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Abstract—Generative Adversarial Network (GAN) and its
variants serve as a perfect representation of the data generation
model, providing researchers with a large amount of high-
quality generated data. They illustrate a promising direction for
research with limited data availability. When GAN learns the
semantic-rich data distribution from a dataset, the density of
the generated distribution tends to concentrate on the training
data. Due to the gradient parameters of the deep neural network
contain the data distribution of the training samples, they can
easily remember the training samples. When GAN is applied to
private or sensitive data, for instance, patient medical records,
as private information may be leakage. To address this issue,
we propose a Privacy-preserving Generative Adversarial Network
(PPGAN) model, in which we achieve differential privacy in
GANs by adding well-designed noise to the gradient during the
model learning procedure. Besides, we introduced the Moments
Accountant strategy in the PPGAN training process to improve
the stability and compatibility of the model by controlling privacy
loss. We also give a mathematical proof of the differential privacy
discriminator. Through extensive case studies of the benchmark
datasets, we demonstrate that PPGAN can generate high-quality
synthetic data while retaining the required data available under
a reasonable privacy budget.

Index Terms—Privacy leakage, GAN, deep learning, differen-
tial privacy, moments accountant.

I. INTRODUCTION

In recent years, researchers have used a large number of
training data to perform data mining tasks, in the field of
medical and health informatics, such as disease prediction
and auxiliary diagnosis. Deep learning models are employed
to remember the characteristics of a large number of training
samples for classification or prediction purposes. However, or-
ganizations such as hospitals and research institutes are paying
more and more attention to the protection of data. Additionally,
the General Data Protection Regulation (GDPR)[1] issued
by the European Union prohibits organizations from sharing
private data. It is increasingly difficult for researchers to obtain
training data unlimited legally.

Fortunately, the generative model provides us with a so-
Iution to the issue of data scarcity [2l], yet data privacy
leakage issues may arise. StyleGAN [3] shown impressive
performance in generating fake face images. In principle, it can
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memorize data distribution from the small amount of training
data, rendering indistinguishable high-quality “fake” samples.
However, for most people, they expect their face data not to
be used as a training sample. GAN can implicitly disclose the
privacy information of training samples. GAN model produces
high-quality “fake” samples through continuous training and
resampling. This training method grants hackers the opportu-
nity to restore the original samples. Therefore, we not only
need high-quality sample generation approaches but also need
to achieve a reasonable level of data privacy [4].

Based on the above findings, we propose a Privacy-
preserving GAN (PPGAN). PPGAN combines with differ-
ential privacy [S] to ensure that the exact training samples
can not be revealed by adversaries from the trained model,
resulting in well-protected data privacy. In particular, we added
well-designed noise to the gradients in the training process in
PPGAN and used the framework of the WGAN [6] model as
the main skeleton of PPGAN. The proposed model does not
suffer from a privacy leakage issue whose proportional to the
volume of data thanks to the introduced average aggregator
that offsets the privacy overhead of large datasets.

We would like to point out our main contributions as
follows:

e We propose the PPGAN framework that can generate
high-quality data points while protecting data privacy.
PPGAN combines noise well-designed in the differential
privacy with training gradients to disturb the distribution
of the original data. Finally, we give a rigorous proof of
the differential privacy discriminator in mathematics.

e We introduced the Moments Accountant strategy that
maintains the boundedness of the function, controls the
privacy level and significantly improves the stability of
the model training.

e We evaluated PPGAN with benchmark datasets. The
results show that PPGAN can generate high-quality data
with adequately protected privacy under a reasonable
privacy budget.

The overall structure of this paper is as follows. First, we intro-
duce the proposed PPGAN framework and its theoretical proof
in Section [lI, We assess the performance of our framework in
Section Finally, this paper is concluded in Section



II. METHODOLOGY

A. Differential Privacy

Differential privacy (DP) [7], [5l, [8] constitutes a solid
standard for privacy guarantee for algorithms on the database.
Then we give the definition of the distance between two
databases x and y as follows:

Definition 1: (Distance Between Databases)

The ¢; norm of a database x is denoted ||x||; and is defined
to be:
IR

llalls =) |l (D
i=1

The ¢; distance between two databases = and y is ||z —y||;. In
particular, when ||z — y||; = 1, « and y are mutually referred
to as neighboring datasets.

Definition 2: ((¢,0)-DP)
A randomized algorithm ¢(-) with domain ®X| is (e, §)-DP
if for all O C Range(¢) and for all d,d’" € ®® (for any
neighbouring datasets) such that ||d — d'|| <1 :

Prip(d) € O] < e Prip(d') € O] + 6 2)

Noted that € stands for privacy budget, which controls the level
of privacy guarantee achieved by mechanism ¢. And when
€ = 00, this case is non-private.

Among the mechanisms for achieving differential privacy,
the two most widely used are the Laplace mechanism and the
Gaussian noise mechanism (GNM) [9]. Due to the combined
properties of the GNM, it is prevalent in many DP protection
models. In PPGAN, we use the GNM because the moments
accountant (detailed in Section[[I-D) provides an improved pri-
vacy boundary analysis and is well-matched to the combined
properties of the GNM. The GNM is defined as follows:

>

o(x) = f(z) + N(O,O‘QSfQ) 3)

where sy is defined as sensitivity, which is only related to

query type f. The sensitivity is defined as follows:
Definition 3: (L, norm-Sensitivity)

We given the neighboring datasets x and 2’ and given a query

[z — Q, the sensitivity of f as follows:

Af = max|f() - F)a @

Noted that it records the largest difference between query
results on datasets x and x’.

According to the algorithm ¢(-) in Definition [2]is stochastic
and is not related to the distribution of the output data.
Moreover, the Gaussian noise mechanism adds a well-design
noise to a single gradient without affecting the entire gradient
aggregation. Therefore, we can use this attribute with GAN
so that GAN can generate high-quality data while satisfying
differential privacy.

B. GAN and WGAN

Generative adversarial network (GAN) [10], [IL1] is a class
of deep neural network architectures comprised of two net-
works, pitting one against the other (thus the “adversarial”).
The objective function of the discriminative model is as
follows:

max E,prllog(D(z)] + Ez~pgllog(l — D(z)]  (5)

The goal of a similar from distinguishing is to prevent
them from real records and the generated ones. The entire
optimization objective function is as follows:

mgn m[z)mx V(G,D) = Eyp,,,. (z) [log(D(z)]

0)
+ E.op.(»[log(1 = D(G(2)))] (
WGAN [6] uses the Wasserstein distance instead of the
Jensen-Shannon distance. Compared with the original GAN,
WGAN'’s parameters are less sensitive and the training process
is smoother. It solves a minimax two-player game that finds
the balance point of each other:

Hgn %une%}[; ExNPdata(gc) [fw (:L')] - Ez~Pz(z) [fw (G(Z))] (7)

C. PPGAN framework

In this section, we present the proposed Privacy-preserving
Generative Adversarial Network (PPGAN) model, which is
detailed in Algorithm [I] and illustrated in Fig.

Algorithm 1 Privacy-preserving Generative Adversarial Net-
work (PPGAN)
Require:
The learning rate: «. The clipping parameter: c. The mini-
batch size: m. The number of discriminator iterations
per generator iteration: ng4. Generator iteration: n4. Noise
scale: o,,.
Ensure:
DP generator 0;
1: Initialize generator parameters and discriminator parame-
ters wy, 6y, respectively.
2: for t; =1,...,n4 do

32 forty=1,...,ng do

4 {z®}m  ~ Py a mini-batch from the real data.

5: {20}ym  ~ p(z) a mini-batch of prior samples.

6: 9o — gomin(1,C/||gull) + N(0,0,°c21) (adding
noise)

7: w + cip(w+ a- SGD(w,g,),—¢, )

8:  end for

9: g5 + gsmin(1,C/|gs]|)
10 O+ 0—a-SGD(6,g9)
11: end for

12: return 0,




Real
Samples

a 9% d -
o o
a9 o
- s o
PR
O noise SHYT

Add noise on
gradients

< Is D Correct?
DP noise A g

Discriminator
Loss

Generator

Discriminator
A

Noisy
Back-propagation

SO

Fig. 1.

D. Privacy Guarantees of PPGAN

To show that PPGAN in Algorithm T]does satisfy the differ-
ential privacy, we prove that the parameters of the generator
guarantee the differential privacy relative to the sample train-
ing point under the condition that the discriminator parameters
satisfy the differential privacy. Therefore, the generated data
from G satisfies the differential privacy, which means that
G does not leakage the privacy of the datasets. Through
moment accountant strategy, we can control the boundary of
Guw (@, 2()) and calculate the final privacy loss. Along with
Definition [2] intuitively, we have the definition of privacy loss
at 7:

Definition 4: (Privacy Loss)

Plé(auz,d) = 7]
Pl¢(aux,d’) = 7]

c(t; ¢, auz, d,d) 2 log 8)
We introduce privacy loss to measure the distribution differ-
ence between two changing data. The privacy loss random
variable is derived from the Definition 2] which is used to
describe the privacy budget of ¢(d). For a given mechanism
¢, we define the v moment B, (v;aux,d,d’) as the log of
the moment generating function evaluated at the value:
Definition 5: (Log moment generating function)

Bo(vs auz, d, d') £ log By gle?C@auedd)]  (9)
Definition 6: (Moments Accountant)
Bg(v) 2 max By (v;auz,d,d") (10)

aux,d,d’

The basic idea behind the moments accountant is to accumu-
late the privacy expenditure by framing the privacy loss as
a random variable and using its moment-generating functions
to understand that variables distribution better. This property
makes the PPGAN model training more stable. The tail bound
can also be applied to privacy guarantee (In [8]]). Since the
moments accountant saves a factor of y/log(n,/9), according
to Definition [2] this is a significant improvement for the large
iteration n.

The following theorem, a proof of which can be found in
[2], [8], [12], allows us to move the burden of differential
privacy to the discriminator; the differential privacy of the
generator will follow by the theorem.

Overview of our Privacy-preserving Generative Adversarial Network (PPGAN) framework.

Theorem 1: (Post-processing)

Let ¢ be an (g, d)-differentially private algorithm and let f :
& — ¢ where & is any arbitrary space. Then f o ¢ meets
(e, d)-differentially private.

Next, we present the mathematical reasoning proof that
the discriminator satisfies the differential privacy. First, we
propose a lemma that PPGAN satisfies the definition of DP.

Lemma 1: Under the definition of GNM and Lo-sensitivity
(in Definition , for any 0 € (0,1), 0 > 7V21n(1':5/6mj , We
have noise Y ~ N (0, 0?) satisfies (g, §)-DP.

Proof 1: We assume that Af is the Ly-sensitivity, and
according to the Definition. [2] then we have:

2

e 20 1 o“€e

|1nw| |2 5 QeAf+(Af)?)] <e .| |_A7f
20

‘ (1)

Let t = “—f — —, if and only if ||z|| < t, the distribution

satisfies DP, and when ||x|| > ¢, we want the probability of
privacy leakage to be less than J, so we have: P(x > t) < %,
where P(-) denotes the probability of revealing privacy. Next,
we prove that the Gaussian distribution function is bounded
above:

z2
Pz > t) e 22dx < fe 202dx
( \/271’0 \V2wo
12
= e 22 (x> t)
\/271'
(12)
Then the problem is converted to:

o _i<5ti> 2 1t+t2>l 2
e 202 —, —€20 —.In — — n
V2t 2o 210’ 202 210

(13)
In—>0
o
— > In——
202 \V2md

For the left two terms of Equation | because ¢ = 0—2; — %,

let 0 = c— then t = co — =L, thus we have:

t A

L f . (15)

o 20 2c
Here € < 1,¢ > 1, then

€ 1
R, — ) > .
In(c 20) > In(c 2) >0 (16)



By Equation (16| we have ¢ > 2. By Equation |15 we have:

2 e?
— — 17
507 =3¢ ~e+ 1) 17
Because e < 1,c > %, we have:
2
9 € 5 8 1
— — > == >2In— 18
et 12 =€ 9 . V2md (15)
2 1 2 1.25
02>1nfeg+21n7,','lnfe% >1.25% ¢ > 2In ——
T 1) T (219)

In the above equations, let 0 = ch, so we have o >

V2in(125/9)A7 25/6 2 n particular, in the SGD algorithm, Gaussian
noise meets the definition of satisfying differential privacy as

long as it satisfies o > 07”:](), where ¢ is the sampling
probability and 7 is the iteration round.l

According to [2l], the conditions for the discriminator to
guarantee differential privacy are given as follows:

= 20 nalog(5)/z

where ¢ is the sampling probability and ng is the number of
iterations of the discriminator in each loop.

Theorem 2: Equation20] represents the relationship between
the noise level o,, and the privacy level e. When we give a
fixed perturbation o, on the gradient, according to Equation20}
we know that the larger the q is, the D gets the fewer privacy
guarantee. Because the D calculates more data, the privacy that
can be allocated on each data point is limited. In addition, due
to the data provides more information, more iterations (ng)
will result in fewer privacy guarantees. The facts described
above require us to be cautious when choosing parameters to
achieve a reasonable level of privacy.

PPGAN modifies the GAN framework to keep differentially
private while relying on Theorem [I]2] and Lemma [I] to change
the differential private GG to train the differentially private D.

(20)

III. EXPERIMENTS

A. Data preprocessing

First, we only use the extracted ICD9 code (The ICD9 code
represents the type of disease, and the range of coding is C' €
[1,1071].) and use the first three digits for encoding. We then
record the patient’s admission to the disease and turn it into
a vector z. For example, patient P was diagnosed with three
diseases at admission, and the disease codes are indicated by
9, 42, 146, respectively. (So the ICD9 code consists of 9, 42
and 146.) We use the vector z to indicate the patient’s access
record, where the vector is at position 9, the 42nd and 146th
bits are set to 1, and the rest are set to 0. Then we aggregate
the patient’s longitudinal record into a single fixed-size vector
x € ZT, where |C| = 1071 for dataset.

B. Relationship between Privacy budget and Generation Per-
formance

In this section, we mainly explore the relationship between
privacy budget and generation performance. Considering the
combined properties data of Gaussian noise, we add Gaus-
sian noise in the process of stochastic gradient descent. Differ-
ent Gaussian noises can produce different levels of privacy. We
input the same set of MNIST image datasets and observe the
output generated samples. In the experiments, org = 5.0x107°
learning rate of discriminator; oy = 5.0 x 1075, learning rate
of generator; moments accountant parameter C' = 1.0 x 1072;
noise scale & = 1.0 x 1075, and the number of iterations
on discriminator ¢4 and generator t, are 5 and 5.0 x 10,
respectively. The experimental results are shown in Fig. [
As shown in Fig. as the privacy budget increases, the
quality of the generated images is getting worse. We add well-
designed noise that disturbs the data point distribution of the
image. Since the noise is randomly added, the distribution of
disturbing data points is not fixed, thus ensuring differential
privacy.
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Fig. 3. Loss of Non-private Case (¢ = co) and Private Case (¢ # 00).

Next, we will focus on the impact of noise on PPGAN’s loss
function during training. The results are shown in Fig. 3|In the
non-private case, we observe the training loss of the first 100
epoch in training. The result indicates that the loss of GAN is
smooth and stable, and no large fluctuations exist in this round
of training. When the loss of the PPGAN with noise starts to
fluctuate at the tail of the curve, PPGAN can still converge.
As can be inspected from Fig. [3] the convergence rate of
PPGAN is acceptable as the compromise of the introduced
privacy preservation capability.

C. Relationship between Privacy budget and High-quality
Datasets

In this section, we quantitatively evaluate the performance
of PPGAN. Specifically, we first compare generated data with
real data based on statistical characteristics. We propose a
Generate score to measure the quality of data generated by
GAN. We proposed Generate score (GS(P;)) to measure the
quality of data generated by PPGAN, which can be formally
defined as follows for Pj:
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Fig. 2. Four differentae values are generated for four different quality pictures on MNIST dataset.(c = 0o, e = 20, = 10,e = 5; § = 1.0 x 107°)

Definition 7: (Generate scores):
IS( ) = eBaxnpg [KL(PM(yI:v)HPM(y))]

1S(Py)—mean(IS(P, (21)
GS(Py) = |t |
where IS(P,

max(IS(Pg)) mm(IS(P )
») 18 Inception score which is measure of the
performance of the GAN.
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Fig. 4. Generate scores of generative data on MNIST.

The experimental result is shown in Fig. ] The generated
data’s (generated by PPGAN) generate score is compared to
the real data of the MNIST dataset with different privacy
budgets. The larger the score value, the better the quality
of the data generated by the generator. The figure shows the
distribution of the generate scores of PPGAN in the case of

= 20,10, 5. It can be seen from the figure that the score
is very close to the real data generated by the WGAN (non-
private case, € = o0.). When € = 20, the PPGAN generate
score is only 0.14 different from the WGAN generate score,
which indicates that the PPGAN generation quality is close to
the WGAN.

To evaluate the performance of PPGAN, we compare three
solutions, namely dp-GAN [6], DPGAN and WGAN
(Non-private Case) in terms of the quality of the generated
data. As can be seen from Fig. [] the data quality generated
by PPGAN is better than dp-GAN and DPGAN.

IV. CONCLUSION

In this paper, we propose the PPGAN model that preserves
the privacy of training data in a differentially private case. PP-
GAN mitigates information leakage by adding well-designed
noise to the gradient during the learning process. We con-
ducted two experiments to show that the proposed algorithm
can converge under the noise and constraints of the training
data and generate high-quality data. Also, our experimental
results verify that PPGAN does not suffer from mode collapse
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Fig. 5. Generate scores of generative data on model PPGAN, DPGAN and
dp-GAN. (6 = 1.0 x 1075)

or gradient disappearance during training, thus maintaining
excellent stability and scalability of model training.
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