TINet: Multi-dimensional Traffic Data
Imputation via Transformer Network

Xiaozhuang Song, Yongchao Ye, and James J. Q. Yu*

Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation,
Department of Computer Science and Engineering,
Southern University of Science and Technology, Shenzhen 518055, China
119303760mail.sustech.edu.cn

Abstract. Missing traffic data problem has a significant negative im-
pact for data-driven applications in Intelligent Transportation Systems
(ITS). However, existing models mainly focus on the imputation results
under Missing Completely At Random (MCAR) task, and there is a
considerable difference between MCAR with the situation encountered
in real life. Furthermore, some existing state-of-the-art models can be
vulnerable when dealing with other imputation tasks like block miss im-
putation. In this paper, we propose a novel deep learning model TINet for
missing traffic data imputation problems. TINet uses the self-attention
mechanism to dynamically adjust the weight for each entries in the input
data. This architecture effectively avoids the limitation of the Fully Con-
nected Network (FCN). Furthermore, TINet uses multi-dimensional em-
bedding for representing data’s spatial-temporal positional information,
which alleviates the computation and memory requirements of attention-
based model for multi-dimentional data. We evaluate TINet with other
baselines on two real-world datasets. Different from the previous work
that only employs MCAR for testing, our experiment also tested the
performance of models on the Block Miss At Random (BMAR) tasks.
The results show that TINet outperforms baseline imputation models for
both MCAR and BMAR tasks with different missing rates.

Keywords: Data Mining - Attention Network - Data Imputation

1 Introduction

In recent years, models based on deep neural networks have been proposed and
applied to solve traffic data-related problems, such as traffic prediction, traffic
planning, and traffic simulation [19]. These deep learning methods are mostly
built on sufficient and reliable historical traffic data, which is the fundamen-
tal basis of the modern Intelligent Transportation Systems (ITS). However, it

* This work is supported by the Stable Support Plan Program of Shenzhen Natural
Science Fund No. 20200925155105002, by the General Program of Guangdong Basic
and Applied Basic Research Foundation No. 2019A1515011032, and by the Guang-
dong Provincial Key Laboratory (Grant No. 2020B121201001). James J.Q. Yu is the
corresponding author.

2 X. Song et al.

is found that the traffic data collection process suffers from information loss or
anomaly collection by various factors, and a large amount of data might be miss-
ing due to device failure in severe cases [1]. Rather than a high-quality dataset
with available data, researchers obtain partially missing data or even sparse data
most time. For instance, [15] found that nearly 50% of traffic data was missing
in the past seven years at Alberta in Canada. Texas Transportation Institute
(TTI) pointed out that their traffic management system had 16% — —93% in-
complete data [12]. This makes deep learning models trained on ideal traffic
data fragile in the practical application, as deep learning models may experience
severe performance degradation when the data is corrupted [10]. Thus, building
a robust and reliable traffic data imputation method is of great importance for
the data-driven models [19].

In the past decades, a number of methods have been proposed to tackle
the missing traffic data problem. Two of the most outstanding models among
them are Bayesian Gaussian CANDECOMP/PARAFA factorization (BGCP)
[2] and Stacked Autoencoder (SAE) [16]. BGCP considers the data imputation
problem from the low-rank matrix approximation perspective. However, as it
relies heavily on dimensional information, it meets a critical performance decline
when the misses appear in random blocks or it needs to impute data with high
missing rate. SAE learns to impute from the historical data, which makes it
effective in solving the problems encountered by BGCP. However, the design of
SAE’s fully connected structure is not sufficiently flexible. Fixed-weight layers
learn data blindly and require deeper network layers and more parameters to
learn about the all the possible missing scenarios.

To tackle the problems listed above, in this work, we propose TINet, a novel
missing traffic data imputation framework based on the Transformer structure
[13]. The main contribution of our work can be listed as follows:

1. To the best of our knowledge, this is the first work that adopts a Transformer-
based deep learning framework to study the problem of missing traffic data
imputation. The results show that our model outperforms other baselines.

2. We propose a multi-dimensional embedding representation for the discrete
attributes for traffic data, with the spatial embedding learned from a ran-
dom walk-based graph embedding and the temporal embedding learned from
embedding layers.

3. We conduct comprehensive experiments on two real-world datasets to com-
pare TINet with baseline models and give a detailed analysis of experimental
results.

2 Related Work

Missing traffic data imputation methods have been researched for decades. The
mainstream of traffic data imputation methods can be divided into two cate-
gories: (1) Tensor completion models, (2) Data-driven models. Tensor comple-
tion models is proposed base on the low-rank property of traffic data, and mod-
els built based on the CANDECOMP /PARAFA (CP) decomposition method is

TINet: Multi-dimensional Traffic Data Imputation via Transformer Network 3

among the most representative models for its imputation performance. [3] intro-
duces the idea of tensor completion into traffic data with a Bayesian Gaussian
CANDECOMP/PARAFA (BGCP) model, while [4] proposes a Bayesian Prob-
abilistic Matrix Factorization (BPMF) method for traffic data imputation and
traffic forecasting. Both these two models perform well under the Missing Com-
pletely At Random (MCAR) imputation task. However, it shows a significant
performance drop when handling the block missing task. We will discuss this in
detail in Section 5.

Data-driven approaches largely tackle the above problems for their scal-
able learning process and use more parameters to capture the data correlation.
Stacked Autoencoder (SAE) [16] builds a deep autoencoder structure with a
fully connected Network. GAIN [17] uses a generative adversarial training style
to generate missing data with the available data. However, GAIN has poor gener-
alizing ability as it trains and tests its model on the same dataset, which causes a
severe overfitting problem. Transformer [13] is the current state-of-the-art model
for dealing with sequence data in the field of natural language processing. Trans-
former and its conceptual progeny have topped many benchmark leaderboards
in sequence data learning tasks [13]. A Transformer network uses self-attention
mechanism to dynamically adjust the weight of input data, and it uses residual
connections, layer normalization for better performance [13]. One of the most
outstanding Transformer-based work is BERT [6]. It pre-trains the model with
massive existing data and two subtasks, Masked Language Model and Next Sen-
tence Prediction, which requires the model to predict the words it masks and
the next sentence, respectively. The success of Transformer, especially BERT,
shows the great potential of self-attention-based structure in sequence data. In
this work, we will introduce how to apply the Transformer structure network to
traffic data.

3 Preliminaries

In this section, we elaborate on the preliminaries to the missing traffic data
problems. The problem formulation and introductions to the investigated missing
types are presented as follows.

3.1 Problem formulation

In this work, we treat traffic data as a sequence data D = {x1,zo,- -+ ,z,}, with
each value in the sequence representing its traffic speed value. Two adjacent data
in the sequence have a fixed interval of s minutes, and ¢; represents the time of
z;. Each sequence has a corresponding day of week wdp and a corresponding
traffic node v;. We denote the sequence with missing data with D, and value
in D, D with x;, T;, respectively. To simulate the missing data, we introduce a
mask tensor M = {my,ma, - ,m,} with its value m; € {0,1}. Therefore, we
can get the sequence D with Z; = x; x m;. Given D and 13, we aim to find a

4 X. Song et al.

=
3
@

(1) 2dfy yywea *

Node, T~ BMARtype (2 T

(a) MCAR expample. (b) BMAR example.

Fig. 1. Visualization example for different missing types. Gray cells refer to missing
values, while the white ones are available. For MCAR, missing values appear randomly.
For BMAR, missing values appear in block as introduced in Section 3.2

model f to learn the objective:

where 6 is the parameters of f.

3.2 Missing Types

Missing data have different types. In our study, we mainly study the following
two missing types: MCAR : The data is missing completely at random; BMAR
: The data is missing completely at random and appears as blocks. In our exper-
iments, the block missing appears randomly as one of the following types: (1)
One or multiple nodes lost their data at arbitrary time. (2) All day data are lost
for particular nodes. The visualization examples of MCAR and BMAR can be
seen from Figure 1.

4 TINet

In this section we describe the architecture of our proposed model TINet. Figure
2 depicts the overall architecture.

4.1 Model Architecture

TINet is mainly composed of Transformer modules, where a Transformer module
comprises two sub-layers: a Multi-Head Attention sublayer and a position-wise
Fully Connected sublayer. A residual connection is incorporated around each
of the two-sublayers with layer normalization. According to [13], to promote
the Transformer-based model’s performance, we set all Transformer layers to
produce outputs of dimension d,. The final Transformer module’s output feeds
to a fully connected network with size [d,, 1]. Then we can get the final output
imputation D.

at

TINet: Multi-dimensional Traffic Data Imputation via Transformer Network

Transformer Module 1 Transformer Module 2 Transformer Module 3~N
1\ 1\

Multi-di i Embeddi Context

|(a|75)1” (0I'5)/|

=
=
=
jun}
o
S
o
>
=
=3
o
5
=3
S
5

ULION.J9A®T g [enpIsay
WLIONI94®T '3 [enpisay
uonuany peay-nmp
WLIONI9A®T '3 [enpisay
WLIONI9A®RT 3 [enpIsay

) s

| (y\"x)ll R

e Sy S

Layer Normalized Continuous Value

Fig. 2. Overview of TINet.

4.2 Context Embedding

TINet computes a context embedding from its normalized continuous value and
discrete attributes for each input value x;.

Layer Normalized Continuous Value: For continuous value x;, we normal-
ize it with z-score layer normalization:

j:x;“ 2)

where p and ¢ are the mean and variance of corresponding layer input.

Multi-dimensional Embedding: For a point x; in the traffic sequence D,
TINet selects the day of week wdp, its daytime ¢;, node id v; as its discrete at-
tributes. For wdp and t;, we use two projection layers with /; and Il dimensions,
respectively. For node id v;, we compute its embedding by applying the Deep
Walk method [9]: Firstly, node sequences are generated based on random walk.
The transition probability of random walk is defined as

, otherwise

—-— e N "
P(vj |vi) = {Ozje/v(ui)wij j (vi) o

where N (v;) represents the neighbour nodes of v;, e;; represents the edge from
v; to v;, Wy, is the historical travel data statistics from v; to vjl, respectively.
After finishing the random walk, we apply Skip-Gram algorithm [8] to learn the

embedding of node. Assume a walking sequence Walk = {v],v4,--- 0.}, the
learning process of Deep Walk can be summarized by the following formula:
maxlog P ({(vj_,), -+, (Vs } [0 (v))) (4)

For a given node v} in the walking sequence Walk, (v}) € RN represents its one-
hot encoding vector. We feed (v}) to a network ¢. The objective is to maximize

! For PeMS dataset which will be introduced in Section 5, we represent Wi; by the
distance between v; and v; as there is no historical travel data statistics

6 X. Song et al.

the output probability of the nodes near v, in Walk with window size w. The
intuition of this idea is that the nodes with a closer distance in the walking
sequence have similar representation on latent space [9]. ¥ commonly adopts a
two-layer fully connected encoder-decoder structure. The first and second fully
connected layers are of size [N, L,] and [L,, N], where N is the number of node
and L, is hidden size. Typically, the first layer is used to extract embedding
vectors of input nodes, the second layer is used to transform them into nodes’
one-hot encoding vector close in the walk sequences.

After the embedding of wdp, t; and v; is learned, we concatenate them with
normalized continuous value as the context embedding and feed them into the
first Transformer module.

4.3 Multi-head Attention Computaion

The context embedding is firstly associated with three learnable weight param-
eters Wg, Wk, and Wy, each with size [Ley,, k] where Le,, is the length of
context embedding, and k is the latent dimension. This process is reflected by

K =X Wxk (5)
V=X-Wy

where Q, K, V represents the query vector, key vector and value vector in the self-
attention mechanism [13]. {-} represents the matrix multiplication operator. We
can see that the self-attention mechanism builds the dynamic weights between
input data with learnable parameters, and a detailed explanation for attention
can refer to the previous work [14]. The final layer output of self-attention layer

1S:
T

QK
A K = softmax

t6(Q, K, V) = softmax(NG

where the resulting output is a context vector of dimension k. \/dj represents

the square root of key vector, and it leads to more stable gradients. Furthermore,

we use a n-head attention mechanism [13], which aims to mine n different at-

tention scores by setting n Wq, Wk and Wy. [5] shows that a proper number of

attention heads can better mine the information in data and enhance the model
performance.

5 Case Studies

)V (6)

In this section, we introduce the settings of our experiment. We conduct ex-
periments on two real-world datasets and compare TINet with other baseline
models.

5.1 Experimental Settings

Experimental Environment All experiments are performed on a Linux Server
(CPU: Intel(R) Xeon(R) CPU E5-2620v4, GPU: GeForce RTX2080Ti, System:
Ubuntu 18.04). All models are conducted with Python 3.7.

TINet: Multi-dimensional Traffic Data Imputation via Transformer Network 7

Hyperparameter Settings The number of Transformer modules is 4, and the
attention heads are 2. The dimensions [y, I3 of projection layers are both set to
8. The self-attention layer’s hidden size is set to 16, while the hidden size of the
Fully Connected sublayer and the final output dimension d, are both set to 32.
The hidden size L., of Deep Walk is set to 16. The proportions for the training
set, validation set, and test set are 70%, 10%, and 20%, respectively. For both
TINet and baseline models, we run 20 times and take the results’ average as
the final comparison. We use Adam optimizer [7] to optimize model parameters.
During training, the learning rate is 1072, and the batch size used in training
is 16. We choose the max training epoch 500 for all data-driven models. All the
parameters above are set from a empirical grid-search finetuning results. Data-
driven models all use an early stopping strategy to avoid the overfitting problem
where the validation loss no longer decreases for three consecutive epochs.

Dataset Description We conduct our experiments on two open datasets:

1. PeMS Dataset?: This dataset collects real-time traffic data from nearly 40,000
individual detectors across all major districts in California. Followed by pre-
vious work [2,16], we choose the District 5 data ranging from January 1,
2013 to December 31, 2013. All the collected data is preprocessed into 144
road sections, and their information is aggregated every five minutes, which
means the data of one day is embedded in a matrix of 288 x 144.

2. Shenzhen Dataset3: This dataset collects raw GPS trajectories in Shenzhen
from October 8, 2019 to October 14, 2019. We select the area centered on
Futian District area as it only has few missing data. Therefore, we can make
intentional data missing simulation expediently. This dataset involves 802
areas. We use the map-matching algorithm to process the raw data and
aggregate their traffic information every 5 minutes.

For missing rate selection, we consider the following two aspects: (1) The per-
formance gap of the models under low missing rate is not significant. (2) The
design of TINet method is more inclined to address the imputation tasks with
high missing rates. Since that, the missing rates selected in our experiment is
0.1, 0.5, 0.8, 0.9. Before training, we generate datasets with different missing
rates. For MCAR, we mask the value in dataset randomly. For BMAR, we ran-
domly select one of the two BMAR types as we introduce in Section 3.2. For
instance, if type (1) of BMAR is selected, we randomly select an arbitrary time
in a day, and mask all data at that time with a high probability of 95%*. We
repeat this process until the proportion of missing data in the dataset meets the
requirements.

2 https://dot.ca.gov/programs/traffic-operations/mpr/pems-source

3 https://opendata.sz.gov.cn/data/dataSet /toDataDetails/29200_00403602

4 We don’t set this to be a 100% probability, which somehow rarely happens in prac-
tice.

8 X. Song et al.

5.2 Baselines and Evaluation Metrics

We compare TINet with two categories of methods: matrix completion and data-
driven methods. In the former class, we select BPMF [4] and BGCP [2] as the
baselines. On the other hand, for data-driven models, we adopt HA [12], SAE
[16], and GAIN [17] as the baselines. Besides, we introduce TINet,,, which is a
variant of TINet without multi-dimensional embedding, to evaluate the effective-
ness of such embedding. We also choose three performance metrics to compute
the difference between ground truth Y; and masked data Y;, including:

1. Mean Absolute Error (MAE):

MAE = %Z||m—ﬁ>u (7)

2. Root Mean Squared Error (RMSE):

RMSE = % i(Yi - Yi)? (8)

=1

3. Mean absolute percentage error (MAPE):

Y -Y
MAPE = M x 100% (9)
1Yl
MAE and RMSE measures the average prediction error of the model. MAPE
measures the percentage gap between predicted value and target value.

5.3 Experimental Results

Table 1 shows the experimental results, which corresponds to the model’s per-
formance for imputing two missing data types on the two datasets. Notably, for
GAIN, we can see a significant error in our experiment. We attribute this perfor-
mance to GAIN’s training strategy. GAIN trains and tests its imputation ability
on the data without splitting into training, validation, and testing sets. How-
ever, we consider this not meeting the practical scenarios. In our experiment, we
train models on separate training and validation sets. Under this experimental
settings, the obtained results of GAIN are not satisfactory. Furthermore, we can
see that TINet,, has an apparent performance degradation compared to TINet,
which shows the effectiveness of multidimensional embedding. In the rest of this
section, we discuss the experiment results from multiple perspectives:

Matrix Completion Models v.s. Data-driven Models From Table 1 we
can see that the data-driven models have a robust performance under high miss-
ing rate scenarios. Take the performance of MCAR task on PeMS dataset with
0.9 missing rate as an example, the MAPE of TINet and SAE is 3.05% and
3.63%, while BGCP and BPMF’s MAPE reach 14.12% and 15.38%, which are

TINet: Multi-dimensional Traffic Data Imputation via Transformer Network 9

Table 1. Experimental Results for MCAR task

Performance on MCAR task for PeMS dataset (MAE/RMSE/MAPE(%))
Missing rate 0.1 0.5 0.8 0.9

HA 3.87/4.29/7.70 3.89/4.88/8.03 3.60/4.26/7.52 3.86/4.84/8.01
BPMF 1.88/2.88/3.60 3.21/5.38/6.86 5.00/7.47/10.31 7.78/10.41/15.38
BGCP 1.34/1.78/2.55 1.86/2.49/3.11 4.05/5.21/7.77 7.38/9.96/14.12

SAE 2.17/2.86/3.75 2.03/2.70/3.52 2.17/2.94/3.74 1.92/2.81/3.63
GAIN 38.62/42.42/76.20 40.42/43.50/79.03 42.01/44.25/82.06 46.78/47.81/91.31
TINet,, 1.84/2.60/3.32 1.57/1.63/2.54 1.84/2.50/3.35 1.85/2.64/3.38

TINet 1.69/2.41/2.90 0.97/1.33/1.64 1.76/2.34/3.01 1.76/2.42/3.05
Performance on MCAR task for Shenzhen dataset (MAE/RMSE/MAPE(%))
Missing rate 0.1 0.5 0.8 0.9

HA 10.65/11.93/26.77 10.71/12.74/27.44 10.69/12.97/26.81 10.50/12.81/26.83
BPMF 3.94/5.67/9.43 4.66/6.59/10.79 5.49/7.67/12.91 6.61/8.76/15.61
BGCP 3.51/4.56/8.27 4.25/5.36/10.46 4.89/5.87/11.54 5.73/6.92/13.50

SAE 2.56/3.37/6.02 2.23/2.98/5.25 2.38/2.75/5.60 2.63/3.47/6.19
GAIN 30.04/33.54/77.48 32.54/35.70/81.99 35.11/37.21/88.09 36.08,/37.98/90.10
TINet,, 1.44/1.61/3.27 1.96/2.33/4.61 2.24/2.70/5.27 2.55/3.14/6.00

TINet 1.07/1.33/2.52 1.26/1.41/3.36 1.73/2.11/4.57 2.15/2.47/5.20

Table 2. Experimental Results for BMAR task

Performance on BMAR task for PeMS dataset (MAE/RMSE/MAPE(%))
Missing rate 0.1 0.5 0.8 0.9

HA 4.13/4.55/8.85 4.55/5.42/8.56 4.28/5.10/8.32 4.22/5.43/8.21
BPMF 10.74/13.69/23.92 13.93/14.40/26.37 19.40/29.42/34.81 19.65/20.01/37.41
BGCP 12.38/14.87/24.50 15.97/20.56/37.18 21.40,/27.68/42.89 28.72/36.64/53.11

SAE 2.20/2.90/3.78 4.95/6.69/9.60 5.32/7.04/10.58 5.54/7.25/10.70
GAIN 42.64/45.78/83.08 41.85/44.86/82.21 44.22/45.42/86.60 41.93/45.05/81.96
TINet, 2.48/3.46/4.09 3.13/4.68/4.83 4.43/6.13/8.63 5.05/6.43/10.46

TINet 1.94/2.46/2.95 1.64/2.72/2.98 1.82/2.44/3.03 1.77/2.48/3.05
Performance on BMAR task for Shenzhen dataset (MAE/RMSE/MAPE (%))
Missing rate 0.1 0.5 0.8 0.9

HA 11.24/12.74/28.19 10.94/12.39/27.73 10.91/12.25/27.37 10.82/12.23/27.45
BPMF 8.56/10.62/21.68 9.87/12.47/24.62 8.91/11.37/22.36 20.19/26.10/51.38
BGCP 12.50/16.98/32.08 13.25/17.98/35.23 18.62/24.38 /45.64 21.20/27.33/55.30
SAE 3.06/3.51/7.32 5.10/6.65/12.74 5.28/6.81/13.06 5.46/7.09/13.39
GAIN 36.97/39.72/91.21 32.13/35.52/79.87 34.18/36.95/86.23 35.40/37.26,/88.43
TINet,, 1.47/1.83/3.46 4.07/5.51/11.16 4.83/6.94/12.70 5.40/7.16/13.21

TINet 1.12/1.35/2.59 2.78/4.19/7.41 3.43/4.87/9.45 3.99/5.72/10.47

10 X. Song et al.

nearly four times higher than the former two. The high missing rate makes the
numerical information of each dimension of the matrix or tensor largely lost.
Nonetheless, the matrix and tensor factorization techniques rely on this infor-
mation for inferring the posterior numerical distribution of values on specified
positions. Therefore, a high missing rate brings a significant performance drop on
BGCP and BPMF. Besides, the performance of data-driven models is relatively
stable under both tasks. We attribute this stability to the scalable parameter
learning scheme for deep learning models, as they can continuously learn new
data and update network parameters. However, BGCP and BPMF methods both
perform low rank approximation to the structure of the input data itself, and do
not have such scalability. Meanwhile, BGCP and BPMF are underperforming on
BMAR. This can also be attributed to its dependency on dimensional numerical
information, and the blocks of missing data can hardly provide such informa-
tion. There is another interesting observation in the comparison, i.e., BGCP and
BPMF do not perform well for MCAR task on Shenzhen dataset. We can see
the MAPE of BGCP and BPMF of MCAR task on Shenzhen dataset with 0.1
missing reach 8.27% and 9.43%, respectively. CP decomposition enforces a strict
structure assumption by modeling hidden parameters for each dimension, which
makes it suitable for highly structured data. However, this also undermines the
generalization capability of CP decomposition method for the scenarios that the
correlation among data is relatively trivial [11].

Comparison between TINet and SAE From Table 1 we can obtain a direct
comparison among data-driven models. As GAIN performs poorly during our
test due to the overfitting problem, we mainly discuss the difference between
SAE and TINet in this comparison. It can be seen that TINet has a slight
performance advantage over SAE in all tasks. Moreover, TINet’s performance
advantage on the Shenzhen dataset is even more significant. In particular, under
0.1 missing rate, TINet got 2.52% MAPE for MCAR task and 2.59% MAPE
for BMAR task, while SAE’s MAPE reach 6.02% and 7.32%, respectively. We
attribute this to the difference in the model architecture. As SAE mainly uses
a naive, fully connected layer as the basic module, this fixed-weight connection
makes it difficult for the model to impute data with misses appear in random
positions. Furthermore, it needs a larger amount of parameters and a deeper
network to learn the parameters suitable for all missing cases for this fixed weight
structure. However, this is somehow difficult and computationally expensive. On
the other hand, The self-attention mechanism applied in TINet can dynamically
adjusts the weights of networks according to the input data, making the model
more robust and effective.

Impact of Missing Types The main difference between MCAR and BMAR
is that BMAR causes a complete loss of dimensional information, impacting
both BPMF and BGCP. Besides, data-driven models also suffer from a slight
performance drop. TINet has the smallest performance gap between the two
tasks. We attribute this robust performance to the self-attention mechanism
and the multi-dimensional embedding used in TINet, as it models the spatial-

TINet: Multi-dimensional Traffic Data Imputation via Transformer Network 11

temporal relationship among traffic data in a more reasonable way. Additionally,
TINet without a self-attention layer is a special case of SAE, and their difference
in metrics can reveal the effectiveness of the self-attention layer directly.

5.4 Limitations of Applying Self-attention Mechanism on Long
Sequence Data

Applying self-attention mechanism on traffic data has computational and mem-
ory requirements which are quadratic with the input sequence length. With
contemporary computing hardware and model sizes, this typically limits the in-
put sequence [18]. However, this does not meet the needs of traffic sequence
data, as the multi-dimensional traffic data requires a huge attention matrix,
which is impractical. Thus, a natural question arises: can we achieve the empiri-
cal performance of quadratic full self-attention performance with a network with
fewer parameters? In this work, TINet computes time embedding and graph em-
bedding of node to avoid calculating attention of multi-dimensional data. This
method is simple and practical to improve the performance of the model. Nev-
ertheless, how to effectively solve the calculation and memory requirements of
the self-attention mechanism on long-sequence multi-dimensional traffic data is
still a problem worthy of research.

6 Conclusions

In this paper, we study the multi-dimensional traffic data imputation problem
with two missing patterns. We design TINet, an effective Transformer-based
model to impute data with random data missing and block data missing scenar-
ios. The self-attention-based Transformer Module makes TINet circumventing
the limitations of Fully Connected Network. Furthermore, the multi-dimensional
embedding not also improves the performance of TINet, but also avoids the ex-
cessive calculation of attention on multi-dimensional data. We evaluate TINet
and compare the results with other baselines. The result shows that TINet devel-
ops superior imputation performance under most scenarios. We also discuss the
limitations of applying self-attention mechanism on long sequence traffic data.
To overcome these existing drawbacks, we will further extend current work into
designing effective and efficient Transformer models for multi-dimensional traffic
data in the future.

References

1. Chen, H., Grant-Muller, S., Mussone, L., Montgomery, F.: A study of hybrid neural
network approaches and the effects of missing data on traffic forecasting. Neural
Computing & Applications 10(3), 277-286 (2001)

2. Chen, X., He, Z., Sun, L.: A bayesian tensor decomposition approach for spatiotem-

poral traffic data imputation. Transportation research part C: emerging technolo-
gies 98, 73-84 (2019)

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

X. Song et al.

Chen, X., He, Z., Sun, L.: A bayesian tensor decomposition approach for spa-
tiotemporal traffic data imputation. Transportation Research Part C: Emerging
Technologies 98, 73-84 (2019)

Chen, X., Sun, L.: Bayesian temporal factorization for multidimensional time series
prediction. IEEE Transactions on Pattern Analysis and Machine Intelligence (2021)
Correia, G.M., Niculae, V., Martins, A.F.: Adaptively sparse transformers. In:
Proceedings of the 2019 Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference on Natural Language Pro-
cessing. pp. 2174-2184 (2019)

Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In: North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers). pp. 4171-4186 (2019)

Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Interna-
tional Conference on Learning Representations, San Diego, CA, USA, May 7-9
(2015)

Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 701-710 (2014)

Redman, T.C.: If your data is bad, your machine learning tools are useless. Harvard
Business Review 2 (2018)

Sidiropoulos, N.D., De Lathauwer, L., Fu, X., Huang, K., Papalexakis, E.E., Falout-
sos, C.: Tensor decomposition for signal processing and machine learning. IEEE
Transactions on Signal Processing 65(13), 3551-3582 (2017)

Smith, B.L., Scherer, W.T., Conklin, J.H.: Exploring imputation techniques for
missing data in transportation management systems. Transportation Research
Record 1836(1), 132-142 (2003)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser,
L., Polosukhin, I.: Attention is all you need. arXiv preprint arXiv:1706.03762 (2017)
Vig, J., Belinkov, Y.: Analyzing the structure of attention in a transformer language
model. In: Proceedings of the 2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP. pp. 63-76 (2019)

Xu, J.r., Li, X.y., Shi, H.j.: Short-term traffic flow forecasting model under missing
data. Journal of Computer Applications 30(4), 1117-1120 (2010)

Yanjie Duan, Yisheng Lv, Wenwen Kang, Yifei Zhao: A deep learning based ap-
proach for traffic data imputation. In: IEEE Conference on Intelligent Transporta-
tion Systems. pp. 912-917 (2014)

Yoon, J., Jordon, J., Schaar, M.: Gain: Missing data imputation using generative
adversarial nets. In: International Conference on Machine Learning. pp. 5689-5698.
PMLR (2018)

Zaheer, M., Guruganesh, G., Dubey, K.A., Ainslie, J., Alberti, C., Ontanon, S.,
Pham, P., Ravula, A., Wang, Q., Yang, L., Ahmed, A.: Big bird: Transformers for
longer sequences. In: Advances in Neural Information Processing Systems. vol. 33,
pp. 17283-17297 (2020)

Zhu, L., Yu, F.R., Wang, Y., Ning, B., Tang, T.: Big data analytics in intelligent
transportation systems: A survey. IEEE Transactions on Intelligent Transportation
Systems 20(1), 383-398 (2018)

	TINet: Multi-dimensional Traffic Data Imputation via Transformer Network

