23), (30c)

where Ωt is the representation of Benders cuts for the MP. The
Bender cuts are added as penalty term and a extra constraint
to the MP, in which it satisfies

Ωt ≥ 0, ∀t ∈ T . (31)

In this case, the Benders cuts are implemented to the MP as
the additional constraint so as to adjust the system schedule on
ride-sharing and CEV dynamic scheduling operations. Even
though each CEV charging/discharging constraints are not
involved by MP directly, they are embedded as the Benders
cuts in an implicit manner. With the increasing number of
iterations, the number of cuts raises and the entire model
are regarded by the control center via the generated cuts.
In the meantime, the consideration of the CEV dynamic
scheduling constraints in MP can become increasing accurate
and complete such that the violation can be reduced gradually
with the iteration proceeding.

Since the dynamic scheduling constraints are not consid-
ered, the reformed MP is simplified. Then, it is ensured that
the operational cost F ,RS

t gained by solving the MP should
not be larger than the solution obtained in the primal model
that denotes as F ∗RS

t , which shows

F ,RS
t ≤ F ∗RS

t . (32)

Since the CEV dynamic V2G scheduling scheme is not
involved, the final solution x,

ij,n,t obtained by solving the MP
may not be feasible. Hence, the related adjustment of using
the Benders cuts is crucial for checking the feasibility of the
sub-problem (SP) formulated at the lower level. The SP is
formulated as follows:

minimize FV2G
t , (33a)

subject to xij,n,t == x,
ij,n,t, (33b)

(9), (10), (12) − (14). (33c)

For the SP shown in (33), the optimal solutions obtained
by the MP are utilized so as to check the feasibility of the
solution. The gap index to evaluate the optimality of the
feasible scheme is defined as

ϵ =
FRS
t − F ,RS

t

F ,RS
t

, (34)

where FRS
t is the upper bound of the operation cost and it

satisfies F ∗RS
t ≤ FRS

t .
Thus, more cuts are added to the constraints of the MP so

that the value of F
′RS
t would not decrease. Besides, if the best
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feasible solution is obtained, FRS
t would not increase. Hence,

it is apparent that the gap index function (34) is a decreasing
function that is related to the iteration number. When the gap
index is small, the stopping criterion is reached for the chosen
FRS
t as the final result.

C. Bi-Level System Algorithm

Algorithm 1 presents the devised online bi-level algorithm,
which is performed at each time slot. Initially, the system
receives the information of road network, total operational
period, and number of participating CEVs. Then, at each
time t, the system obtains the ride-sharing request rt and
regulation signal P reg

t . For each iteration m, the system solves
the MP by obtaining the optimal solution xij,n,t(m), τj,n(m),
and Wj,n(m) that are related to the solution set x,

ij,n,t, τ
,
j,n,

and W ,
j,n shown in the previous subsection. By taking these

results into the SP, the system solves the SP to obtain each
CEV’s charging/discharging decision Pn,t(m). In this case, the
feasible solution is obtained by solving the SP at the lower
level, and then this result is substituted into the MP at the
upper level. The ride-sharing scheme is scheduled and the
upper bound of the system cost is obtained correspondingly. In
every round of the iteration, the optimal decisions are adjusted
based on the control signal at time t. Then, each CEV can
report its new decision to the system. Furthermore, to reach
the stopping criterion, the condition m = Mo is defined to
ensure the approach of the maximum iteration number.

Algorithm 1 Proposed online bi-level algorithm
1: Given road network, total time period T , and |N | partic-

ipating CEVs participated.
2: for t = 1: |T | do
3: Given ride-sharing request rt ∈ Rs and regulation

signal P reg
t .

4: for n = 1: |N | do
5: for m = 1: Mo do
6: Solve (30) to obtain xij,n,t(m), τj,n(m), and

Wj,n(m) at the upper level.
7: Solve (33) to obtain Pn,t(m) at the lower level.
8: Obtain the feasible solution in step 7, and substi-

tute it into (30).
9: if the stopping criterion met by checking ϵ then

10: Update the optimal solutions as x∗
ij,n, τ∗j,n,

W ∗
j,n, and P ∗

n,t, and then exit the for loop to
obtain ms.

11: else
12: Return to Step 6 for another iteration in the for

loop and update m = m+ 1.
13: end if
14: end for
15: end for
16: end for

V. CASE STUDIES

This section evaluates the effectiveness of the online CEV
system. Firstly, the setup is shown for simulations. Secondly,

the relevant performance metrics and the baseline scenarios
for comparison are presented. Thirdly, the proposed model is
studied on its effectiveness and effect on the entire system.
Fourthly, the proposed model is assessed in different network
scales. Lastly, the economic feasibility of the proposed model
is examined.

A. Simulation Setup

The performance of the online CEV system is evaluated
based on the ride-sharing and V2G coordination operations.
the simulations are conducted in the town of Carolina, Al-
abama1. There are totally 56 edges and 26 nodes in this urban
region, each with a unique length of road section. 18 meters
(59 feet) and 725 meters (2379 feet) are the maximum and
minimum edge lengths, respectively. In addition, the system
operational time window is selected from 5:00 p.m. to 7:00
p.m. to capture the daily CEV mobility patterns, which can be
divided into |T | = 120 slots with ∆t = 1 minutes.

For the settings of the CEV ride-sharing and V2G coor-
dination, the deadline for approaching the final destination
is first set equal to the system operational period. For the
ride-sharing operation, the number of passengers is set to
10 and the maximum number of CEVs that may be loaded
at each edge to 4. Referring to [45], the γn and transport
costs αn are set to $83.68 per hour and $1.73 per mile,
respectively. Furthermore, the final destinations for CEV ride-
sharing schemes are randomly selected since they are exactly
different from their starting points. On the other hand, for the
regulation services, the regulation signal data is exploited on
1 January 2020 [46]. The base regulation reward is set to $40
per MWh by following [47].

The settings for CEVs are referred to the real-world oper-
ations and they are presented in the following. There are two
types of CEV groups, e.g. Nissan Leaf with 40 kWh [48] and
Chevrolet Volt with 18.4 kWh [49]. The total number of the
CEV fleets is |N | = 20. Each CEV is assumed to travel with a
fixed velocity of 30 kilometers (18.64 miles) per hour referring
to the city average traffic speed. In the meantime, each CEV’s
unit energy usage βn is set to 1.112 kWh per kilometers. A
single standard coil-set for SAE J2954 charging standard is
used for WPT Power Class 1 and 2 up to 7.7kW according
to [40]. Then, the discharging and charging power limits are
set to -7 kW and 7 kW, respectively. Moreover, the efficiency
for charging/discharging is set to 0.9. Besides, the uniform
distribution is used to simulate the SOC settings of CEVs,
which can be denoted as U[·] [28]. Specifically, the CEV n’s
initial SOC is set to be U[40%, 50%], while the charging
fulfillment follows U[0%, 10%]. The charging/discharging
mechanism’s safety condition is taken into account when the
minimum and maximum SOCs are U[10%, 20%] and U[90%,
99%], respectively. Finally, the time-varying unit charging cost
λn refers to the trend of actual electricity prices in [50].

1https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/
DVN/CUWWYJ
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B. Scenarios for Comparison

Here, the simulations compare four different scenarios so
as to evaluate the performance of the proposed online CEV
system, which are shown as:

1) S1: Online centralized joint ride-sharing and dynamic
V2G scheduling approach in (24)

2) S2: Proposed online bi-level joint approach
3) S3: CEV ride-sharing approach
4) S4: Dynamic V2G scheduling approach [29]

S1 denotes the proposed CEV system with online centralized
joint ride-sharing and dynamic V2G scheduling approach,
while S2 represents the devised online bi-level CEV algorithm.
Meanwhile, for dynamic V2G scheduling, 50% of road seg-
ments are assumed to be embedded with PTs in a random
manner. For S3, the CEV system is considered unilaterally
performing the ride-sharing operation. In this case, this method
does not involve the implementation of dynamic V2G schedul-
ing. Besides, for S4, it only considers the provision of V2G
service.

S3 is devised based on the centralized ride-sharing ap-
proach. In particular, the optimization problem only involves
the objective function (15) with the constraints (2) - (4), (6),
(7), (19), and (20). Since the optimal operation solutions can
be obtained in ride-sharing approach, S3 is set as one bench-
mark. In S4, each individual CEV’s schedule is coordinated by
the system via the centralized method [29]. After receiving the
regulation signals and the status of CEVs, the system optimizes
the subordinate CEVs with their schedules. The results can
converge to the global optimum in dynamic V2G scheduling
when the forecast information is available and accurate. Hence,
S4 can be regarded as another benchmark for assessing the
overall performance. All these scenarios are evaluated under
the test cases presented in Table II with the detailed analysis
shown in the followings.

C. Quality of Ride-sharing Service

The performance of different prediction approaches is eval-
uated in the quality of ride-sharing services. Here, four metrics
are utilized to indicate the overall performance of the provision
in the proposed ride-sharing scheme, such as entire system
cost, total regulation reward, total ride-sharing cost, and aver-
age unit service time. As shown in Table III, both S1 and S2
obtain the relatively high system costs since they provides the
joint ride-sharing and charging service. In addition, S2 reaches
a bit lower regulation reward in comparison to S4, since S4
only provides CEV dynamic charging services. Considering
the ride-sharing cost, since S2 gains a higher value than S3,
the time consumed for providing such service in S1 is only
marginally higher than S3 for each request. This result also
indicates that S2 leads to effective ride-sharing services in the
city area. Furthermore, compared to S1, S2 succeeds to achieve
near-optimal solutions on overall performance.

D. Effectiveness of V2G regulation service

Then, the performance of different scenarios is evaluated in
the provisioning of the V2G regulation service. The standard

deviation of the profile is used as the evaluation metric, which
is calculated by:

Std(P tot
T ) =

√√√√ 1

|T |
∑
t∈T

(
P tot
t − 1

|T |
(
∑
t∈T

P tot
t )

)2

. (35)

For (35), a better quality of the service is reflected by the
smaller value obtained. Since the standard deviation of the
original regulation power is 3.79× 102 kW , the effectiveness
of the proposed approach is tested for the provisioning of
regulation services at various levels of regulation by multi-
plying the regulation power by 3.5, 7, 8.75, and 10.5 times.
The related result is presented in Table IV. The decrease
of the standard deviation improves the effectiveness of the
proposed system in providing V2G regulation services for S1,
S2, and S4. In addition, S2 incurs a better result in the V2G
coordination by comparing S4 that only involves dynamic
V2G scheduling in the city area. Furthermore, by comparing
with S1, S2 can achieve near-optimal solution.

Then, further simulation is done on the effects of various
scenarios on grid frequency. Here, the grid frequency standard
is set to 50 Hz by following the U.S. standard. Meanwhile, the
regulation power is set to the multiplication of 3.5 times. In
addition, the operational region shall be the tolerance bound
less than 1%, e.g. [49.5, 50.5] Hz, in order to ensure the
system stability. Table V indicates that S1, S2, and S4 can all
achieve the stability criteria since the three results are close.
S3 cannot keep the system stable since it does not provide
V2G regulation services. Therefore, it is intuitive that the high
quality of the services provided can be guaranteed.

E. Cost/Reward Evaluation under Joint Service

Based on the joint service provided in the town of Carolina,
Alabama, the economic benefit associated with various CEV
penetration ratios is further analyzed when the system provides
the joint service. Here, the performance is evaluated when
the regulation power is multiplied by 3.5 times. In real-world
operations, each CEV in the system has its own willingness
to participate the dynamic wireless charging schemes when
providing ride-sharing services. Hence, to assess the eco-
nomical cost/reward of the joint service, five different cases
are considered with 0%, 25%, 50%, 75%, and 100% CEVs
in participating the dynamic wireless scheduling schemes,
respectively. In Fig. 2, as the number of CEVs in participating
both services increases, more system reward is gained and less
system operational cost is achieved, which is around 80.81%
increase on system reward and 43.71% decrease on system
operation cost. In addition, the effectiveness of the devised
algorithm on solving the joint problem can be obviously shown
with high reward and low system operation cost when the ratio
of participated CEVs reaches above 75%.

F. Impact of Different Network Scales and Fleet Sizes

Apart from Carolina city (NV = 26, NE = 56), the
performance in another one large-scale city network is further
assessed, namely, Dodge city (NV = 66, NE = 133). Based
on the configurations in Section V-A, the computation time
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TABLE II
SIMULATION SCENARIOS FOR COMPARISON.

Test case Carolina city Dodge city

Citywise traffic network scale (NV = 26, NE = 56) (NV = 66, NE = 133)
Percentage of CEV fleet penetration 0%, 25%, 50%, 75%, 100% 0%, 25%, 50%, 75%, 100%

PT placement strategy in S2 no, half, full no, half, full

TABLE III
COST/REWARD COMPARISON OF DIFFERENT SCENARIOS IN RIDE-SHARING AND V2G SCHEDULING SCHEME.

Scenarios System cost (US$) Regulation reward (US$) Total ride-sharing cost (US$) Average unit ride-sharing service time (min)

S1 6.53× 103 6.72× 102 7.20× 103 76.30
S2 6.65× 103 6.70× 102 7.34× 103 78.01
S3 4.59× 103 − 4.59× 103 71.4
S4 1.01× 103 1.01× 103 − 0

TABLE IV
STANDARD DEVIATION OF TOTAL POWER PROFILE IN DIFFERENT REGULATION LEVELS

Regulation level

Scenarios σ = 5.05× 101 kW σ = 1.01× 102 kW σ = 1.26× 102 kW σ = 1.51× 102 kW

S1 1.68× 101 kW 5.21× 101 kW 7.69× 101 kW 1.02× 102 kW
S2 1.76× 101 kW 5.38× 101 kW 7.72× 101 kW 1.03× 102 kW
S3 5.05× 101 kW 1.01× 102 kW 1.26× 102 kW 1.51× 102 kW
S4 2.50× 10−3 kW 1.67× 101 kW 3.36× 101 kW 6.08× 101 kW

TABLE V
EFFECT OF CITY SMART GRID FREQUENCY UNDER VARIOUS SCENARIOS

Scenarios Standard deviation (Hz) Mean (Hz)

S1 3.08× 10−1 50
S2 3.93× 10−1 50
S3 1.39× 101 50
S4 3.07× 10−1 50
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Fig. 2. Cost/Reward evaluation under different ratios of participated CEVs.

is utilized as the evaluation metric for this investigation. In
Table VI, it appears that, when traffic network sizes increase,
the computation time increases for S1, S2, and S3. In this
case, more complicated city traffic networks incur more model
constraints. For S4, the computation time does not change
significantly since this method does not involve the ride-
sharing operations among the city road networks. Besides,
S2 achieves a much lower computation time than S1 and S3
because the proposed bi-level joint approach (S2) can greatly
reduce the problem complexity in these two cities.

The impact of different fleet size is further studied on
the performance of the proposed approaches in Carolina city,
which is associated with the scalability of the proposed online
approach. In this part, the system performance of four cases
is evaluated with 10, 20, 50, and 100 CEVs, respectively.
According to the results in Table VII, fleet size expansion
raises the system’s total ride-sharing cost due to increasing
operations involved in more participated CEVs. Besides, the
standard deviation of the active power profile in S2 decreases
with the increasing number of CEVs, which indicates better
performance of the provisioning of the V2G regulation service
in the city with more participated CEVs. Furthermore, the
mean computation time for S1 increases with more CEVs
considered in the traffic networks. The reason is that more
CEVs introduce more dimensional variables to the formulated
problem, which further increase the computational complexity
of the problem. For the mean computation time for S2, it can
be reduced greatly, whereas the feasibility and effectiveness
of the proposed online model under a large quantity of CEVs
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TABLE VI
COMPUTATION TIMES FOR DIFFERENT NETWORK SCALES WITH 20 CEVS.

(V, E) (24, 56) (66, 133)

S1

Mean computation time (s) 33.60 71.06

S2

Mean computation time (s) 8.23 59.99

S3

Mean computation time (s) 112.20 78175.59

S4

Mean computation time (s) 28.72 29.78
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Fig. 3. Effectiveness of V2G Scheduling under different PT placement
strategies.

can be demonstrated.

G. Impact of PT placement strategy

The quality of V2G regulation services under different PT
placement strategies is evaluated. Here, three different cases
are considered in Carolina city, namely, “S2-no PTs”, “S2-half
PTs”, and “S2-full PTs”. The first one case presents that it do
not involve the PT placement in the traffic networks. Different
from this case, “S2-half PTs” denotes that 50% road segments
are embedded with PTs, while “S2-full PTs” indicates that
all roads are installed over PTs. In particular, for “S2-half
PTs”, the random strategy is used for the PT placement.
Note that the length of each PT is 75 meters. Meanwhile,
the regulation power is set to the multiplication of 3.5 times.
Through these settings, the performance of the dynamic V2G
coordination under different PT placement strategies can be
obtained. The result is shown in Fig. 3. Apparently, “S2-full
PTs” can achieve the most flatten active power profile while
“S2-no PTs” performs the worst. For “S2-half PTs”, it can
alleviate most fluctuations of the entire profile. However, the
insufficient installation of PTs installed over the road segments
limits the performance of the dynamic V2G coordination with
the provision of V2G regulation services.
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Fig. 4. Iteration process under Benders cuts in different networks.

H. Convergence Analysis

Last but not least, the convergence of the devised online
bi-level algorithm is assessed, known as Algorithm 1. The
threshold gap of this algorithm is calculated in (34), which
is related to the optimal solutions obtained by S1 and S2.
In this part, the threshold gap is set to 10−4. As shown
in Fig. 4, it can be observed that both curves successfully
achieve optimal values convergence after a certain number
of iterations. Specifically, the case “S2 in Carolina city”
reaches the threshold around 3 iterations while the case “S2
in Dodge city” reaches the equilibrium after around 4 rounds.
As a result, the devised online bi-level algorithm reaches the
optimal values much quicker. Also, the converged optimal
objective values of this algorithm in these two cities are not
equivalent due to the complexity of the problem that is related
to scale of the road networks.

VI. CONCLUSIONS

This paper proposes an online CEV system for joint ride-
sharing and dynamic V2G coordination in smart cities. To
implement the combined operations, the joint problem is
formulated. In order to deal with the forecast uncertainties,
this paper thereby formulates an online scheduling problem,
as well as devising an online distributed algorithm. Meanwhile,
the communication effect is tackled between the interactions
of CEVs and the control center. The case studies show that
the proposed model guarantees the effectiveness of both the
citywise ride-sharing and V2G regulation services via the
reliable vehicular communications. Additionally, the compu-
tational time of the proposed online bi-level algorithm can be
greatly reduced with different network scales. Furthermore,
with the increasing number of CEV fleets, the entire system
operation cost can be significantly reduced around 43.71%,
in which the system reward can be increased by 80.81%.
Meanwhile, the grid stability issue can indeed be alleviated.
In the future, wired charging possibilities will be incorporated
along with the existing wireless ones for CEVs in a city area.
In addition, an incentive mechanism can be applied to motivate
CEVs to participate the system.
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TABLE VII
IMPACT OF DIFFERENT FLEET SIZE OF CEVS IN CAROLINA CITY.

Number of CEVs 10 20 50 100

Total ride-sharing cost (S1) (US$) 3.09× 102 7.20× 103 1.89× 104 3.47× 104

Total ride-sharing cost (S2) (US$) 3.32× 102 7.34× 103 1.66× 104 3.14× 104

Standard deviation of active power profile (S1) (kW ) 7.37× 101 1.68× 101 1.47× 101 1.31× 101

Standard deviation of active power profile (S2) (kW ) 2.52× 101 1.76× 101 2.73× 100 1.45× 100

Mean Computation time (S1) (min) 17.60 33.60 81.60 161.60
Mean Computation time (S2) (min) 6.82 8.23 10.42 15.06
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[26] W. Kempton and J. Tomić, “Vehicle-to-grid power fundamentals: Cal-
culating capacity and net revenue,” Journal of Power Sources, vol. 144,
no. 1, pp. 268 – 279, 2005.

[27] ——, “Vehicle-to-grid power implementation: From stabilizing the grid
to supporting large-scale renewable energy,” Journal of Power Sources,
vol. 144, pp. 280–294, Jun. 2005.

[28] S. Zhang and K.-C. Leung, “Joint optimal power flow routing and
vehicle-to-grid scheduling: Theory and algorithms,” IEEE Transactions
on Intelligent Transportation Systems, vol. 23, no. 1, pp. 499–512, Jan.
2022.

[29] S. Zhang and J. J. Q. Yu, “Electric vehicle dynamic wireless charg-
ing system: Optimal placement and vehicle-to-grid scheduling,” IEEE
Internet of Things Journal, vol. 9, no. 8, pp. 6047–6057, Apr. 2022.

[30] T. Litman, “Introduction to multi-modal transportation planning,” Victo-
ria Transport Policy Institute, Jan. 2011.

[31] K.-F. Chu, A. Y. S. Lam, and V. O. K. Li, “Joint rebalancing and vehicle-
to-grid coordination for autonomous vehicle public transportation sys-
tem,” IEEE Transactions on Intelligent Transportation Systems, 2021.

[32] S. Zhang and K.-C. Leung, “A smart cross-system framework for joint
allocation and scheduling with vehicle-to-grid regulation service,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 6, pp. 6019–6031,
Jun. 2022.

[33] J. J. Q. Yu and A. Y. S. Lam, “Autonomous vehicle logistic system:
Joint routing and charging strategy,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 7, pp. 2175–2187, Jul. 2018.

[34] X. Tang, S. Bi, and Y.-J. A. Zhang, “Distributed routing and charging
scheduling optimization for internet of electric vehicles,” IEEE Internet
of Things Journal, vol. 6, no. 1, pp. 136–148, Feb. 2019.

[35] J. Shi, Y. Gao, W. Wang, N. Yu, and P. A. Ioannou, “Operating electric
vehicle fleet for ride-hailing services with reinforcement learning,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 11, pp.
4822–4834, Nov. 2020.

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2023.3284423

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



13

[36] M. B. Mollah, J. Zhao, D. Niyato, Y. L. Guan, C. Yuen, S. Sun, K.-Y.
Lam, and L. H. Koh, “Blockchain for the internet of vehicles towards
intelligent transportation systems: A survey,” IEEE Internet of Things
Journal, vol. 8, no. 6, pp. 4157–4185, Mar. 2021.

[37] B. Fan, Y. Wu, Z. He, Y. Chen, T. Q. Quek, and C.-Z. Xu, “Digital
twin empowered mobile edge computing for intelligent vehicular lane-
changing,” IEEE Network, vol. 35, no. 6, pp. 194–201, Nov./Dec. 2021.

[38] B. Zhou, K. Zhang, K. W. Chan, C. Li, X. Lu, S. Bu, and X. Gao,
“Optimal coordination of electric vehicles for virtual power plants with
dynamic communication spectrum allocation,” IEEE Transactions on
Industrial Informatics, vol. 17, no. 1, pp. 450–462, Jan. 2021.

[39] J. Dai and D. C. Ludois, “A survey of wireless power transfer and a
critical comparison of inductive and capacitive coupling for small gap
applications,” IEEE Transactions on Power Electronics, vol. 30, no. 11,
pp. 6017–6029, Nov. 2015.

[40] Wireless Power Transfer for Light-Duty Plug-In/Electric Vehicles and
Alignment Methodology, SAE Standard J2954, Nov. 2017.

[41] J. Shin, S. Shin, Y. Kim, S. Ahn, S. Lee, G. Jung, S.-J. Jeon, and D.-H.
Cho, “Design and implementation of shaped magnetic-resonance-based
wireless power transfer system for roadway-powered moving electric
vehicles,” IEEE Transactions on Industrial Electronics, vol. 61, no. 3,
pp. 1179–1192, Mar. 2014.

[42] Q. Dong, D. Niyato, and P. Wang, “Dynamic spectrum access for meter
data transmission in smart grid: Analysis of packet loss,” in 2012 IEEE
Wireless Communications and Networking Conference (WCNC), Apr.
2012.

[43] C. Yang, J. Yao, W. Lou, and S. Xie, “On demand response management
performance optimization for microgrids under imperfect communica-
tion constraints,” IEEE Internet of Things Journal, vol. 4, no. 4, pp.
881–893, Aug. 2017.

[44] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei, “The Benders
decomposition algorithm: A literature review,” European Journal of
Operational Research, vol. 259, no. 3, pp. 801–817, 2017.

[45] A. Izadi, M. Nabipour, and O. Titidezh, “Cost models and cost factors
of road freight transportation: A literature review and model structure,”
Fuzzy Information and Engineering, pp. 1–21, Jan. 2020.

[46] “RTO Regulation Signal Data,” PJM, Jan. 2020. [Online]. Available:
https://www.pjm.com/markets-and-operations/ancillary-services.aspx.

[47] “PJM Regulation Zone Preliminary Billing Data,” PJM, Oct. 2020.
[Online]. Available: https://dataminer2.pjm.com/feed/reg zone prelim
bill/definition.

[48] Nissan. (2014, May). Leaf Specifications [Online]. Available:
http://www.nissanusa.com/electric-cars/leaf/versions-specs/.

[49] Chevrolet. (2018, March). Volt Specifications [Online]. Available:
http://www.chevrolet.com/electric/volt-plug-in-hybrid.

[50] “Day-ahead prices,” Nord Pool, Dec. 2021. [Online]. Available:
https://www.nordpoolgroup.com/en/Market-data1/Dayahead/
Area-Prices/de-lu/hourly/?view=table.

Shiyao Zhang (S’18–M’20) received the B.S. de-
gree (Hons.) in Electrical and Computer Engineering
from Purdue University, West Lafayette, IN, USA,
in 2014, the M. S. degree in Electrical Engineering
(Electric Power) from University of Southern Cal-
ifornia, Los Angeles, CA, USA, in 2016, and the
Ph.D. degree from the University of Hong Kong,
Hong Kong, China. He was a Post-Doctoral Re-
search Fellow with the Academy for Advanced Inter-
disciplinary Studies, Southern University of Science
and Technology from 2020 to 2022. He is currently

a Research Assistant Professor with the Research Institute for Trustworthy
Autonomous Systems, Southern University of Science and Technology. His
research interests include smart cities, intelligent transportation systems,
smart energy systems, optimization theory and algorithms, and deep learning
applications.

James J. Q. Yu (S’11–M’15–SM’20) is an assistant
professor at the Department of Computer Science
and Engineering, Southern University of Science
and Technology, Shenzhen, China, and an honorary
assistant professor at the Department of Electrical
and Electronic Engineering, the University of Hong
Kong. He received the B.Eng. and Ph.D. degree
in electrical and electronic engineering from the
University of Hong Kong, Pokfulam, Hong Kong,
in 2011 and 2015, respectively. He was a post-
doctoral fellow at the University of Hong Kong from

2015 to 2018. His general research interests are in smart city and privacy
computing, deep learning, intelligent transportation systems, and smart energy
systems. His work is now mainly on forecasting and decision making of future
transportation systems and artificial intelligence techniques for industrial
applications. He was listed in the World’s Top 2% Scientists of from 2020 to
2022 by Stanford University, ranked at top 0.32% of all Artificial Intelligence
scholars. He is an Editor of the IET SMART CITIES journal and a Senior
Member of IEEE.

This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TTE.2023.3284423

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.


