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A B S T R A C T

Travel mode identification is among the key problems in transportation research. With the gradual and rapid adoption of GPS-enabled smart devices
in modern society, this task greatly benefits from the massive volume of GPS trajectories generated. However, existing identification approaches
heavily rely on manual annotation of these trajectories with their accurate travel mode information, which is both economically inefficient and
error-prone. In this work, we propose a novel semi-supervised deep ensemble learning approach for travel mode identification to use a minimal
number of annotated data for the task. The proposed approach accepts GPS trajectories of arbitrary lengths and extracts their latent information
with a tailor-made feature engineering process. We devise a new deep neural network architecture to establish the mapping from this latent
information domain to the final travel mode domain. An ensemble is accordingly constructed to develop proxy labels for unannotated data based on
the rare annotated ones so that both types of data contribute to the learning process. Comprehensive case studies are conducted to assess the
performance of the proposed approach, which notably outperforms existing ones with partially-labeled training data. Furthermore, we investigate
its robustness to noisy data and the effectiveness of its constituting components.

1. Introduction

Travel mode information is critical to human mobility analytics, which is a key component of intelligent transportation research
(Adler and Blue, 1998; Zhang et al., 2011). Accurate travel mode data associated with the corresponding trajectory information serve
as the foundation to solve many transport-related problems, e.g., transportation planning, operation, and control, etc. (Scheiner and
Holz-Rau, 2007; Wang, 2010; Wang et al., 2018; Yu and Lam, 2018). Conventional travel mode information was obtained through
rigorously designed travel surveys, which were costly and can only develop small sample sizes (mostly in thousands) (Dabiri et al.,
2019). In the past few decades, advanced data collection methods, especially global positioning system (GPS)-enabled civilian
equipment and smartphone devices, provide system operators with a massive volume of user trajectory data comprised of discrete
GPS records. These trajectories grant the possibility of new transportation applications such as online traffic accident detection and
speed estimation (Perallos et al., 2015). Travel mode data are also enriched by analyzing GPS trajectories via mode identification
techniques, and public domain data sets have been published to facilitate related research (Zheng et al., 2008; Déplacements MTL
Trajet) (see Table 1).

Generally speaking, GPS-enabled devices record the positional information of trips and do not have explicit knowledge on the
current travel mode. Travel mode identification techniques aim to infer travel mode information based on these GPS trajectories. As
firstly proposed by Zheng et al. (2008), typical approaches adopt a two-step data analytic protocol to perform the identification: (1)
feature engineering to create data features with domain knowledge, and (2) supervised learning to construct a machine learning
model for the task. Existing approaches employ hand-crafted data features computed by descriptive statistics of motion and dis-
placement characteristics such as velocity, and frequency domain characteristics such as spectral spread (Zheng et al., 2008; Bolbol
et al., 2014; Wang et al., 2018). With the constructed feature data, a wide variety of machine learning algorithms can be utilized for
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mode classification, including but not limited to decision tree, random forest, support vector machine, and deep neural networks
(Nitsche et al., 2014; Yu, 2020). Despite the limitations of deep learning methods such as lack of explanability and requires a huge
volume of GPS data to function well, the research community is witnessing increasing effort in adopting deep learning techniques in
travel mode identification (Dabiri et al., 2019; Bolbol et al., 2014).

However, there is a significant research gap in contemporary travel mode identification research. A majority of the current work
relies on end-to-end fully-supervised training techniques to handle the task, see (Zheng et al., 2008; Mäenpää et al., 2017; Yu, 2020;
Wang et al., 2018) for some examples. Such learning paradigm requests the training data to provide ground truth travel mode
information together with respective GPS trajectories. While the research community has witnessed public domain data sets with
such information, e.g., GeoLife (Zheng et al., 2008), the volume of travel mode-annotated data is minuscule compared with unlabeled
GPS trajectories of trips (Dabiri et al., 2019). This is due to the nature of these trajectories: GPS devices can automatically generate
GPS records without human assistance, but the corresponding travel mode information can only be provided by the device user.
Hence, acquiring labeled data is more expensive and labor-intensive than auto-generated data.

In the meantime, the massive volume of unlabeled data that are easily accessible can potentially improve the identification
accuracy with their additional latent information if the fully-supervised training limitation can be relaxed, which makes semi-
supervised learning a promising solution to enhance existing travel model identification techniques (Chapelle et al., 2009). By semi-

Table 1
Confusion Matrices of the Proposed Travel Mode Identification Scheme with Selected Tag Rates.

= 1%

Predicted Mode Recall (%)

Walk Bike Bus Car Train

Real Mode Walk 17241 1127 487 307 102 89.5
Bike 1027 10021 331 232 83 85.7
Bus 171 575 13308 1337 435 84.1
Driving 127 367 917 7380 310 81.1
Train 114 263 469 595 5721 79.9

Precision (%) 92.3 81.1 85.8 74.9 86.0 85.1

= 5%

Predicted Mode 2*Recall (%)

Walk Bike Bus Car Train

5*Real Mode Walk 18012 698 301 190 63 93.5
Bike 812 10372 262 183 65 88.7
Bus 149 503 13625 1168 380 86.1
Driving 114 328 820 7562 278 83.1
Train 97 224 399 506 5936 82.9

Precision (%) 93.9 85.5 88.4 78.7 88.3 88.0

= 20%

Predicted Mode 2*Recall (%)

Walk Bike Bus Car Train

5*Real Mode Walk 18016 698 301 190 63 93.5
Bike 668 10606 215 151 54 90.7
Bus 121 409 14036 950 309 88.7
Driving 84 242 606 7962 205 87.5
Train 75 171 306 387 6222 86.9

Precision (%) 95.0 87.5 90.8 82.6 90.8 90.2

Supervised Training

Predicted Mode 2*Recall (%)

Walk Bike Bus Car Train

5*Real Mode Walk 18323 526 227 143 48 95.1
Bike 610 10700 197 138 49 91.5
Bus 109 365 14226 849 276 89.9
Driving 73 210 524 8117 177 89.2
Train 64 146 261 331 6358 88.8

Precision (%) 95.5 89.6 92.2 84.6 92.0 91.6
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supervised learning, only a small portion of trajectories in a data set needs to be annotated, and the learning algorithm can also make
use of the other unlabeled data for training. Recently, a first semi-supervised travel mode identifier based on convolution neural
network and auto-encoder is proposed in (Dabiri et al., 2019). The approach, however, relies heavily on the sample size and density
of labeled data to train the encoder as a supervised classifier. This characteristic hinders the identifier from developing accurate travel
mode information when labeled data is scarce, e.g., 62.9% accuracy given 10% of all trajectories annotated (Dabiri et al., 2019). A new
semi-supervised travel mode identifier is required to fully utilize the unlabeled data.

To bridge the research gap, we propose a novel semi-supervised deep ensemble learning-based travel mode identification ap-
proach. The proposed identifier focuses on producing proxy labels for unlabeled data, which can be used as training targets together
with the original annotated data. While these proxy labels do not reflect the respective ground truth travel modes, they do provide
sample population distribution information for learning. The identifier is formulated based on an ensemble of four long short-term
memory (LSTM) empowered deep neural networks (DNN), which take time domain trajectory attributes and frequency domain
statistics developed by discrete Fourier transform (DFT) and wavelet transform (DWT). The main contributions of this paper are
summarized as follows:

• We propose a new DNN architecture for travel mode identification. The model can be trained end-to-end with supervised learning.
• We propose a proxy-label-based semi-supervised learning algorithm. It utilizes a DNN ensemble to leverage the unlabeled GPS
trajectories.
• We conduct a series of comprehensive case studies to illustrate the performance and investigate the influence of GPS position
accuracy. Empirical studies also reveal the significance of the constituting components in the identifier.

The rest of this paper is organized as follows. Section 2 introduces the background of travel mode identification research. Section
3 presents the new DNN architecture and its associated feature engineering techniques. Section 4 elaborates on the proposed semi-
supervised learning scheme with proxy label and ensemble learning. Section 5 demonstrates a series of case studies to reveal the
efficacy of the proposed identifier. Finally, Section 6 concludes this paper.

2. Background

Travel mode identification is a significant task in human activity recognition and has attracted much research effort (Wang et al.,
2018). The task has been accomplished using various approaches in the literature, which can be generally classified into three
categories: rule-based classifier, machine learning techniques, and discrete choice models (Yazdizadeh et al., in press). Additionally,
multiple data sources are utilized in the identification – GPS trajectory, smartphone sensor data, geographic information system,
socioeconomic attributes to name a few. Wu et al. (2016) summarizes identifiers based on GPS data and Elhoushi et al. (2017)
presents a comprehensive survey on travel mode identification approaches with different data sources. Nonetheless, there are two
notable issues with mode identification with data other than GPS trajectories, i.e., data communication cost and data acquisition
difficulty. According to the survey by Elhoushi et al. (2017), mode identification can achieve the best performance when 20 ac-
celerometer data, 100 gyroscope or barometer data are available. While these data can be easily obtained by contemporary
smartphones, transmitting them to the control center incurs a considerable communication burden. Granted that well trained
identifiers can be distributed to the end-user, executing the identification process may induce significant power consumption. On the
other hand, the construction of accurate geographic information system and socioeconomic attribute database is sometimes difficult
due to regulation reasons or economic concerns, and maintaining them also requires a long-term support. Therefore, this work
focuses on GPS-based travel mode identifiers, and we present recent work empowered by machine learning techniques in this section.

A fundamental requirement of using GPS data for travel mode identification is that the data shall cover a majority of the in-
vestigated region and population, so that the latent characteristics of trajectories can be captured by learning techniques.
Additionally, travel modes cannot be overly biased, otherwise a skewed model may be produced that renders inferior performance on
data with a different mode distribution. In this area of research, Zheng et al. (2008) is among the trailblazers of GPS trajectory-based
travel mode identification. Together with later work Zheng et al. (2008), the authors established the well-recognized segmentation-
identification two-step framework for the task. With domain-specific commonsense information, a trajectory is segmented into
multiple triplegs, each of which is considered to have a unique travel mode. Statistics of each tripleg, e.g., mean and variance of
speed, are employed in several machine learning techniques for mode classification. The result demonstrates the importance of
feature engineering over machine learning choice and advocates the use of both fundamental and advanced data features for better
performance.

Following this line of work, researchers devoted much effort in improving both aspect of the identification task, i.e., feature
engineering and machine learning. To list some recent results on the new data features developed, Dabiri and Heaslip (2018) included
jerk and rate of change in the heading direction of entities – which were shown to be effective through empirical studies – into the
statistical feature set. Mäenpää et al. (2017) discovered that spectral features of entity speed and acceleration greatly boost the system
performance based on statistical tests. Güvensan and Asci (2019) further summarized a list of well-performing frequency-domain
features developed by Fourier transform for the task. Wang et al. (2018) emphasized that other sources of related information, e.g.,
socioeconomic attributes, can also improve the identification accuracy.

On the other hand, contributed by the recent breakthrough in machine learning techniques, especially deep learning approaches,
travel mode identification is notably enhanced due to their excellent latent information extraction capability with sufficient data
(Goodfellow et al., 2016). A wide range of canonical and new machine learning techniques demonstrated their efficacy in handling
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this classification task, e.g., random forest (Wang et al., 2018), multi-layer perceptron (Endo et al., 2016), convolution neural net-
work (Dabiri and Heaslip, 2018), recurrent neural network (Jeyakumar et al., 2018), etc. Nonetheless, all approaches above fall into
the supervised learning category that all training data need to be properly annotated with travel mode information, which is not
practical in the contemporary big data era.

To handle this problem, Dabiri et al. (2019) and Yazdizadeh et al. (2019) independently presented two semi-supervised travel
mode identification approaches based on auto-encoder and generative adversarial network, respectively. In Dabiri et al. (2019), the
proposed model tried to establish a trajectory-to-latent-information mapping so that each trajectory can be expressed with a low-
dimensional latent representation, which is considered as the input data for classification. In this process, both the mapping and the
subsequent classification are learned from the small volume of annotated data. However, this model does not perform well when
annotated data are scarce, as the accuracy of mode classifier cannot be guaranteed by merely training with the available information.
Furthermore, the fixed-length latent representation prohibits the model from analyzing trajectories with varying length, which are
common in general data sets. In Yazdizadeh et al. (2019), both annotated data and synthesized trajectories from random noise are
employed to train a generative model, in which the discriminator is considered as the final classifier. Nonetheless, necessary technical
details are missing from the presentation so that assessing its validity is difficult. The inclusion of an “unsupervised learning loss” in
the training process may also imply a possible data leakage issue. To handle these drawbacks, we propose a new semi-supervised
travel mode identification based on proxy labels and ensemble learning in the following sections.

3. Travel mode identification with deep neural network

In this section, we introduce a new deep neural network-based travel mode identifier. We first present the detailed architecture of
the proposed identifier and then elaborate on the data pre-processing techniques employed in handling GPS records in raw trajec-
tories. Subsequently, the data feature computation and latent information extraction schemes are devised with brief introductions to
related preliminaries.

3.1. System architecture

The data processing flow of the proposed travel mode identifier is depicted in Fig. 1. The identifier takes raw GPS records as data
input and develops corresponding travel modes by a series of processing steps. Specifically, input GPS records are first segmented into
multiple GPS trajectories, each of which belongs to an arbitrary travel mode, and two adjacent ones fall into different modes. While
the time-series GPS records in trajectories already contain sufficient information for the classification, high-level data representations
can be further established with GPS record processing algorithms to expose more relevant data properties. This data processing step
greatly benefits subsequent calculations, i.e., data feature computation by DFT and DWT, and latent information extraction by
stacked LSTM that aim to provide classification basis for the final ensemble learning identifier. The output is considered as a travel
mode inference of the input GPS records, and this completes the identification process.

In this design, the five “blocks” shown in Fig. 1 are the constituting components of the identifier, whose efficacy greatly influences
the system performance. In this work, we follow the previous literature in designing the GPS record processing algorithm that
includes both the segmentation and representation. Subsequently, DFR and DWT are adopted to investigate the global and local
frequency-domain features in the input data, which are shown to be discriminating ones in general signal processing tasks. Ad-
ditionally, a stacked LSTM is constructed to further extract the time-domain data-correlation (latent information) thanks to its
outstanding feature-extraction capability. Finally, all intermediate data are post-processed by an ensemble of three deep neural
networks, which serves as the travel mode identifier.

Fig. 1. Data processing flow of the proposed identifier.
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3.2. GPS record processing

The GPS record processing step comprises trajectory segmentation and data representation processing1 sub-steps, which are
executed sequentially. In particular, GPS records are typically presented in the form of a sequence of GPS points P P P{ , , , }M1 2 of
length M , each of which is defined by =P tlat , lng ,i i i i – a 3-tuple of latitude, longitude, and timestamp. Since each point corre-
sponds to a geographical location, connecting these points constructs a trajectory, and segmentation refers to dividing the trajectory
into multiple triplegs according to various travel modes (Nitsche et al., 2014). Each tripleg contains only GPS points correspond to the
same travel mode, and identifications are performed on the tripleg-level.

In this work, we follow the previous change-point-based segmentation approach in Zheng et al. (2008)) to create triplegs. The
approach is established on assumptions of real-world scenarios, i.e., walk is the transition mode between other modes, and people
must stop when they change travel modes. Consequently, trajectory segmentation is conducted as follows (Zheng et al., 2008):

1. Use a loose maximum velocity and acceleration to identify GPS points in walk mode from others, and construct triplegs for each
group of walk/non-walk mode points.

2. If the number of consecutive GPS points in a tripleg does not exceed a threshold, it is called “uncertain” (Zheng et al., 2008). If the
number of consecutive uncertain triplegs exceeds another threshold, they are merged as a new one. Otherwise, these triplegs are
merged into the tripleg immediately ahead of them.

3. The start and end points of triplegs with walk mode points are considered as mode changing points. They are used to segment the
trajectory.

Additionally, we also employ an interval based segmentation scheme in step 1) above. If the time interval between two con-
secutive GPS points exceeds 1, the tripleg is further segmented between them.

The second step in GPS record processing is data representation processing. While learning directly from GPS point series is
possible, the potential heterogeneous sample interval hinders statistical learning mechanisms from extracting data characteristics
easily (Yu, 2020; Zheng et al., 2008). In addition, the domain knowledge incorporated in advanced data representation can better
help the learning models to focus on distinguishing properties of travel modes instead of common statistical feature extraction tasks
(Yu, 2020). A commonly adopted pre-processing technique is to combine the geographical and temporal information to develop
speed-related data features. Specifically, we employ the speed, acceleration, jerk, and turn rate time-series of each length-N tripleg as
the first set of data representation as follows:

= < =s d t i N s s, 1 ; ;i i i N N 1 (1a)

= < =+a s s t i N a( ) , 1 ; 0;i i i i N1 (1b)

= < =+k a a t i N k( ) , 1 ; 0;i i i i N1 (1c)

= < < = =+r b b t i N r r( ) , 1 ; 0;i i i i N1 1 (1d)

where si, ai, ki, and ri are the speed, acceleration, jerk, and turn rate values, respectively. Symbols di and bi denote the distance and
absolute bearing of the i-th movement in the tripleg, respectively, and = +t t ti i i1 . For better precision, we adopt Vincenty's
formulae (Vincenty, 1975) to calculate the distance of two GPS points, denoted by = + +d Vinc(lat , lng , lat , lng )i i i i i1 1 . Subsequently,
the bearing bi can be constructed considering the true North by Dabiri and Heaslip (2018)

= <+

+
b i Ntan

Vinc(lat , lng , lat , lng )
Vinc(lat , lng , lat , lng )

, 1 ;i
i i i i

i i i i

1 1

1 (1e)

=b b ;N n 1 (1f)

After this representation pre-processing, each GPS tripleg is interpreted with four aligned time sequence motion and displacement
attributes of length N . These data are considered sufficiently descriptive to the motion reflected by the GPS points, and further data
processing and learning are conducted based on them.

3.3. Data feature computation

The previous GPS record pre-processing step segments GPS records into triplegs, which are then interpreted by temporally aligned
motion and displacement attribute vectors. While fundamental domain-specific knowledge of transport is integrated, one may further
refer to signal processing techniques to extract data characteristics within the attribute data. This is especially for travel mode
identification as frequency-domain mapping of tripleg attributes are discriminative with respect to various travel modes, since the
signals are generally repetitive, and specific signal patterns can be established (Yu, 2020; Bolbol et al., 2014).

In this work, two widely-recognized signal decomposition techniques, i.e., discrete Fourier transform (DFT) and discrete wavelet
transform (DWT), are adopted to further extract frequency-domain data features of the tripleg attribute vectors. By DFT, tripleg

1 Data representation processing is also widely named as “pre-processing” in the literature. We refer to these two terms interchangeably in the
sequel.
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attributes are interpreted with discrete frequency components:

=
=

x x e( ) · ,i
k

N

k
j ki N

1

2F
(2)

where xi refers to the input signals, i.e., si, ai, ki, and ri in our case. According to (2), a length-N vector is transformed into another
length-N vector. Despite that subsequent DNN structure can be designed to accept data series, the latent data correlation among data
points in x( )iF is not as strong as in the original attributes. As demonstrated in previous literature, see (Yu et al., 2019; Chen et al.,
2017; Yu et al., 2018) for some examples, statistical features of the spectrum can still summarize the latent information required by
DNN. Therefore, we select the following data features of the frequency-domain representation of tripleg attributes as DFT data
features (Güvensan and Asci, 2019): (1) spectral centroid, (2) spectral spread, (3) spectral flatness, (4) spectral roll-off, (5) spectral
crest, and (6) spectral kurtosis. Consequently, × =4 attributes 6 statistics 24 DFT data features can be developed from the four GPS
tripleg attribute vectors. We use setF to represent these features.

Additionally, DWT is also incorporated to further construct data features. The main purpose of adopting DWT is to overcome the
drawback of DFT, which develops an unstable spectrum when handling temporally non-stationary signals (Evans and McDicken,
2000). Wavelet transform employs discrete wavelets t( )a b, to convolve input signals. With pre-defined mother wavelets t( ); input
signal x t( ) can be interpreted by

= =
+

d x t t dt x t t( ) ( ) ( ), ( ) ,a b a b a b, , , (3a)

where

=t t b a b( ) 1
2 2

, , ,a b a a, (3b)

t( )a b, is the complex conjugate of t( )a b, , a and b are scaling parameters of dilation (oscillatory frequency) and translation (shifted
position) of the discrete wavelet, respectively.

Nonetheless, (3a) is in most cases intractable for continuous or discrete signals x t( ) (Yu et al., 2018; Mallat, 1989). To handle this
problem, Mallet proposed multi-resolution analysis to decompose signals with successive approximation subspaces so that features
that are difficult to be observed in an arbitrary resolution can be discovered in other resolutions (Mallat, 1989). While there are other
approaches to interpret wavelet transform, multi-resolution analysis is widely considered as a standard DWT method. For a signal
x t( ) defined in zero-scale space V0, it is decomposed into approximation subspaces V i{ , }i so that the orthogonal basis of V0 is
obtained by

= ×V V W W W i kand , ,i i i i k1 (4)

where W i{ , }i is the orthogonal complement of Vi in Vi 1. Following this subspace decomposition process, x t( ) is interpreted by
(Mallat, 1989)

=x t x t t t b( ) ( ), ( ) ·2 (2 )
b

M b
M M

,
2

(5a)

+ x t t t b( ), ( ) ·2 (2 )
a

M

b
a b

M a
,

2

(5b)

given a wavelet t( )a b, , where M Nlog2 is the number of decomposition levels, and t( )M b, is a companion scaling function (Mallat,
1989). In this process, each pair of approximation coefficient =a x t t( ), ( )M b M b, , and detail coefficients =d x t t( ), ( )a b a b, , re-
presents a bandpass-filtered signal of the original x t( ). The decomposition can be iterated with aMb being further decomposed in
subsequent iterations.

In GPS trajectory data analysis, we are generally more interested in the trend of trajectory attributes than the details (Yu, 2020).
Therefore, only the approximation coefficients are employed to construct DWT data features. Additionally, we follow the discussion
in Yu et al. (2019) and Chen et al. (2017) and use daubechies (db) and symlets (sym) mother wavelet families to decompose tripleg
attributes. Both families are favored thanks to their robustness to heterogeneous data properties such as signal length and sample size
when sufficient samples are available, which is the case for trajectory analysis. Consequently, eight wavelets, i.e., db1 to db4 and
sym1 to db4, are used to extract the temporal-frequency domain feature of tripleg attribute vectors. Similar to DFT, we also employ a
set of statistical features of the respective approximation signals to represent the tripleg attributes: (1) maximum, (2) minimum, (3)
mean, (4) standard deviation, (5) skewness, (6) kurtosis, (7) energy, and (8) entropy. As a result,

× × =4attributes 8wavelets 8statistics 256 DWT data features can be calculated, which are denoted byW .

3.4. Latent information extraction

In addition to the DFT and DWT feature data, the original tripleg attribute vectors are among the data widely employed in travel
mode identification task in the previous literature, see Mäenpää et al. (2017), Su et al. (2016), Yu (2020), Vu et al. (2016) and
Prelipcean et al. (2017) for some examples. While it is unclear which set of data is the most discriminative in the identification, it is
possible to employ ensemble learning technique to agglomerate all information for final decision making (Goodfellow et al., 2016). In
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this work, we adopt a stacked LSTM DNN with jumping links to extract temporally correlated latent information from attribute
vectors.

There are two major components in the neural network, namely, LSTM and jumping links. LSTM by Hochreiter and Schmidhuber
(1997) is a modern architecture of neural networks, which is among the most commonly adopted data mining techniques. While
canonical neural networks disdain temporal-correlation with in the training data, LSTM learns from such correlation to extract latent
information thanks to the unique design of states that propagates over time. Given a time-series = ×xx { }i i N

F N
1 where F is the

number of features in xi, LSTM maps the input data into an R-dimensional time-series = ×hh { }i i N
R N

1 by the following pro-
pagation rules2:

=h o ctanh( ),t t t (6a)

= + +c f c i h x bwtanh( ·[ , ] ),t t t t c t t c1 1 (6b)

= +f h x bw( ·[ , ] ),t f t t f1 (6c)

= +i h x bw( ·[ , ] ),t i t t i1 (6d)

= +o h x bw( ·[ , ] ),t o t t o1 (6e)

where ft , it , and ot are the activations of forget, input, and output gates, which controls the information retention of previous network
state and new input data, as well as the strength of current network state in the output data of the corresponding time step, re-
spectively (Hochreiter and Schmidhuber, 1997; Goodfellow et al., 2016; Yu and Gu, 2019). Operator defines Hadamard (element-
wise) product, (·) is the sigmoid function, ×w R F matrices are trainable weight parameters, and b R vectors are trainable bias
parameters. Fig. 2 demonstrates the data flow within LSTM. From the figure and (6) it is clear that both the previous LSTM state ct 1
and previous output data ht 1 are incorporated when calculating the t-th time step output. With this latent information flow design,
temporal correlation can be extracted from the input data, which is among the key factors of identifying travel modes (Bolbol et al.,
2014; Prelipcean et al., 2017; Yu et al., 2019). To form a DNN for extracting latent information, six layers of LSTM are stacked. The
first and last layers have 128 output features in each layer, and the remaining four have 256. Note that the first layer takes all tripleg
attribute vectors as input data, rendering the number of input features to be four as illustrated in (1) (see Fig. 3).

A second key component in the neural network is the jumping links inspired by residual networks (He et al., 2016), which are
“bypassing” data flow channels over each of the LSTM layer. Jumping links are included in order to resolve the accuracy saturation
problem of common DNN, and they can greatly help optimization techniques to fine-tune network parameters as the solution space
are smoothened by the additional data flow channel (He et al., 2016). The propagation rule of jumping links is formulated as follows:

= + +
=

h h xw wReLU ,N
l

l
N

l
N

(6)

1

5
( ) ( ) (0)L

(7)

whereL is the LSTM data features extracted, =x xReLU( ) max( , 0) is the rectified linear unit (Hahnloser et al., 2000); hN
l( ) is the last

feature set of h l( ) output by the l-th LSTM layer, and w l( ) is the jumping link trainable weight parameters for the l-th LSTM layer. The
introduction of jumping links effectively improve the system performance as will be demonstrated in Section 5.7.

4. Semi-supervised learning with ensemble

With data features F ,W , andL extracted by data processing techniques, it is possible to construct a fully-connected neural
network (Goodfellow et al., 2016) that takes all features as input and produces a tag indicating the travel mode. The network can be
easily trained end-to-end using categorical cross-entropy loss, and it is a typical solution when trajectory data are all labeled by their
respective travel mode information, see (Yu, 2020; Zheng et al., 2008; Wang et al., 2018) for some examples. Nonetheless, this
solution cannot handle practical cases in which most data are indeed unlabeled. In this work, we propose a semi-supervised learning
scheme for travel mode identification with most trajectories unlabeled. The proposed training method is an implementation of the
multi-view training with proxy label methodology for semi-supervised learning (Blum and Mitchell, 1998; Goldman and Zhou, 2000).

4.1. Ensemble configuration

Multi-view training refers to a type of semi-supervised learning methods which aim to train different learning models with
different “views” of the original data (Xu et al., 2013). The views shall ideally complement each other, leading the corresponding
models to collaborate in improving system performance over individual models. Typical views are constructed by using different data
features and model architectures (Xu et al., 2013). By accepting combinations of { , , }F W L ; multiple DNNs are formulated to
establish an ensemble learning scheme for travel mode identification.

Fig. 3 presents the architecture of the constructed DNNs. In particular, three fully connected layers (Goodfellow et al., 2016) are
appended to a concatenation operation, which takes { , , }F W L , { , }F L , { , }F W , and { , }W L as input features for the four
networks, respectively. While the input features are developed using the same techniques as illustrated in the previous section, each

2We use bold symbols to denote multi-dimensional matrices or tensors in the sequel, and italic symbols are one-dimensional vectors.
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ensemble network exploits the latent information with different hyperparameter configurations. For networks with a number of
features greater than 300 after concatenation, 256 and 64 neurons are employed in the first two ReLU-activated layers of the re-
spective fully connected networks. Otherwise, the number of neurons is halved in these layers. Finally, a third softmax-activated layer
of D neurons are employed to infer the final travel mode index, where D is the total number of travel modes possible.

Fig. 2. Data flow of LSTM propagation rule (6).

Fig. 3. Architecture of the proposed ensemble. “Concat” mean “Concatenation layer” and “FCL” means “Fully-connected layer”.
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In order to distinguish the four DNNs, we name the one that takes all data features “main” network ( 0N ), and the remaining ones
“view” networks ( 1N , 2N , and 3N ). Intuitively speaking, the inference made by the main network shall be more reliable than the
others as more information is provided as input. This characteristic is the basis of training the ensemble in a semi-supervised manner,
which will be introduced next.

4.2. Semi-supervised training

In many real-world trajectory data sets, e.g., GeoLife (Zheng et al., 2008), only a part of the GPS records is labeled by the
respective travel modes. LetD be the complete set of triplegs segmented by the approach introduced in Section 3.2, among which the
ones that have travel mode labels are denoted by subset ¨D O D , and =0D D D . SymbolM represents the respective travel modes of
D . The proposed semi-supervised learning scheme trains the four ensemble networks iteratively by progressively including triplegs
of 0D in D with asserted travel mode developed by the ensemble. Specifically, an initial training set ,S D M is constructed
first, which is adopted to train the four DNNs end-to-end. Categorical cross-entropy is employed as the loss function, and Adam
optimizer by Kingma and Ba (2015) is used to fine-tune network parameters. These models then make predictions on 0D to develop
m i, {0. .3}i for any arbitrary tripleg p with iN ; respectively. Subsequently, p is included inS if and only if one of the following
holds:

1. All three view networks infer the same travel mode, i.e., = =m m m1 2 3 holds, or
2. One of the view networks infers the same travel mode with the main network, i.e., =m m i, {1. .3}i0 .

This ends one iteration of the training. The whole semi-supervised training terminates until none of the predictions on 0D

changes. Algorithm 1 presents the pseudo-code of the training scheme.
The online inference of new triplegs is similar to the training process. If the three view networks generate the same result, this

travel mode is considered as the true mode corresponding to the tripleg. Otherwise, the result developed by the main network is final.

5. Case studies

In this work, we propose a semi-supervised deep ensemble learning scheme for travel mode identification. In order to investigate
its performance, we conduct a series of comprehensive case studies. Specifically, we first compare the proposed scheme with previous
travel mode identifiers in the literature, as well as other machine learning techniques. Additionally, the impact of measurement
uncertainty is evaluated via empirical studies. Subsequently, we investigate the contribution of data features, i.e.,F ,W , andL , on
the system performance. Finally, a hyperparameter test is carried out to illustrate how the DNN architecture should be formed to
achieve the best overall performance.

5.1. Data set and settings

In subsequent case studies, we employ the raw trajectory data from GeoLife project (Zheng et al., 2008a, 2008b) for investigation,
which presents the movement trajectory of 182 users in a period of over five years. In the data set, each trajectory is presented in the
form of a GPS record sequence, and 69 users among all also provide the travel mode of each respective trajectory. We consider these
user-tagged information as ground truth and roughly follow the previous work by Shang et al. (2014) and Yu (2020) to pre-process
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the raw data and assign travel modes. In particular, five ground-based travel modes are considered, i.e., walk, bike, bus, driving, and
train.3 Then the 8120 trajectories of these five modes with more than 20 GPS records are further segmented into smaller triplegs.
Specifically, all trajectories with more than 20 GPS records are divided into triplegs, each of which has 20 records. Then the last two
triplegs are merged into one so that all of them will have at least 20 records. The incentive behind this segmentation is that these
trajectories can sometimes constitute thousands of GPS records, which is far beyond enough for identification. As a result, the data set
is augmented to possess 252,190 triplegs. All subsequent case studies are conducted on these triplegs Fig. 4 presents the distribution
of triplegs and their travel modes.

To adjust the network parameters of the proposed DNN with semi-supervised learning, we randomly partition all 252,190 triplegs
into two data sets by the ratio of 3: 1. The first data set is considered as the training setD whose travel mode tags are used to train the
network, and the other data set is called testing set, whose travel mode tags are employed to evaluate the identification accuracy after
the respective DNN is trained. This configuration is adopted for cross-validation and over-fitness detection, and accords with the
common practice, see Yu et al. (2019) and Yu (2020) for examples. Furthermore, in order to emulated practical scenarios in which
only a portion of trajectories have their travel mode tagged, we consider six training data partition plans with different “tag rates”
where 1%, 2%, 5%, 10%, 20%, and 50% of all triplegs in the training set are included in the initialD . The remaining ones, whose travel
modes are discarded during training, constitutes 0D . In addition, ten random partitions for each tag rate are established for statistical
significance, rendering 60 independent D sets. Last but not least, we also test the performance of the proposed identifier under
supervised learning scenarios by employing the whole training set for parameter tuning. The performance of the proposed travel
mode identifers is evaluated by classification accuracy, precision, and recall metrics.

All case studies are conducted on an nVidia DGX-2 enterprise AI research system equipped with nVidia Tesla V100 GPUs for
parallel computing acceleration. PyTorch (Paszke et al., 2017) is employed in neural network construction for computation accel-
eration.

5.2. Identification accuracy

We first assess the accuracy of travel mode identification. Totally 70 individual neural networks with the architecture depicted in
Fig. 3 are constructed and trained. Among them, the first 60 networks are trained in a semi-supervised manner with the respectiveD
sets created previously according to Algorithm 1, and the last ten are individual models trained with the same complete setD which
demonstrates the performance of the network under supervised learning. The simulation results are summarized in Fig. 5. In the
figure, the identification accuracy with respect to the testing set, 0D (labeled by “training data w/o modes” in the figure),D (labeled
by “training data with modes” in the figure) are presented. Additionally, the last supervise-trained neural network produces an
accuracy performance on the testing data, which is presented in the last bar plot of the figure.

The simulation results indicate that the proposed semi-supervised learning scheme develops satisfactory travel mode identifi-
cation results. While there is slight performance degradation when less tagged samples are employed in training, i.e., reduced rag
rate, the accuracy with only 1% of training data employed can still achieve approximately 85%. Furthermore, the identification
accuracies of training data with and without travel mode tags are similar to their respective testing data performance. The result
demonstrates that the neural network does not suffer from over-fitting issue notably. This is greatly contributed by the jumping link
design of the proposed architecture.

Besides the statistical results summarized in Fig. 5, we also take a closer look into the confusion matrices of selected tag rates in
Table 1. Specifically, the medium-performing results of {1%, 5%, 20%} and fully-supervised training are presented. The bolded
value denotes the overall identification accuracy of all testing samples. The confusion matrices illustrate similar observations with
previous work (Yu et al., 2020; Dabiri and Heaslip, 2018): walking is generally more precisely identified due to the larger number of
training samples, while walk-bike and bus-driving are two pairs of modes that are relatively easily misclassified due to their similar
motion and displacement characteristics.

Furthermore, we are in particular interested in the test cases where the proposed approach failed to develop the correct travel
mode. They can provide guidelines to further improve the quality of future travel mode identifiers. The following observations can be
developed from the mis-identified triplegs:

• Walking is mostly mis-identified as cycling. A majority of these triplegs involves fast-pace walking (greater than 6) along a straight
street. In this work, we take triplegs of 20 GPS records as the input. Increasing this value may lead to more trajectory char-
acteristics for more accurate identification.
• Besides walking, cycling is sometimes classified as bus-driving. This happens most when the bike starts at traffic lights, which
shares very similar speed, acceleration, and turn rate properties with bus-driving. Besides increasing length of the tripleg, we are
yet to find an effective way to correct the problem.
• Bus and car are a pair of commonly mis-identified modes due to their relatively similar movement pattern. This issue can be
potentially resolved by inspecting the stopping time between triplegs. In addition, external lane changing information is another
possible source of data that may contribute to the classification.
• Train is sometimes regarded as car and bus during the gradual acceleration/deceleration process (speed around 60). This issue can

3 In GeoLife, eleven travel modes are tagged in total. In accordance with the literature (Shang et al., 2014; Yu, 2020), we jointly consider taxi and
car as driving, and other transportation modes are discarded, namely, airplane, boat, motorcycle, run, and subway
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be address if transportation network information – especially road and rail networks – can be incorporated.
• There is no significant difference in terms of mis-identification patterns among different levels of tag rates.
Last but not least, the computation time required for training the ensemble and inferring travel modes are recorded. The training

is conducted in parallel mode, i.e., line 2–4 of Algorithm 1 is performed in parallel on different GPUs. When one Tesla V100 is
allocated to each ensemble network, the whole training can be finished within 7.4 (supervised training with all tags) to 9.1 ( = 1%).
As neural network training process is typically conducted offline (Goodfellow et al., 2016), the above training time can be considered
acceptable given that well-tuned networks can be adopted to handle unknown trajectories without further online training. Ad-
ditionally, the average travel mode identification time for the 63,047 testing triplegs is approximately 8.5. The fast online inference
time indicates that the proposed scheme can be applied in online travel mode identification cases where real-time classification
results are readily available.

5.3. Performance on heavily congested urban region

In addition to the analysis on general trajectories as presented in Section 5.2, we are in particular interested in the system
performance when trajectories in heavily congested urban areas are being identified. These trajectories, though generated by dif-
ferent travel modes, may look similar due to the overcrowded traffic condition, rendering mode identification a challenging task. To
test the proposed approach in handling such scenarios, we construct a new subset of GeoLife called GeoLife-Z (Fig. 6) by selecting its
trajectories that fall into the region of Zhongguan Cun in Beijing, which is also known as “Silicon valley of China” and is among the
most congested regions in Beijing. The new dataset is used to test the identification accuracy of previously trained models in Section

Fig. 4. Distribution of GeoLife GPS points, triplegs, and travel modes.

Fig. 5. Travel mode identification accuracy of the proposed scheme.
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5.2 that are trained using GeoLife dataset. In addition, we also train new models with only GeoLife-Z trajectories and investigate if the
training data size and characteristics influence the performance. All other simulation configurations are kept identical to those in
Section 5.2 and the results are presented in Table 2

From the simulation results it is clear that the proposed approach works well for both general urban regions and heavily congested
regions. When directly applying previous trained models to test trajectories in GeoLife-Z, the identification accuracy is hardly un-
dermined: a 0.1% to 0.8% accuracy decrease can be observed across different tag rates. This is mainly contributed by the temporal-
frequency domain feature extraction capability of the proposed solution. For instance, while the trajectories for driving and walking
may share a similar spatial pattern in congested areas, introducing a temporal axis to the 2-D trajectory space is sufficient to
distinguish these two types of travel modes. While driving in such area also leads to slow average driving speed, vehicles are typically
switching between accelerating-decelerating during the course, which is different from a regular pedestrian. Furthermore, the per-
formance on such scenarios can be further improved by adopting specialized training dataset. When training the same deep learning
models using GeoLife-Z dataset, the identification accuracy even surpasses that of the original combination. This is because that the
small GeoLife-Z dataset does not include travel mode “train”, rendering a simplier classification problem. In addition, such a more
specialized dataset may potentially better reveal the distinguishing factors among different modes in congested areas. To conclude,
the proposed scheme works satisfactorily in both general and heavily congested regions (see Fig. 6).

5.4. Comparison with other approaches

Besides investigating the performance of the proposed scheme, it is also of interest to compare the results with other approaches
presented in the literature. Since the proposed scheme can work under both supervised learning and semi-supervised learning sce-
narios, we include the travel mode identification results of approaches in both classes in the comparison. Specifically, we implement a
series of baseline approaches and compare their identification accuracy on various tag rates, including semi-supervised convolutional
autoencoder (SECA) (Dabiri et al., 2019), semi-two-steps (Dabiri et al., 2019), semi-pseudo-label (Dabiri et al., 2019), and generative
adversarial network (GAN) (Yazdizadeh et al., 2019). Additionally, classical machine learning techniques are also adopted in the
comparison, including decision tree (DT)-based heuristic (Zheng et al., 2008), convolution neural network (CNN) (Dabiri and Heaslip,
2018), image-based DNN (Endo et al., 2016), k-NN, support vector machine (SVM), multi-layer perceptron (MLP), random forest (RF)
(Dabiri and Heaslip, 2018), LSTM (Güvensan and Asci, 2019), and CNN ensemble (Yazdizadeh et al., in press). While the second class
of approaches are not designed for semi-supervised learning by nature, we only use labeled data to train these models and investigate
their performance with the same testing set data. The simulation results are summarized in Table 3. In this table, all values in roman
font are developed by our implementations, and those whose accuracy values are provided by the original literature are also pre-
sented in italic for reference. The best performing values are presented in bold, and the standard deviation of the proposed approach
is also demonstrated.

Fig. 6. Trajectories in the new GeoLife-Z dataset.

Table 2
Performance on Heavily Congested Region.

Training Testing Accuracy (%) ± Standard Deviation (%)

= 1% = 2% = 5% = 10% = 20% = 50% Supervised

GeoLife GeoLife ±84.8 0.42 ±86.5 0.45 ±87.7 0.44 ±89.0 0.38 ±90.0 0.41 ±90.8 0.48 ±91.5 0.41
GeoLife GeoLife-Z ±84.5 0.40 ±85.7 0.46 ±87.2 0.40 ±88.7 0.37 ±89.2 0.44 ±89.9 0.41 ±91.4 0.42
GeoLife-Z GeoLife-Z ±86.3 0.41 ±88.0 0.36 ±89.5 0.37 ±89.5 0.40 ±91.0 0.38 ±91.7 0.36 ±92.7 0.42
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From the results, a clear conclusion can be drawn that the proposed scheme can significantly outperform all compared semi-
supervised travel mode identifiers in the literature. The second best-performing approaches, i.e., SECA, still scores more than 17% less
accuracy than the proposed one. This can be credited to the different design principles of these two approaches. While the auto-
encoder design of SECA can exploit the low-dimensional representation of trajectories, frequency-domain features greatly help the
proposed scheme achieve better identification results (Güvensan and Asci, 2019). Additionally, the proposed scheme is also com-
petitive when all travel mode information is available for training, i.e., in supervised learning scenarios. In the comparison, it scores
the third (first if only consider the simulations conducted by us) among all approaches. While the best performing LSTM by GÃ¼-
vensan and Asci (Güvensan and Asci, 2019) significantly outperforms the others, it adopts a different data set (HTC data set (Yu et al.,
2014) whose characteristics may not be similar to those of GeoLife, and the performance significantly deteriorates with GeoLife. The
results also demonstrate the efficacy of the adopted ensemble design, as ensemble-based approaches provide 6.3% accuracy im-
provement based on others (CNN ensemble versus typical CNN). We will further investigate its importance in subsequent tests.

5.5. GPS accuracy

GPS signals are broadcast by satellites in space with a certain accuracy. However, GPS receivers capture the signals subjected to
additional influencing factors, e.g., satellite geometry, atmospheric conditions, and signal blockage, etc (GPS Accuracy). The con-
sequent inaccuracy GPS records may potentially adversely impact the performance of travel mode identifiers. Therefore, we in-
vestigate the influence of GPS accuracy on the proposed scheme with a preliminary case study. In accordance with the GPS horizontal
accuracy statistics recorded in (Global Positioning System (GPS) Standard Positioning Service (SPS) performance analysis report), all
GeoLife GPS records are distorted with Rayleigh distribution with a probability density function =f x e( ; ) x x 22 2. We re-train the
proposed scheme with case study parameters × ×{ } {1%, 10%, 50%, 100%} {0.2, 0.5, 1.0, 2.0, 5.0}. The scale of Rayleigh dis-
tribution, i.e., , determines the overall accuracy of GPS records, where a larger scale denotes a larger GPS error. The statistics
depicted in (Global Positioning System (GPS) Standard Positioning Service (SPS) performance analysis report) shows an approxi-
mately = 0.7 Rayleigh distribution.

The identification accuracy results are summarized in Table 4. From the simulation results, we can observe that GPS record error
does not have a notable influence on the travel mode identification results when the accuracy is above or around the standard level
( 1.0). In the meantime, the performance degradation is noticeable for significantly large GPS error, where the identification
accuracy is decreased by approximately 2%. Nonetheless, when comparing with other approaches as presented in Table 3, the
proposed scheme still provides solid advantages. Additionally, the results indicate that the degradation does not show a clear

Table 3
Comparison of Identification Accuracy.

Approach Accuracy (%) ± Standard Deviation (%)

= 1% = 2% = 5% = 10% = 20% = 50% Supervised

Proposed ±84.8 0.42 ±86.5 0.45 ±87.7 0.44 ±89.0 0.38 ±90.0 0.41 ±90.8 0.48 ±91.5 0.41
SECA (Dabiri et al., 2019) 52.0 54.5 56.1 62.3(62.9) 71.6(69.3) 72.9(73.2) 77.2(76.8)
Semi-two-step (Dabiri et al., 2019) 50.7 51.4 53.0 50.6(54.4) 54.4(56.2) 57.7(58.8) 59.1(60.5)
Semi-pseudo-label (Dabiri et al., 2019) 50.9 53.6 56.0 61.8(58.9) 68.6(66.3) 72.5(70.7) 74.9(75.4)
GAN (Yazdizadeh et al., 2019) 68.4 74.1 77.7 80.5 82.1 83.1 83.8
k-NN 42.1 44.0 51.6 46.9 50.8 54.9 57.9
SVM 51.7 53.3 55.3 41.7 46.0 47.0 53.2
DT 62.1 65.8 66.9 66.1 67.2 67.8 69.4
MLP 38.2 37.9 39.0 27.4 30.9 33.1 35.4
CNN (Dabiri and Heaslip, 2018) 56.3 58.8 61.1 70.5 74.9 83.6 84.3(84.6)
DT-heuristic (Zheng et al., 2008) 52.6 51.8 55.5 63.0 68.7 68.6 74.4(76.2)
Image-DNN (Endo et al., 2016) 45.6 49.2 50.5 55.3 60.3 67.8 67.2(67.9)
RF 50.1 57.7 59.0 64.9 74.4 71.8 77.6(78.1)
LSTM (Güvensan and Asci, 2019) 49.8 50.7 58.2 60.9 70.1 73.5 81.7(96.8)
CNN ensemble (Yazdizadeh et al., in press) 62.0 60.7 64.4 73.7 81.9 83.9 90.6(91.8)

Table 4
Influence of GPS Accuracy.

Rayleigh Accuracy (%)

Scale ( ) = 1% = 10% = 50% Supervised

0.2 84.6 88.9 90.8 91.5
0.5 84.6 89.0 90.8 91.4
1.0 84.5 88.7 90.9 91.3
2.0 84.1 88.3 90.6 91.1
5.0 82.8 86.2 88.0 89.1
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correlation to the volume of available travel mode data ( ). To conclude, the proposed scheme can achieve almost the same per-
formance considering mild and practical GPS measurement uncertainties, and can still provide satisfactory identification results
comparing with others.

5.6. GPS data features

In Section 3 we discussed a data representation processing and two feature engineering techniques, each of which develops
several unique features of input GPS triplegs. While these features are the only input to the ensemble, we are interested in their
contribution to the performance of the proposed scheme. In this case study, selected features are removed from the input to see if a
comparable identification accuracy can be obtained without these features. Specifically, we only utilize two of the four motion and
displacement attributes in Section 3.2, namely, speed and acceleration. Furthermore, we also consider only the spectral centroid,
spread, and flatness of DFT data and maximum, minimum, mean, and standard deviation of DWT approximation coefficients in the
test. These input feature sets are called “Less DFT/DWT features” in contrast to the original “Full” inputs. New neural network models
are constructed adopting the new number of inputs in the first layer, and the same training and testing approach as elaborated in
Section 4 is employed.

The new input feature sets and their respective identification performance are demonstrated in Table 5. A straightforward ob-
servation from the comparison is that all features contribute to the identification, with a clear emphasis on the four motion and
displacement attributes. This can be developed by comparing the accuracy of Sets A–C with that of Sets D–G. The fundamental reason
is that these attributes also serve as the basics of both DFT and DWT according to Fig. 1, thus removing the jerk and turn rate notably
reduces the dimensionality and data characteristics of input data. Additionally, the result implies a higher weighting on the DFT
features than those of DWT. Sets B and F generally performs better than Sets A and E, respectively, and the difference between them is
the removal of either partial DFT or DWT features. To conclude, all data features help the system to identify travel modes. The motion
and displacement attributes are the most critical ones, followed by DFT and DWT features.

5.7. Jumping links and ensemble training method

In this work, we propose four neural networks to construct an ensemble and develop a semi-supervised learning scheme to train them.
Each of the neural networks is supported by a jumping-link-enabled feture engineering neural network backbone. In this sub-section, we
test the efficacy of the proposed semi-supervised training approach for the travel mode identifier and investigate the effectiveness of the
jumping link. While multi-view training inspires the design of proposed training approach, it also has other widely adopted training
approaches, e.g., Co-training (Blum and Mitchell, 1998), Tri-training variants (Zhou and Li, 2005; Søgaard, 2010), etc. Specifically, we
adopt the main network and one of the view networks in Fig. 3 to test co-training, and remove one view network from others to test tri-
training variants. Additionally, architectural variants of the best performing training methods are also re-investigated without the jumping
link in the feature engineering block. All other simulation configurations are kept identical to previous case studies. The results are
summarized in Table 6. It can be observed that the performance difference between the proposed approach and others is notable. In
particular, the proposed approach achieves a 3–4.5% accuracy improvement based on co-training. This is due to that co-training employs
only two learning models to process input data without tags, which may suffer from misclassification more easily. In such cases, wrongly
identified training cases are retained in the training data set, which undermine the system performance. While tri-training variants also
improve the performance, the missing view network still imposes negative influence on the semi-supervised training process, rendering
inferior accuracy than the proposed one. Furthermore, the ablation study w.r.t. the jumping link also demonstrates its importance in
further improving the system performance. When this network feature is removed from the model, both the proposed training method and
the best performing existing one, i.e., tri-training with disagreement, suffer from an approx. 6% accuracy degradation. This is contributed
by the fact that GPS triplegs with different lengths and volumes of latent information may require variable model complexity to be fully
captured. If a network of excessive number of neuron layers is employed to handle relatively simple triplegs, the model potentially focuses
more on the details of them in which sampling noise is a major component. The jumping link effectively skips unnecessary layers for
selective triplegs by adopting identity mapping scheme (He et al., 2016), therefore overcoming the aforementioned issue (see Table 5).

Table 5
Feature Sets and Their Performance.

Set Attributes DFT Features DWT Features Accuracy (%)

si, ai ki , ui Less Full Less Full = 1% = 10% = 50% Supervised

Proposed ✓ ✓ ✓ ✓ 84.8 89.0 90.8 91.5
A ✓ ✓ ✓ ✓ 82.3 86.6 89.1 90.9
B ✓ ✓ ✓ ✓ 83.7 88.1 90.7 91.5
C ✓ ✓ ✓ ✓ 81.3 86.3 89.0 90.5
D ✓ ✓ ✓ 81.7 85.6 87.1 88.0
E ✓ ✓ ✓ 80.6 85.2 83.5 84.9
F ✓ ✓ ✓ 80.2 85.5 86.8 87.1
G ✓ ✓ ✓ 80.5 84.5 83.5 84.8
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6. Conclusions

In this paper, we propose a novel travel mode identifier based on semi-supervised deep ensemble learning. This approach can
utilize the abundant unlabeled human mobility trajectory data to enhance system performance. Specifically, a new DNN architecture
is proposed to employ both the time domain trajectory attributes and frequency domain trajectory statistics for travel mode iden-
tification. Based on the DNN, a neural network ensemble of four networks are constructed to generate proxy labels for unlabeled data,
based on the knowledge of existing but scarce travel mode label information in the data set. These networks collaborate to determine
the credibility of proxy labels, and those reliable are included in the subsequent training process for data augmentation.

To assess the performance of the proposed approach, we conduct a series of case studies based on GeoLife data set. We first
evaluate the accuracy of the generated travel modes with different volume of available information. Comparing with state-of-the-art
approaches for travel mode identification, the proposed one surpasses others with semi-supervised learning tests under all data set
configurations. While not specifically designed for fully-supervised learning, the proposed approach can still develop satisfactory
results with such a learning paradigm. Subsequently, empirical studies indicate that the accuracy of GPS positions does not have a
notable influence on the system performance in practice, and feature sensitivity tests show that all data features employed by the
system contribute to the identification task with different importance. Finally, we conduct a test to demonstrate the efficacy of the
proposed semi-supervised training scheme.
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