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ABSTRACT Traffic speed prediction, as one of the most important topics in Intelligent Transport Systems
(ITS), has been investigated thoroughly in the literature. Nonetheless, traditional methods show their
limitation in coping with complexity and high nonlinearity of traffic data as well as learning spatial-temporal
dependencies. Particularly, they often neglect the dynamics happening to traffic network. Attention-based
models witnessed extensive developments in recent years and have shown its efficacy in a host of fields,
which inspires us to leverage graph-attention-based method to handling traffic network speed prediction. In
this paper, we propose a novel deep learning framework, Spatial-Temporal Graph Attention Networks (ST-
GAT). A graph attention mechanism is adopted to extract the spatial dependencies among road segments.
Additionally, we introduce a LSTM network to extract temporal domain features. Compared with previous
related research, the proposed approach is able to capture dynamic spatial dependencies of traffic networks.
A series of comprehensive case studies on a real-world dataset demonstrate that ST-GAT supersedes existing
state-of-the-art results of traffic speed prediction. Furthermore, outstanding robustness against noise and on
reduced graphs of the proposed model has been demonstrated through the tests.

INDEX TERMS Traffic speed prediction, Graph attention, Deep learning, Intelligent Transportation
System, Spatio-temporal domain feature

I. INTRODUCTION

TRAFFIC, as a canonical topic with regards to livelihood,
never fail to arouse people’s attention. According to

a survey in 2017, the driving population of America had
exceeded 200 million [1]. Under this background, accurate
real-time prediction of traffic conditions is very helpful for
governments and related institutes to develop the Intelligent
Transportation System (ITS) which can grossly improve the
people’s travel experience. Traffic Speed Prediction (TSP), as
a branch of traffic state prediction in the domain of ITS, has
been verified to be useful for many traffic applications such
as route guidance, flow control and navigation [2], [3].

TSP has been investigated for decades and the re-
lated methods can be roughly divided into two categories,
i.e., model-driven approaches and data-driven approaches.
Model-driven approaches handle TSP using computational
simulation combining with various mathematical theories
such as queuing theory [4]. However, the complex simulation
process and impractical assumption usually develop massive

computational consumption and degenerative results on prac-
tical scenarios [5]. In the meantime, the massive acquisition
of traffic data and advanced data processing technologies
make data-driven approaches an outstanding paradigm in
handling the TSP problem [6]. Existing data-driven ap-
proaches can be classified into two main categories: para-
metric and non-parametric models. While classical statistic-
based parametric approaches, e.g., Autoregressive Integrated
Moving Average (ARIMA) and Kalman Filter (KF) have
been widely adopted in the literature [7]–[10], these ap-
proaches fail to handle non-linear traffic data since they
follow a stationary assumption of time-series [11]. To address
this problem, non-parametric machine learning methods such
as K-Nearest Neighbors algorithm (KNN) [12] and Support
Vector Regression (SVR) [13] are used to model the complex
data characteristics considering both high-dimensionality
and non-linearity properties. Non-parametric methods are
capable of automatically learning their model parameters by
capturing the latent information from time-series data and
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remarkable results have been shown in various tasks.
In recent years, the development of deep learning has

enabled an increasing number of researchers to adopt deep
neural networks for high-accuracy traffic prediction [6], [14].
Huang et al. [15] employ a Deep Belief Network (DBN)
to learn effective features for traffic flow prediction in an
unsupervised manner. Jia et al. [16] proposed a DBN and
Multi-layer Perceptron (MLP) hybrid model for speed pre-
diction. Lv et al. [17] apply Stacked Autoencoder (SAE)
to extract traffic features for traffic flow prediction. All of
the aforementioned deep learning approaches achieved good
results. However, they mainly aim at modelling a single
sequence, which is constrained to consider only the time-
series dependencies on traffic networks.

To extract the spatial feature of traffic data, researchers
introduce Convolutional Neural Networks (CNN) into the
traffic prediction tasks. Ma et al. proposed an image-based
method that treats the traffic networks as images and use
CNN to learn the spatial features [18]. Yu et al. [19] have
shown a good result by combining CNN with Long Short-
term Memory (LSTM) network for TSP. Wang et al. in-
troduced an error feedback mechanism in their CNN mod-
els to meet predictive challenges rising from sudden traffic
events [20]. Traditional CNNs are restricted to only process
grid-like spatial structures such as images. However, data
are often sampled in non-Euclidean spaces such as graphs.
To address this issue, Geometric Deep Learning (GDL) is
proposed by [21]. Graph Convolutional Networks (GCN)
is one of its developments that generalize CNN to graph
domains [22], [23]. For traffic data-related problems, GCN
is widely adopted to handle various tasks by treating traffic
networks as graphs that can fully take advantage of spatial
information in traffic [11], [19], [24], [25]. Li et al. [11]
proposed a hybrid GCN-based model that captures the spatial
dependency with random walks on the traffic network and the
temporal dependency with LSTM. Yu et al. [24] proposed a
Spatio-Temporal Graph Convolutional Networks (STGCN)
that employ convolutional structures on both spatial and time
axis. Currently, GCN-based approaches are among the most
advanced techniques in traffic prediction research [26].

Although these models achieved outstanding prediction
accuracy, most of them tend to extract static spatial depen-
dencies in traffic, while these dependencies may evolve over
time [27]. Furthermore, the “black box” nature of current
deep learning models renders them bad interpretability [6]. A
better comprehending of spatial dependencies of traffic net-
works extracted from the models would be useful for traffic
allocation. Besides, previous research devotes little attention
to the noise-tolerance capability of the deep learning traffic
speed predictors, although measurement noise and missing
data usually happen to the process of data collection.

Therefore, in this paper, we propose a novel deep learning
framework, i.e., Spatial-Temporal Graph Attention Networks
(ST-GAT). ST-GAT is a hybrid model integrating a spatial de-
pendency extraction block and a temporal feature extraction
block. The spatial dependency extraction block comprises

a graph attention-based network based on Graph Attention
Network (GAT) [28] to extract the spatial dependencies in
traffic networks. Deep learning models with attention mech-
anisms have been verified to be effective in various graph-
based tasks [28]–[31]. Among them, GAT especially inspires
us since it shows an effective approach to compute the pair-
wise attentional correlations, which would be useful to ex-
ploit spatial dependencies. Additionally, we design a method
to construct time-series speed observations into feature repre-
sentations, called Speed2Vec, to adapt time-series traffic data
to GAT. In the temporal feature extraction block, we employ
a LSTM network to learn time-series feature. Our model is
validated via a real-world dataset, PeMSD7, collected by Cal-
ifornia Department of Transportation. Compared with state-
of-the-art baselines, our model has superior performance on
multiple preset prediction lengths. Additional tests demon-
strate the robustness of the proposed model against noise and
reduced graphs. Moreover, the analyses of the result shed
light on our model’s capability in understanding the spatial-
temporal traffic dependencies.

The main contribution of this paper is as follows:

• We propose a novel deep learning hybrid model, the
spatial-temporal graph attention networks (ST-GAT). To
the best of our knowledge, it is the first time to apply
GAT to extract spatial-temporal features in a traffic
speed prediction study.

• We propose Speed2Vec, an approach for feature rep-
resentation to convert time-series traffic data into the
feature vector for attention computation.

• We conduct a comprehensive performance comparison
in a traffic speed prediction task using a real-word
dataset. The proposed model distinctly outperforms ex-
isting state-of-the-art methods.

• Extensive case studies analyze the performance of the
proposed model, its sensitivity to parameters, general-
ization to simplified graphs, robustness to measurement
noise, and interpretability.

The remainder of this paper is organized as follows. Sec-
tion II formulates the problem of traffic speed forecasting
on the graph, and introduce the mathematical formulation
of GAT and multi-head attention. Section III describes the
structure and main characteristics of the proposed ST-GAT
model. Section IV compares the prediction performance of
the proposed model with other benchmark models based on
the real-world dataset PeMSD7 and presents several sensi-
tivity analyses. Finally, Section V concludes the paper and
discusses future studies.

II. PRELIMINARY
In this section, we first formalize the traffic speed prediction
problem on road graphs. Then, we elaborate on the principle
of GAT as well as multi-head attention mechanism, and they
are closely related to the spatial dependency learning of our
model.
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A. TRAFFIC SPEED FORECASTING PROBLEM ON
ROAD GRAPHS
Traffic speed forecasting is a time-series prediction task
predicting the future traffic speed, given historical traffic
speed observations from sensors at different road segments.
Typically, we can formulate this process by

vt−M+1, ..., vt
f(·)−−→ v̂t+1, ..., v̂t+H , (1)

where vt ∈ Rn is an observation vector of n road segments
(observation stations) at time step t. The traffic speed forcast-
ing model aims to learn a function f (·) to predict the traffic
speed in the following H time steps given the information
from past M time steps.

In this work, we represent the traffic network as an undi-
rected graph with traffic time-series,Gt = (Vt,E ,W ), where
Vt is the set of nodes each of which represents the speed
observation from an arbitrary sensor at time t, E is the
set of edges and W is the adjacency matrix of the graph.
Subsequently, the traffic speed forecasting problem on road
graphs can be represented by

[Vt−M+1, ..., Vt;E ;G]
f(·)−−→ [V̂t+1, ..., V̂t+H ]. (2)

B. GRAPH ATTENTION NETWORK
In this paper, we use GAT to learn the attentions among nodes
and apply them into updating hidden features. It is assumed
that the updated hidden features with attention information
are helpful for further time-series prediction. Therefore, we
will detail the propagation rule of GAT in this subsection.

GAT extends GCN by incorporating an explicit attention
mechanism. Following a self-attention strategy [32], GAT
learns the hidden features of each node by iteratively using
node feature for similarity computation. The key difference
between GAT and GCN is on how to collect and accumulate
the feature representations of neighbor nodes. In GCN, a
standard convolution includes the standardized sum of the
features of adjacent nodes as

hl+1
i = σ

 ∑
j∈N(i)

1

cij
φlhlj

 , (3)

whereN (i) is the set of adjacent nodes which are immediate
neighbors of node i, σ is a non-linear activation function,
cij is a standardized constant based on graph structure, l is
the current layer, φl is the weight matrix for node feature
transformation, hl+1

i is the updated hidden feature of node i.
GAT replaces the above convolution operation in graph

convolution with an attention mechanism. To better illustrate
how the node features of layer l are updated to those of layer
l+1, we first introduce the consitituting component of GAT,
i.e, graph attentional layer. The input to a GAT layer is a set
of node features, hl =

{
hl1, h

l
2, ...h

l
N

}
, hli ∈ RF where N

is the number of nodes and F is the number of features from
each node. To transform the input features into higher-level
features, a shared weight matrix, φ ∈ RF ′×F , is used to cast
the input to another feature space of F ′-dimension. Then,

a self-attention mechanism is defined and shared between
along edges to calculate the attention coefficient of nodes and
their neighbors:

eij = a
(
φhli, φh

l
j

)
, a : RF × RF ′

→ R, (4)

where a (·, ·) is the attention mechanism, eij is the computed
attention coefficient. Note that to retain topological infor-
mation of the graph, only the attention coefficients of the
node and its first-hop neighbors are computed. A softmax
function is used to normalize the attention coefficients into
a easily comparable form. Finally, a Leaky Rectified Linear
Units (LeakyReLU) activation function [33] is applied the
final normalized attention coefficients αij is obtained as

αij = softmax (LeakyReLU (eij)) . (5)

Consequently, these coefficients are employed to update
model features utilizing the GCN convolution rule [22]:

hl+1
i = σ

 ∑
j∈N(i)

αijφ
lhlj

 . (6)

a: Multi-head Attention Mechanism
Multi-head attention mechanism enables the model to learn
an attention coefficient through multiple representation sub-
spaces. In order to make the self-attention learning process
robust, multi-head attention mechanism strategies are usually
adopted [32], [34]. Specifically, take the adopted multi-head
attention mechanism in [28] as an example, K indepen-
dent attention mechanisms perform the above transformation
across in K heads (i.e., K independent attention processes)
and their resulting features are concatenated together to
develop an output feature representation. Subsequently, the
final output is obtained by averaging the concatenation of
feature representation. This process is formally defined as


hl+1
i =

K

‖
K=1

σ

 ∑
j∈N(i)

αK
ijφ

Khlj

 ,Concatenation

hl+1
i = σ

 1

K

K∑
K=1

∑
j∈N(i)

αK
ijφ

Khlj

 ,Averaging

, (7)

III. PROPOSED MODEL
In this paper, we propose a hybrid traffic speed predictor:
ST-GAT. As presented in Fig. 2, ST-GAT comprises a spa-
tial GAT block for spatial correlation extraction, an RNN
block for the temporal feature learning as well as time-series
prediction, and an output layer for producing the sequence
output. Specifically, in the spatial GAT block, we employ the
aforementioned multi-head attention mechanism that enables
the model to jointly learn spatial dependencies through mul-
tiple independent attention blocks to benefit the learning pro-
cess. In the RNN block, we employ a 2-layer LSTM network
for extracting time-series feature. The final predictions are
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FIGURE 1. A graph attentional layer with multi-head attention mechanism,
involving K heads. N denotes the number of nodes connected to node i.

generated by a fully-connected neural network in the final
output layer.

A. GAT FOR CAPTURING SPATIAL DEPENDENCIES IN
TRAFFIC NETWORKS

GAT leverages the node features to compute attention coeffi-
cients that represent the spatial dependency of a graph. There
are some challenges when using GAT to handle traffic data.
First, it is difficult to find proper feature representations of
time-series data, and weak feature representations may lead
to unsatisfactory training result. Second, how to represent the
learned attention coefficients and apply them to update the
hidden feature is crucial to our algorithm. In the following,
we devise new approaches to address these problems.

a: Speed2Vec

In a traffic prediction task, the observed data are recorded
in time-series. To define feasible feature representations
on nodes from such data, we propose a Speed-to-Vector
(Speed2Vec) data embedding mechanism. Specifically, we
consider the speed observations of a node in a fixed historical
window as its hidden feature at a time step and embed them
in a vector as

ht = [vt−F+1, vt−F+2, ..., vt] , (8)

where ht ∈ RF ; t denotes the t-th time frame, and F
is the dimension of the vector, whose physical meaning in
the context is the historical window size. Then, we reshape

the feature representations generated by Speed2Vec as the
network-wide input to spatial GAT block, i.e.,

HN
T =


h11 h12 · · · h1T
h21 h22 · · · h2T
...

...
. . .

...
hN1 hN2 · · · hNT

 , (9)

where HN
T ∈ RT×N×F ; T is the length of temporal se-

quence, andN is the number of nodes in the traffic networks.
It is worth noting that F should be reasonably large to obtain
sufficient temporal features, while an overly large F renders
redundant historical data in feature representation as well as
an increased computational burden. In this work, we set the
F to 12 to ensure that the performance comparison between
our model and other baselines are under the same historical
window size. Additionally, we will examine the sensitivity of
F in Section IV.

Through Speed2Vec, we are able to further compute the
attention coefficients using the equations given in section II.
Furthermore, this mechanism enables our model to directly
utilize the time-series data as the input to GAT. It eliminates
the need of constructing our model into a Sequence to Se-
quence structure [11], [35] which incorporates an additional
sequence encoder, rendering a more complex predicator de-
sign.

b: Attention Adjacency Matrices
The final step of the spatial GAT block is updating hidden
features. To achieve this, we introduce the attention adja-
cency matrix which maps the previously learned attention
coefficients into an adjacency matrix as

Ã =


α11 α12 · · · α1N

α21 α22 α2N

...
. . .

...
αN1 αN2 · · · αNN

 (10)

where α is the attention coefficient, and self-attention is
considered. Considering the temporal sequence, we obtain
a set of attention adjacency matrices over time and a corre-
sponding 3-D variable can be represented by

ÃT =
[
Ã1, Ã2, ..., ÃT

]
, (11)

where ÃT ∈ RT×N×N ; T is the length of temporal se-
quence, andN is the number of nodes in the traffic networks.
In this way, the learned attention coefficients are allowed to
multiply network-wide hidden features (i.e., HN

T ) to calcu-
late the updated hidden features.

Furthermore, the attention adjacency matrix embodies the
design principle of GAT: better interpretability. In previous
work [11], [24], the edge weights are directly computed by
the distance between nodes in the networks. Contributed
by the adopted attention adjacency matrix, we represent the
edge weights by the learned attention coefficients that the
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FIGURE 2. Architechture of spatial-temporal graph attention networks (ST-GAT).

spatial dependency can be intuitively presented. We can also
observe the dynamic spatial dependency by the evolvement
of the attention adjacency matrix. A related case study will
be shown in Section IV.

B. RNN FOR TEMPORAL FEATURES LEARNING AND
PREDICTION
Traffic data also has a distinct temporal dependency in ad-
dition to spatial dependency. Recurrent Neural Networks
(RNNs) are usually leveraged to learn temporal dependency
and realize time-series prediction [11], [19], [36]. In ST-GAT,
we use LSTM, which is one of the most practical variants
of RNNs [37], [38]. LSTM introduces a collection of gating
units and cell states that control the flow of information to
solve the vanishing gradient problem in long-term time-series
prediction. Especially, the cell states are the key to LSTMs
that they store the memory information and pass through all
the time iterations. The gating units have three types, namely,
input gate, forget gate, and output gate, which are used to
decide whether to add or remove information to a cell state.
Given data xt, the cell output state ct and the hidden layer
output ht can be computed by1

it = σ(Wiixt + bii +Whih(t−1) + bhi), (12)
ft = σ(Wifxt + bif +Whfh(t−1) + bhf ), (13)
gt = tanh(Wigxt + big +Whgh(t−1) + bhg), (14)
ot = σ(Wioxt + bio +Whoh(t−1) + bho), (15)
ct = ft ∗ c(t−1) + it ∗ gt, (16)
ht = ot ∗ tanh(ct), (17)

where it, ft, gt, ot are the input, forget, cell, and output gates
values, respectively, Wii, Wif , Wig , Wio, Whi, Whf , Whg ,
Who are the weight matrices connecting xt, h(t−1) to three
gates and the cell input, bii, bif , big , bio, bhi, bhf , bhg , bho are

1With abuse of notation, ht in this subsection exclusively denotes the
hidden layer output of LSTM.
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FIGURE 3. The way of connection between RNN block and spatial GAT block.
v′
t denotes the updated feature representations at time t.

the corresponding biases, σ represents the sigmoid function,
tanh represents the the hyperbolic tangent function, and ∗
represents element-wise multiplication here. To construct ST-
GAT, we connect the RNN block with spatial GAT block as
shown in Fig. 3. Note that for achieving multiple nodes ahead
forecasting the LSTM in our model is generalized to a 3-D
structure.

The last step is to forecast the future H time-step traffic
speed. We employ a fully-connected layer which uses the
output of LSTM as its input for linear transformation to
obtain the final prediction output. Given the input, v̂t+H is
computed by

v̂t+H = w × ht + b, (18)

where w ∈ RC×H is a weight matrix that maps the C-
channels hidden output of LSTMs to H output and b is the
bias.

The proposed model is trained using mean squared error
(MSE), also known as L2 loss, which can be written as

L
(
V̂t+H ; θ

)
=
∑
t

∥∥∥V̂t+H ← (Vt−F+1, ...Vt; θ)− Vt+H

∥∥∥2,
(19)
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where Vt+H and V̂t+H denote the network-wide ground truth
and predictions, respectively; θ represents all the learnable
parameters in the model.

Summarizing the aforementioned, the main characteristics
of ST-GAT are threefold. First, ST-GAT can be regarded as a
generalized model to handle structured time-series benefited
from the Speed2Vec mechanism. It can also be applied to
spatial-temporal tasks not limited to traffic speed prediction
in road networks. Second, by using attention adjacency ma-
trices, ST-GAT can represent the spatial dependencies by
learned attention coefficients among nodes. Third, as a new
attempt, the architecture of the proposed ST-GAT model in
this paper is more simple compared to existing advanced
models, e.g., [11], [27], [39], and it demonstrates a great
potential for further enhancements.

IV. EXPERIMENTS
In this section, a series of comprehensive experiments are
performed to evaluate the performance of the proposed ap-
proach for traffic speed prediction. We first assess its predic-
tion accuracy and compare it with related results of baselines
and benchmarks. Additionally, we investigate the sensitivity
of model performance to different hyperparameters. Then,
we assess its performance on reduced graphs. Furthermore,
we demonstrate the interpretability of the proposed approach
by visualization. Lastly, we inspect the influence of measure-
ment noise and missing data.

A. SYSTEM CONFIGURATION
a: Dataset
PeMSD7 is a dataset collected from Caltrans Performance
Measurement System (PeMS) by over 39,000 sensor stations
in the District 7 of California. Data samples from each 30-
second interval are aggregated into 5-minute periods. We
choose the dataset which is sampled by [24] in a medium-
scale containing 228 stations of PeMSD7. The time period of
the dataset is from May 1st to June 30th of 2012 which only
includes the weekdays to avoid atypical traffic.

As the time interval of data collection is set to 5 minutes,
each sensor in the road network produces 288 observations
per day. When there are missing data points, we use linear
interpolation to recover missing data. Additionally, data are
normalized by Z-Score method. The training, validation, and
testing sets are correspondingly developed, each of which
contains 60%, 20%, and 20% of all data.

In this paper, we build the adjacency matrix of sensors
(nodes) of road network in two ways. First, an adjacency
matrix is generated based on thresholded Gaussian kernel
method replacing the computed weight value by 1. Mean-
while, the self-connection is considered. Thus, the adjacency
matrix W = {wij} is established by

wij =


1, if i 6= j and exp

(
−dist(vi, vj)

σ2

)
> ε

1, if i = j (i.e., self-connection)
0, otherwise.

, (20)

where wij represents the edge weight between node vi and
node vj , which is decided by their Euclidean space distance
dist(vi, vj); ε and σ2 are the user-controlled parameters
that control the density of graph, and we set their values the
same as those in [24] to make a fair comparison. Note that
we define the network as an undirected graph. Therefore,
the initial adjacency matrix is converted symmetrically, i.e.,
wij = wji.

Furthermore, we also develop reduced graphs by only
connecting each node with its K nearest neighbors. In this
way, we attempt to explore the model performance on the
graph with different K values. The related test will be shown
later.

b: Experiment Setting
All experiments are conducted on a NVIDIA GeForce RTX
2080 GPU and an Intel(R) Xeon(R) E5-2620 v4 CPU. The
past time window is 60 minutes (12 observed data points)
and they are used to forecast traffic speed in the next 15, 30
and 45 minutes.

ST-GAT is trained based on the optimizer Adam [40] for
150 epochs. The initial learning rate is 2e−4 with a weight
decay of 5e−4; the batch size is set to 50. The dropout [41]
and early stopping are used to prevent overfitting. In addition,
we employed batch normalization [42] and Xavier parameter
[43] initialization to stable the learning process.

To balance the trade-off between model performance and
computational complexity, the adopted architecture setting
of ST-GAT is specified as follows by executing grid search
strategy. We employ a single graph attentional layer with 8
attention heads to achieve the multi-head attention mecha-
nism. The number of hidden units of the two-layer LSTMs is
set to 32 and 128, respectively.

ST-GAT is compared with the following classic and the
state-of-the-art machine learning models: (1) HA Historical
Average, which models the traffic speed as a seasonal pattern
and uses the average of previous seasons as the prediction; (2)
Auto-Regressive Integrated Moving Average (ARIMA); (3)
Linear Support Victor Regression (LSVR) (4) Feed-Forward
Neural Network (FNN); (5) Full-Connected LSTM (FC-
LSTM) [35]; (6) Diffusion Convolutional Recurrent Neural
Network (DCRNN) [11]; and (7) Spatio-Temporal Graph
Convolutional Networks (STGCN) [24].

We use Root Mean Square Error (RMSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE)
to evaluate all learning models, which are defined as follows

RMSE =

√√√√ 1

n

n∑
i

(
Xi − X̂i

)2
, (21)

MAE =
1

n

n∑
i=1

∣∣∣Xi − X̂i

∣∣∣, (22)

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Xi − X̂i

Xi
× 100%

∣∣∣∣∣, (23)
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where Xi denotes the observed traffic speed at time i, and
X̂i denotes the forecast at i. Moreover, we consider MAPE
as the most referable one among the three metrics, as did in
[19], [44].

B. EXPERIMENT RESULT
a: Comparison with State-of-the-art Methods
Table 1 shows the results of ST-GAT and aforementioned
baselines on dataset PeMSD7 for 15 minutes, 30 minutes
and 45 minutes ahead predictions where the baseline results
are adopted from [24]. We draw the following observa-
tions from the comparison. (1) ST-GAT achieves the best
prediction accuracy regarding all the metrics for the three
forecasting windows with a significance level of 99% (two-
sided T-test, P < 0.01), even compared with the state-of-
the-art graph convolution-based model such as STGCN and
GCGRU. Specifically, the MAPE of ST-GAT outperforms
STGCN by 0.5% (15 min), 0.76% (30 min), and 0.83%
(45 min). This illustrates the effectiveness of the attention
mechanism on graph-based spatial feature learning. (2) Tra-
ditional statistical and machine learning methods have been
greatly outperformed, especially for long-term forecasting.
For example, comparing the results of LSVR and FC-LSTM,
LSVR achieves better performance in 15 min ahead fore-
casting. However, in terms of 45 min ahead forecasting,
it performs worse than FC-LSTM. This is partly due to
their incapability of long-sequence memorization and spatial-
temporal learning on complex data.

b: Sensitivity of Hyperparameters
In this work, a hybrid graph-attention-based recurrent neu-
ral network is adopted. We empirically select a number
of hyperparameters and parameters when constructing this
traffic speed predictor. In this subsection, the sensitivity and
influence of these settings to the prediction accuracy as well
as training speed are investigated.

We test the performance of our model with three architec-
tural hyperparameters, namely, the number of attention heads
in the graph attentional layer, the number of hidden units in
each LSTM layer and the dimension of Speed2Vec. Specif-
ically, these values are set to 2/8/16, 8+32/32+128/64+256,
and 3/6/12/18, respectively, whose default values are pre-
sented in Table 2. 45 min ahead prediction is utilized as the
benchmark test. We first compare their prediction accuracy.
It can be observed that the prediction accuracy is improved
with larger hyperparameters. To better illustrate the conver-
gence rate of the training process, we demonstrate the MSE
convergence in Fig. 4. From this figure, we observe that con-
vergence speed is also enhanced with larger hyperparameters.
Particularly, an obvious increase of training convergence
speed can be observed when the number of attention heads
is added to 8 from 2, which is contributed by the efficacy of
multi-head attention mechanism in ST-GAT.

Furthermore, the larger hyperparameters (e.g., m = 16,
numbers of neurons in the two LSTM layers: 64 and 256)
cannot be simultaneously utilized due to the limitation of the

FIGURE 4. Validation MSE versus the number of training epochs.

hardware in this experiment. Therefore, we finally present the
performance over default hyperparameters as shown in Table
1. Large-scale networks will be investigated in future work.

c: Efficacy of ST-GAT on Reduced Graphs

As mentioned before, in our original work, the traffic network
is constructed by building an adjacency matrix based on the
distances between road segments. Nonetheless, the influence
of distance cannot be reflected since the constructed adja-
cency matrix is unweighted, i.e., the adjacency weights are all
represented by 1 regardless of their actual distance between
nodes in the graph. Furthermore, the graph generated by
this adjacency matrix is so dense that the average degree of
each node reaches 200 when there are 228 nodes in total.
The hypothesis is that the graph incorporates unnecessary
edges that develop redundant topological information, and
the spatial features learned by this cannot help the model
improve its prediction performance effectively. Therefore,
we are particularly interested in investigating the model
performance on reduced graphs which discard this redundant
information.

In this subsection, we compare the performance of the
proposed model on reduced graphs. Specifically, we obtain
reduced graphs by dropping redundant topological connec-
tions among nodes in the graphs. For each node in the
graph, only the adjacencies with K nearest neighbors are
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TABLE 1. Performance comparison of ST-GAT and baselines on the PeMSD7 dataset.

Model 15 min 30 min 45 min
RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)

HA 7.20 4.01 10.61 7.20 4.01 10.61 7.20 4.01 10.61
ARIMA 9.00 5.55 12.92 9.13 5.86 13.94 9.38 6.27 15.20
LSVR 4.55 2.50 5.81 6.67 3.63 8.88 8.28 4.54 11.50
FNN 4.75 2.74 6.38 6.98 4.02 9.72 8.58 5.04 12.38

FC-LSTM 6.20 3.57 8.60 7.03 3.94 9.55 7.51 4.16 10.10
GCGRU 4.21 2.37 5.54 5.96 3.31 8.06 7.13 4.01 9.99
STGCN 4.04 2.25 5.26 5.70 3.03 7.33 6.77 3.57 8.69
ST-GAT 3.45 2.01 4.76 4.68 2.76 6.57 5.30 3.20 7.86

TABLE 2. ST-GAT hyperparameter test. m denotes the number of
multi-heads, LSTM denotes the number of hidden units in each LSTM layer
(1st/2nd), and F denotes the dimension of the Speed2Vec.

Hyperparameter 45 min
RMSE MAE MAPE (%)

m=2 5.55 3.31 8.38
m=8 (default) 5.30 3.20 7.86
m=16 5.22 3.08 7.40
LSTM=8/32 5.38 3.24 7.89
LSTM=32/128 (default) 5.30 3.20 7.86
LSTM=64/256 5.24 3.06 7.38
F=3 5.44 3.28 8.03
F=6 5.37 3.22 7.99
F=12 (default) 5.30 3.20 7.86
F=18 5.20 3.03 7.51

TABLE 3. Accuracy of ST-GAT with measurement noise and missing data

Disturbance 45 min
RMSE MAE MAPE (%)

Noise

Original 5.30 3.20 7.86
0.5% 5.31 3.22 7.87
1% 5.35 3.27 7.94
2% 5.48 3.35 7.99

Missing

Original 5.30 3.20 7.86
0.5% 6.83 3.73 8.15
1% 8.01 3.88 8.49
2% 9.91 4.91 8.64

retained2. A suite of reduced graphs with K equaling to
5/10/20/50/100, respectively, are constructed. Fig. 5 (a)
indicates the total number of edges in each reduced graph
and Fig. 5 (b) shows the comparison of model performance
on the original and reduced graphs. Overall, we observe that
it does cause degenerated performance with the smaller K.
However, the performance degradation is minuscule when
compared to the degree to the reduction of the graph. For
example, when K = 20, namely approximately 90% of
the edges in the graph are discarded compared with the
original graph, the model performance is still quite close
to that on the original graph where the prediction accuracy
only suffers from a 0.2 − 0.7% (MAPE) penalty. This case
study demonstrates the effectiveness of the proposed model
on reduced graphs, which develop good prediction results
with relatively less graph information.

It is also worth noting that we observe that the reduced

2With abuse of notation, K in this subsection exclusively denotes the
number of connected nodes of each node in a reduced graph.

26089

13429

6873

2669
1463 794

(a)

(b)

FIGURE 5. (a) The total number of edges in each reduced graph. (b) Model
performance on reduced graphs. K corresponds to the number of the nearest
neighbors to connect for each node to generate the graph.

graphs seem to have a greater effect on the model perfor-
mance of short-term prediction than long-term prediction.
Comparing the performance of the model on the graph (K =
5) and the original graph, the penalties of the performance are
1.7%/0.4%/0.3% corresponding to 15 min/30 min/45 min,
respectively. This phenomenon will be further investigated in
future work.

d: Model Interpretation
Traditional methods such as ARIMA, FC-LSTM are not
able to exploit spatial dependency. However, by employing
the attention mechanism on traffic networks, our model ST-
GAT has the compatibility to extract spatial feature from
new traffic data. To better understand the model interpreta-
tion, we first visualize the learned attention coefficients and
conduct an empirical study. Fig. 6 shows the heatmaps of
learned attention coefficients of three sensor stations (each
for one road segment) and their arbitrary five neighbors,
respectively, which are sampled from PeMSD7 dataset. In
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FIGURE 6. Heatmaps of learned attention coefficients varied over time and different neighbors. Three different road segment sensors are included.

FIGURE 7. Left: Two stations located in the upstream and downstream of the
same road. Right: Two stations located on different roads which are without
intersection.

FIGURE 8. Traffic speed forecasting in a day of the dataset PeMSD7. The
results of ST-GAT and STGCN are conducted by one hour ahead forecasting.

this figure, the value of attention coefficients can be regarded
as the degree of correlations of any two road segments. We
can observe that the attention coefficients vary for different
neighbors, which suggests the discrepancy of correlations
between one road segment and its multiple neighbors. Further
investigation indicates some factors affecting the attention
coefficients. For example, the attention coefficients between
Station C and its Neighbor 5 are relatively large since the
two stations are located at the upstream and downstream
of the same road as shown in Fig. 7 (left). However, for
Station B and its Neighbor 2, their attention coefficients are
relatively small since they are located in different roads while
they have a close spatial distance as shown in Fig. 7 (right).

Moreover, the learned attention coefficients are not fixed
but varied in time. For Station A, the attention coefficients
with its neighbors at 06:00 in the morning are distinctly
larger than those at other times. It can be concluded that
spatial dependencies change when traffic status changes over
time. In other words, it demonstrates that our model is able
to extract dynamic spatial dependencies. In summary, we
can intuitively perceive the traffic spatial dependency among
these adjacent road segments by learned attentions.

To further demonstrate the effect of graph attention on
spatial-temporal feature learning, we compare the prediction
performance of our model and the state-of-the-art graph
convolution-based method STGCN through showing their
one hour ahead forecasting. As shown in Fig. 8, we ob-
serve the following phenomena: (1) In general, ST-GAT is
more likely to accurately predict the traffic speed value with
smaller deviation. A relatively better imitative effect can be
observed from the figure. (2) ST-GAT predicts the start and
end of the peak hours more accurately (e.g. 15:00 to 21:00).
Benefited from the attention mechanism, ST-GAT predictions
of each sensor station are more sensitive to speed changes
of its neighborhoods. (3) ST-GAT develops predictions with
small oscillation in non-peak periods (e.g. 00:00 to 06:00).
Comparatively, the oscillation happens to STGCN is more
violent in this period. By incorporating LSTM, our model
achieves promising temporal feature learning and develops
notable long-term prediction accuracy.

e: Influence of Missing Data and Measurement Noise
Incomplete data coverage and measurement noise usually
happen to traffic data collection on account of limited device
deployment, failure of involved sensors, and data transmis-
sion errors. According to [45], in the data collection process,
the missing rate of raw data can be as high as 15%. Both
the measurement noise and missing data introduce unknown
influence to speed prediction. Therefore, we are interested
in how these two factors influence the performance of the
proposed model.

First, we investigate the influence of measurement noise
on model performance. In this work, noise is sampled from
a Gaussian distribution for each observation value. Specifi-
cally, according to IEEE Standard [46], we select the Gaus-
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sian distributions with variances which are 0.5%/1%/2% of
the mean values of data. The final noisy data are generated by
imposing the sampled noise on the observation values. New
learning models are trained and tested individually using the
generated noisy data. Table 3 demonstrates the performance
of our model on noisy data. The prediction accuracy only
degenerates by a 0.03% (MAPE) when data are disturbed
by 2% Gaussian noise. Second, we investigate the tolerance
of our model to missing data. We construct datasets incor-
porating 0.5%/1%/2% missing data by randomly selecting
0.5%/1%/2% observations and replace their values by 0.
Similarly, we independently train and test the new model
with the generated datasets. Nonetheless, as shown in Table
3, noticeable performance degradation is observed: a 0.3%
(MAPE) penalty is developed when only 0.5% data is miss-
ing.

This test demonstrates the robustness of our model on
noisy data, which is greatly contributed by the noise-
tolerance capability of the deep learning model incorporated.
However, the under-performing against missing data expose
the deficiency of the proposed model, which may suggest
the significance of data integrity to the graph-based attention
mechanism. We aim to address this drawback in future work.

V. CONCLUSION AND FUTURE WORK
In this paper, inspired by the research findings of applying
attention mechanism on graphs, we propose a novel graph-
based deep learning framework ST-GAT for traffic speed
forecasting. This model integrates the graph attention net-
work (GAT) and recurrent neural network to jointly learn
spatial-temporal dependencies on traffic networks. Specifi-
cally, we utilize the attentional graph convolution of GAT
on spatial feature learning and regard the learned attention
coefficients as the spatial dependency. A LSTM network is
integrated to capture the temporal dynamics and improve
the performance for relatively long-term forecasting. This
framework inherits the advantages of both GAT and LSTM.
Experiments on a real-world dataset show that the proposed
framework supersedes existing state-of-the-art methods in
the literature, which indicates the data potential of graph-
based attention mechanism on spatial-temporal learning. In
addition, the proposed model develops notable performance
on simplified graphs as well as noisy data, which demon-
strates its scalability and robustness. These advantages will
be practical for both industrial use and scientific research.

In the future, we plan to integrate additional factors such
as the road directions, traffic control, and the weather into the
prediction to further improve the performance. Additionally,
new technologies to enhance the capability of addressing
missing raw data will be incorporated.

REFERENCES
[1] I.Wagner, “Car drivers - statistics and facts.” https://www.statista.com/

topics/1197/car-drivers/. Accessed July 4, 2019.
[2] M. Veres and M. Moussa, “Deep learning for intelligent transportation

systems: A survey of emerging trends,” IEEE Transactions on Intelligent
Transportation Systems, 2019, in press.

[3] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-
driven intelligent transportation systems: A survey,” IEEE Transactions on
Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–1639, 2011.

[4] E. Cascetta, Transportation systems engineering: theory and methods,
vol. 49. Springer Science & Business Media, 2013.

[5] M. Ben-Akiva, M. Bierlaire, H. Koutsopoulos, and R. Mishalani, “Dyna-
mit: a simulation-based system for traffic prediction,” in DACCORD Short
Term Forecasting Workshop, pp. 1–12, Delft, The Netherlands, 1998.

[6] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. H. Lee, “Enhancing transporta-
tion systems via deep learning: a survey,” Transportation research part C:
emerging technologies, vol. 99, pp. 144–163.

[7] X. Li, G. Pan, Z. Wu, G. Qi, S. Li, D. Zhang, W. Zhang, and Z. Wang,
“Prediction of urban human mobility using large-scale taxi traces and its
applications,” Frontiers of Computer Science, vol. 6, no. 1, pp. 111–121,
2012.

[8] L. Moreira-Matias, J. Gama, M. Ferreira, J. Mendes-Moreira, and
L. Damas, “Predicting taxi–passenger demand using streaming data,”
IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 3,
pp. 1393–1402, 2013.

[9] S. H. Hosseini, B. Moshiri, A. Rahimi-Kian, and B. N. Araabi, “Short-
term traffic flow forecasting by mutual information and artificial neural
networks,” in 2012 IEEE International Conference on Industrial Technol-
ogy, pp. 1136–1141, 2012.

[10] J. Guo, W. Huang, and B. M. Williams, “Adaptive kalman filter ap-
proach for stochastic short-term traffic flow rate prediction and uncertainty
quantification,” Transportation Research Part C: Emerging Technologies,
vol. 43, pp. 50–64, 2014.

[11] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Diffusion convolutional re-
current neural network: Data-driven traffic forecasting,” arXiv preprint
arXiv:1707.01926, 2017.

[12] H. Chang, Y. Lee, B. Yoon, and S. Baek, “Dynamic near-term traffic
flow prediction: system-oriented approach based on past experiences,” IET
intelligent transport systems, vol. 6, no. 3, pp. 292–305, 2012.

[13] M. Castro-Neto, Y.-S. Jeong, M.-K. Jeong, and L. D. Han, “Online-svr
for short-term traffic flow prediction under typical and atypical traffic
conditions,” Expert systems with applications, vol. 36, no. 3, pp. 6164–
6173, 2009.

[14] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[15] W. Huang, G. Song, H. Hong, and K. Xie, “Deep architecture for
traffic flow prediction: deep belief networks with multitask learning,”
IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 5,
pp. 2191–2201, 2014.

[16] Y. Jia, J. Wu, and Y. Du, “Traffic speed prediction using deep learning
method,” in 2016 IEEE 19th International Conference on Intelligent Trans-
portation Systems (ITSC), pp. 1217–1222, 2016.

[17] Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction
with big data: a deep learning approach,” IEEE Transactions on Intelligent
Transportation Systems, vol. 16, no. 2, pp. 865–873, 2014.

[18] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning traffic as
images: a deep convolutional neural network for large-scale transportation
network speed prediction,” Sensors, vol. 17, no. 4, p. 818, Apr. 2017.

[19] H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma, “Spatiotemporal recurrent
convolutional networks for traffic prediction in transportation networks,”
Sensors, vol. 17, no. 7, p. 1501, Jun. 2017.

[20] J. Wang, Q. Gu, J. Wu, G. Liu, and Z. Xiong, “Traffic speed prediction
and congestion source exploration: A deep learning method,” in 2016
IEEE 16th International Conference on Data Mining (ICDM), pp. 499–
508, 2016.

[21] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst,
“Geometric deep learning: going beyond euclidean data,” IEEE Signal
Processing Magazine, vol. 34, no. 4, pp. 18–42, 2017.

[22] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.

[23] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” arXiv preprint arXiv:1312.6203,
2013.

[24] B. Yu, H. Yin, and Z. Zhu, “Spatio-temporal graph convolutional net-
works: A deep learning framework for traffic forecasting,” arXiv preprint
arXiv:1709.04875, 2017.

[25] Y. Li, R. Yu, C. Shahabi, and Y. Liu, “Graph convolutional recur-
rent neural network: Data-driven traffic forecasting,” arXiv preprint
arXiv:1707.01926, 2017.

10 VOLUME X, 2019



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2019.2953888, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

[26] G. Li, M. Müller, A. Thabet, and B. Ghanem, “Can gcns go as deep as
cnns?,” arXiv preprint arXiv:1904.03751, 2019.

[27] L. N. Do, H. L. Vu, B. Q. Vo, Z. Liu, and D. Phung, “An effective
spatial-temporal attention based neural network for traffic flow prediction,”
Transportation Research Part C: Emerging Technologies, vol. 108, pp. 12–
28, 2019.
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