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Abstract—Privacy-preserving Transportation Mode Identifica-
tion (TMI) is among the key challenges towards future intelligent
transportation systems. With recent developments in federated
learning (FL), crowdsourcing has emerged as a promising cost-
effective data source for training powerful TMI classifiers without
compromising users’ data privacy. However, existing TMI ap-
proaches have relied heavily on the availability of transportation
mode labels, which is often limited in real-world applications.
While recent semi-supervised studies have partially addressed
this issue by assigning pseudo-labels to unlabeled data, such prac-
tice often degrades classification performance as more unlabeled
data are incorporated. In response to this issue, we present a
semi-supervised FL scheme for TMI termed Mean Teacher Semi-
Supervised Federated Learning (MTSSFL). MTSSFL trains a
deep neural network ensemble under a novel semi-supervised
FL framework, achieving highly accurate and privacy-protected
crowdsourced TMI without depending on the availability of
massive labeled data. MTSSFL introduces consistency-updating
to insert the global model in the gradient updates of the local
models that only have unlabeled data to improve their training.
We also devise mean-teacher-averaging, a secure parameter ag-
gregation mechanism that further boosts the global model’s TMI
performance without requiring additional training. Our extensive
case studies on a real-world dataset demonstrate that MTSSFL’s
classification accuracy is merely 1.1% lower than the state-of-the-
art semi-supervised TMI approach while being the only one to
satisfy FL’s privacy-preserving constraints. In addition, MTSSFL
can achieve high accuracy with less training overhead due to the
proposed semi-supervised learning design.

Index Terms—Federated Learning, Semi-supervised Learning,
Crowdsourcing, Transportation Mode Identification, Intelligent
Transportation Systems

I. INTRODUCTION

Ransportation Mode Identification (TMI) aims to infer
transportation modes from users’ mobility data. As a
core application of Intelligent Transportation Systems (ITSs),
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accurate TMI can help address a variety of transportation-
related problems, such as public transportation planning, route
recommendations, and traffic signal optimization [1]]. With
recent developments in data-driven analysis, particularly in
machine and deep learning algorithms, Internet-of-Things
(IoT)-enabled ITSs have attracted significant research interest
due to their capacity for capturing massive quantities of data
[2]. The widespread presence of Global Positioning System
(GPS) sensors in modern smartphones and wearable devices
have streamlined the acquisition of diverse user trajectories,
paving the way for IoT-enabled TMI [3].

Training highly accurate deep learning models primarily
requires immense amounts of data. Data crowdsourcing seeks
to alleviate this issue by allowing mutiple users to collec-
tively generate large datasets in a distributed manner [4]. A
centralized server is always set to receive the crowdsourced
data and train them. These data are usually transmitted to the
centralized server in unprocessed forms, however, information
implied by the data may have a strong connection to the
users’ privacy, which raises a privacy concern; for instance,
GPS trajectories are tied to users’ location and transportation
history. There exist techniques for addressing such privacy
concerns, including encrypted evaluation, data anonymization,
and noise injection [5]]. Nevertheless, the computational com-
plexity of such methods often prohibits their use in real-world
applications [6], with noise injection possibly degrading the
performance of deep learning models over time.

Federated Learning (FL) provides a privacy-preserving
framework for deep learning to realize the benefits of crowd-
sourcing [7]]. It allows users to share their data without jeop-
ardizing their privacy, provided that the data are only stored
and used locally. Users only need to intermittently share their
local model gradient updates with the centralized server, which
in turn manages the collective training process. Concretely,
the centralized server trains the global model by aggregating
the local models’ gradients and subsequently broadcasts the
updated model parameters to all users. Each user uploads their
local model to the server and then downloads the global model
to perform offline inference with the cloud-distributed model.
FL has rapidly sparked tremendous interest within the IoT-
enabled ITS community due to its privacy-preserving nature
and the efficient use of computing power provided by edge
devices. Successful applications can be seen in urban traffic
forecasting [8]], [9], rail traffic control [10], vehicular network-
ing [11]], and others. Following this trend, we envision that FL
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will also be successful for crowdsourced TMI; however, some
practical concerns need to be addressed first.

Existing TMI research typically employs machine or deep
learning models in fully supervised settings, thereby assuming
the availability of sufficient GPS trajectories labeled by trans-
portation mode at training time [12]-[/15]. This assumption,
however, can not hold for real-world crowdsourced TMI
applications. Even though GPS sensors can readily capture
user movement without requiring human intervention, they
have no knowledge of the corresponding transportation mode
labels: these would have to be provided by the users them-
selves to ensure correctness. Nonetheless, manual annotation is
both time-consuming and labor-intensive for users. While FL
offers a variety of incentive and reward mechanisms, they can
impose a significant financial or computational burden on task
publishers in real crowdsourcing systems [16]], [[17]. Therefore,
large volumes of unlabeled trajectories are often left unused,
despite being no less useful than their labeled counterparts.

To close the research gap in existing FL-based approaches
for crowdsourced TMI, we propose a novel semi-supervised
federated learning scheme towards FL-based crowdsourc-
ing TMI tasks. Particularly, we devise a semi-supervised
FL framework, Mean Teacher Semi-Supervised Federated
Learning (MTSSFL), to address the issues caused by the lack
of labeled data in crowdsourced TMI. Concretely, MTSSFL
leverages consistency-updating, which we introduce to include
the global model in the gradient updates of local models that
only possess unlabeled data. Such a teacher-student learning
scheme, in conjunction with existing pseudo-labeling ap-
proaches, can considerably improve the local models’ training
on their own unlabeled data. Furthermore, we propose mean-
teacher-averaging to replace conventional secure parameter
aggregation mechanisms, in order to form a better global
model without requiring additional training. Additionally, spe-
cific to the TMI task, we devise an ensemble of spatial-
temporal deep neural networks for feature extraction from GPS
trajectory data and achieve transportation mode identification.
The main contributions of this paper are summarized as
follows:

e We propose MTSSFL, a new FL-based semi-supervised
learning scheme that incorporates an ensemble-learning-
based TMI model. MTSSFL can effectively address the
model training issues caused by the few labeled data
typically available for crowdsourced, privacy-preserving
TMI. The involved semi-supervised federated learning
approach of MTSSFL can also serve as a generic solution
to other proper applications.

o We introduce consistency-updating, a novel approach for
training local models that only possess unlabeled data
guided by the centralized model trained on few labeled
data.

o We design an Exponential Moving Average (EMA)-based
secure parameter aggregation mechanism termed mean-
teacher-averaging to improve the global model without
additional training.

« We conduct extensive case studies to assess the perfor-
mance of MTSSFL on IID and non-IID data. We also
investigate its robustness to different hyperparameter con-

figurations, and provide guidelines into hyperparameter
selection.

The remainder of this paper is organized as follows. Section
summarizes related work in TMI and semi-supervised
learning. Section [[II| defines the problems of GPS-based TMI
and semi-supervised FL for TMI. Section [[V] details our data
pre-processing techniques applied to raw GPS trajectory data,
as well as the proposed TMI model and MTSSFL framework.
Section [V] conducts a comprehensive series of case studies
to demonstrate the effectiveness of the proposed approach
and investigate its sensitivity to hyperparameter variations.
Section |VI| discusses the traits regarding security and privacy,
and generalization ability of MTSSFL. Finally, Section
concludes this paper.

II. RELATED WORK
A. Transportation Mode Identification

Contemporary TMI approaches can be broadly catego-
rized into machine- and deep-learning-based. Their input data
sources include but are not limited to GPS, accelerometer,
and gyroscope sensors, often combined with Geographic In-
formation System (GIS) information such as proximity to bus
or metro stations [18]. Among the above, GPS sensors are
arguably the most popular sources due to their rich spatial-
temporal information, easy acquisition, and lower communi-
cation costs [[19]. As such, we focus on GPS-based works in
the remainder of this section.

Feature extraction and classification are two main sub-tasks
in the GPS-trajectory-based TMI approaches. The design of
feature extraction can be regarded as a distinguishing factor
among different TMI approaches. In [|12], the authors proposed
a two-step identification scheme that has been widely adopted
in utilizing GPS trajectory for TMI [20], [21]]. In this scheme,
trajectories are first partitioned into single-transportation-mode
segments based on domain knowledge. Subsequently, a set of
hand-crafted features are extracted for each segment and fed
to machine learning models for classification.

More recently, the success of deep neural networks in
research areas such as computer vision and natural language
processing has led to their adoption for TMI. In this direc-
tion, Dabiri et al. [13] trained Convolutional Neural Network
(CNN) ensembles, while Jeyakumar et al. [22] employed
recurrent neural networks with the Long Short-Term Memory
(LSTM) module to exploit the temporal dependencies within
GPS trajectories and improve identification accuracy. Yu [[19]]
leveraged a deep LSTM ensemble to cope with the few-shot
data problem.

B. Privacy-preserving Transportation Mode Identification

Since GPS trajectory analysis may reveal individuals’ per-
sonal information, the issue of privacy preservation in TMI
has gradually attracted increasing attention [23]]. Traditional
approaches to privacy-preserving TMI have typically been
based on cryptography [24f], [25]. However, the required
data encryption technology can be computationally expensive,
especially on large-scale data. On the other hand, with the
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ever-growing restrictions brought forth by data privacy regu-
lations (e.g., General Data Protection Regulationﬂ), third-party
organizations such as mobile communications operators are
not allowed to collect or share users’ personal data [26]. Since
performing machine learning at scale usually requires sharing
massive amounts of data among multiple public organizations
or private companies, such regulations challenge the feasibility
of existing approaches.

The emerging (FL) paradigm greatly breaks through this
dilemma, whose decentralized learning strategy enables data
can be trained locally at different organizations without ex-
change [27]]. FL also achieves the trade-off between model
performance and privacy-preserving, and great successes have
been witnessed in various studies [28]], [29]. Liu et al. [30]
proposed a FL framework for traffic flow prediction, who first
introduce FL to ITS research. Zhu et al. [|31] devised a FL-
based approach for TMI considering the non-IID data of GPS
trajectories.

C. Semi-Supervised Deep Learning

Recent years have witnessed a wide adoption of semi-
supervised deep learning approaches aiming to jointly train
neural networks on few labeled and massive unlabeled data,
spanning research areas such as computer vision and natural
language processing problems. These approaches can be di-
vided into roughly three categories [32].

The first category combines unsupervised pre-training with
supervised fine-tuning [33[]. Concretely, the pre-training phase
trains the classifier on unlabeled data in an unsupervised
manner; fine-tuning then trains the supervised component of
the model on the available labeled data. The second cate-
gory indirectly constructs semi-supervised algorithms based
on latent features extracted from the model [34]. After the
classifier is trained on the available labeled data in a supervised
manner, the inference is performed on the unlabeled data.
The predicted labels are then manually assessed, and the
correctly classified ones are added to the training set for model
training. While labeled and unlabeled data are both used in
the previous two approaches, the model is ultimately trained
in a supervised manner. The third category of semi-supervised
approaches involves training models in a truly semi-supervised
fashion. As one of the representatives of this category, Lee
[35] devised “pseudo-labels” for unlabeled data by selecting
the class having the maximum predicted probability as pseudo-
ground-truth. Laine et al. [|36] proposed an approach based on
the moving average of the predicted labels in each training
iteration, aiming to construct a better target. The target is then
used to estimate the unsupervised loss and update the model.
Following [36], the authors in [37] proposed a promising
approach termed mean teacher, which averages model weights
instead of label predictions.

In the field of TMI, Yazdizadeh et al. [38|], and Dabiri et
al. [21] recently proposed two semi-supervised deep learn-
ing approaches based on Generative Adversarial Networks
(GANs) and convolutional autoencoders. Yu [19] instead
trained a semi-supervised LSTM ensemble on different views

Uhttps://gdpr-info.eu/

of the data. While these semi-supervised approaches have been
shown to be effective, they may not be able to satisfy several
FL requirements [39]. First, in FL systems, the optimization
objectives among the local models differ due to the relatively
different distributions of their respective trained data. The
averaging aggregation at the central server can contribute to
develop a generic model from these local models effectively,
mitigating these isolated training processes’ negative effect
to a certain extent. However, in semi-supervised learning
contexts especially for those involved with dummy labels [35]],
the data distribution differences among different clients are
more significant and intricate. The conventional updating and
averaging approaches of FL are incapable of capturing these
information timely, which makes it difficult to maintain the
consistency between the client models and global models;
this is a big challenge for semi-supervised federated learning.
Second, the assumption of imbalanced label distributions for
semi-supervised learning has not been well-studied in the
federated learning context where most of them only considered
mild conditions. Particularly, extreme conditions (e.g., only a
small number of labeled data can be utilized or the labeled
data only exist at the central server) were not involved in the
previous researches. Last but not least, some of the state-of-
the-art semi-supervised approaches were only designed and
evaluated on simple classification tasks (e.g., [40]-[42]), which
might not be applicable to practical and complex ones such
as the investigated crowdsourcing TMI tasks in this work.
Considering the traits of federated learning under few labeled
data and the requirement of crowdsourcing tasks, in this
paper we propose a novel semi-supervised FL framework for
crowdsourced TMI based on the mean teacher approach [37]]
to fill the research gap.

III. PRELIMINARIES

In this section, we first formulate the task of GPS-based
transportation mode identification. We then delve into the
problems of crowdsourced federated learning and learning
from non-IID data.

A. GPS-based Transportation Mode Identification

In this work, transportation mode identification is performed
on features extracted from GPS trajectories. The latter are
represented as chronologically ordered sequences of discrete
GPS records, with each record (or point) being defined by
the following four attributes: latitude (lat), longitude (Ing),
timestamp, and label.

Following established TMI research [12f, [13[, [19], we
aim to identify the following five transportation modes: walk,
bus, bike, driving, and train. All GPS trajectories are first
partitioned into segments such that each corresponds to exactly
one transportation mode. Since raw GPS trajectories are ill-
suited for training machine or deep learning models [[12], we
then preprocess them into motion and other features following
standard TMI practice [12], [[13]], [19], as will be detailed in
Section

Let F; denote the calculated features of the i-th GPS point
in a segment. We can then reform GPS segment k of length
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T as GPSy, = {F1, Fa,..., Fr,label;}, where labely is the
corresponding transportation mode of the segment. Our aim
is to train a deep learning classifier to classify GPSg, VEk, by
transportation mode. This is formulated as

GPSK[F1, Fo, ..., Fr] 2% GPSy[labely), (1)
where f(-) denotes the classification function learned by the
classifier model.

B. Semi-supervised Federated Learning

1) Crowdsourced Federated Learning Framework: In this
work, we propose a federated learning framework for crowd-
sourced TMI. We use the term “publisher” to refer to the
initiator of the crowdsourcing task, who also owns a central
server. We refer to the local (distributed) entities as “workers”.
Let g denote the total number of workers; we then have the set
of workers C = {C4,Cs,...,Cy}. Each worker C; uses their
respective database D; to store their sensed GPS trajectories,
resulting in the database set D = {D;, Ds,...,D,}. In FL,
worker C; uses their locally-stored data to train their local
model M; € M = {My,M,,...,M,}, where the learned
parameters of M; are denoted by ¢;.

This work assumes that both the publisher and the workers
are reliable and low-latency communicators. Both are also
considered to be honest, which means that they will strictly
execute FL protocols and will not try to infer other entities’
data from the shared model parameters. Additionally, this work
assumes that the security level of uploading channels is higher
than that of broadcasting channels [5].

2) IID and non-IID Data: Each worker is likely to have
more data corresponding to some transportation modes than
others. This will inevitably lead to a skewed local class
distribution, i.e., non-Independent and Identically Distributed
(non-1ID) data. Previous research indicated the deviating FL
performance on IID and non-IID data, where the latter usually
renders the FL systems to develop inferior training perfor-
mance due to the data imbalance among different clients
[43]. To explore how non-IID data affect the classification
performance of our approach, we introduce the metric R to
measure the level of non-IID. Specifically, the class distri-
bution of database D, belonging to worker C; is defined as
P; = [p1,p2,...,pc) € R° where p; is the fraction of the j-th
class in D; and c denotes the total number of classes. R can
be defined as:

1 1
R== > |IP=Pl,——. )
2 = q(q—1)/2

where ||-||, denotes the L; norm, ||P; — P,||, is the variation
distance, q(g — 1)/2 corresponds to the total number of worker
pairs. Please note that the first factor % is merely used to
ensure R € [0,1]. We obtain R = 0 when each worker has
a uniform class distribution, i.e., P; = [%, %, R %], while
R =1 means that each worker only has trajectories belonging
to one transportation mode class.

IV. METHODOLOGY

In this section, we introduce the proposed scheme for
crowdsourced TMI. We start by presenting the data pre-
processing approach adopted to handle raw GPS data. Next,
we detail the employed TMI model. Finally, we elaborate on
the proposed semi-supervised federated learning framework.

A. Representation of TMI Data Features

Raw GPS data pre-processing is the prerequisite procedure
of GPS-trajectory-based TMI, which consists of two steps,
namely, GPS trajectory pre-processing and data feature repre-
sentation.

1) GPS Trajectory Pre-processing: Raw GPS trajectories
are usually denoted as chronologically ordered series of GPS
records. To segment each trajectory by transportation mode,
we follow the trajectory segmentation algorithm introduced in
[12], which has since been widely used in the transportation
literature [19], [21]]. This segmentation method is based on
the intuition that the transportation mode separating any other
two has to be walk. For instance, if a user traveling by train
intends to board a bus, they are bound to walk from the
former to the latter. As such, this method first classifies each
GPS point as walk or non-walk according to velocity and
acceleration thresholds before forming single-transportation-
mode segments by aggregating adjacent points with the same
predicted label. Using the same thresholds defined by [12]], we
split all trajectories into a total of 7™ single-transportation-
mode segments {GPS;, GPS,,...,GPSr-}.

2) Motion Feature Extraction: We follow established TMI
research [12]], [[13]], [19] in extracting three pointwise motion-
related features, i.e., speed, acceleration, and jerk. To do so,
we first calculate the relative distance between every two
consecutive GPS records using the Vincenty Formula [44],
which can be denoted as:

d; = Vincenty (lat,;, Ing,;lat;41, lngi_H) . 3)

Based on d;, we can then estimate speed s;, acceleration a;,
and jerk j; for the i-th GPS point as follows:

d; .
si:rtf 1<e<T, sp=spr_1, (4a)
S; — S .
v ELEL S TS
. Ai+1 — A4 . .
P T AL 1< <T7 :07 4
7 Atz ST s JT ( C)

where T is the number of GPS records in a GPS segment. In
this way, a motion feature vector z; = F; = (d;, S;, @4, J;)
can be extracted for the ¢-th GPS point. These 4-channel
feature vectors are then stacked into a tensor for each trajectory
segment and used as input to the TMI model detailed in the
sequel.

B. TMI Model

In this work, we build our TMI model based on DNNs and
ensemble learning techniques. Ensemble learning technique
can deal with the bias and variance developed by conventional
single-model networks and develop high-accuracy prediction
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by fusing multiple sub-models, while the training of an en-
semble model might be relatively costly since more than one
network are required to be trained on the same dataset [45].
The FL-based crowdsourcing can greatly improve the training
efficiency on an ensemble model by distributed learning, which
makes the best use of the advantages and circumvents the
disadvantages of ensemble learning. Thus, we consider an
ensemble model as the configured model for MTSSFL in
the investigated crowdsourcing TMI task. The framework of
the devised TMI model is shown in Fig. [I] It incorporates
three procedures, namely, feature extraction, ensembling, and
voting. Particularly, we employ three sub-models for feature
extraction, i.e., Models 1 to 3. We elaborate on the three sub-
models and the ensemble and voting procedures of our model
in the sequel.

1) Model 1: This sub-model first employs three convo-
lIution layers with skip connections to capture the spatial
features within the input motion features X. The layers’ output
channels are set to 32, 64, and 128, respectively. The kernel
sizes and strides for all three convolution layers are set to 3
and 1, respectively. Each convolution is followed by a max-
pooling operation with size 2.

Next, we stack eight layers of Gated Recurrent Units
(GRUs) with hidden size 16 to exploit the temporal depen-
dencies within the input data. As a simplified variant of the

LSTM module, the GRU adopts a stack of gating units and
cell states to process and control the input information [8],
[46]. There are two types of gating units, i.e., the update gate
z and the reset gate . The operations performed in each layer
can be written as:

Tt =0 (W(T)Xt + U(T)htfl) ) S
2zt =0 (W(Z)Xt + U(z)ht71> ) (6)
hy = tanh (WX, + 7 © Uhy—1), (7
hy :thht_1+(1*Zt)®}~lt, ®)

where X is the input of each GRU layer, ¢t € T', and weight
matrices W&, W & U™ connect X; and h;_; to
the two gates. Finally, h} is the intermediate activated output,
while h; denotes the final output.

2) Model 2: This sub-model incorporates an attention
module between two linear layers, In this work, following
the one proposed in [47]], the attention module incorporates a
stack of multi-head attentional layers, each of which computes
the attention using scaled dot-product attention mechanism.
The orchestra of multi-head enables the model to collectively
involve knowledge learned from multiple representation sub-
spaces. The processes can be formulated as

X4 = concat(hdy, hdy, ..., hd,- )W, 9)
where
QW (KW/)T
Vi

where Q, K, V are the query, key, and value, which serve
as the input of self-attention mechanism in [47], and the
mechanism requires that they are all X; dj = % denotes
the dimension of keys where hidd, denotes the hidden size
of the attention module, which is set to 128; softmax denotes
the softmax activation function; hd; denotes each attentional
head and n* is the number of heads; concat(-) represents
the concatenation operation; W, W<, WX and WV are
the corresponding weight matrices. Considering the tradeoff
between model performance and training overload, the number
of heads and hidden size is set to 8 and 30, respectively.

3) Model 3: To better analyze the data characteristics,
a wavelet representation-based feature extracting approach
named Discrete Wavelet Transform (DWT) is adopted in
Model 3 to further exploit the hidden time-domain feature
from the feature vectors. Specifically, DWT employs discrete
wavelets 1), 5(t) to convolve the input, which can be defined
as

hd; = softmax( WwY, (10)

1 t
,(/)a,b(t) = 27,(/)(2704 - b)7 G;,b S Z7 (11)

where 9 (t) is a pre-defined mother wavelets, a denotes the
oscillatory level and b denotes the shifted position of DWT.
Given a time sequence signal z(t), DWT transforms the input
by 4,4(t) into the following signal, which can be formulated
as

+oo
da,b(x(t),ib(t)):[ w() g p(D)dt = (2(t), Yas(1)),
(12)
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where ¢} ,(t) is the complex conjugate of v, ;(t). Addi-
tionally, DWT can be interpreted regarding a multi-resolution
decomposition of the input signal. Specifically, following the
inference in [48]], given a decompsition level M, a hierarchical
framework can be built as

M
50 =32 3 daal(t), 0(0)2/20(5 — b)
a b

_ t
+ ZAM,bQ M/2<P(2T4 —b)
b

M
23 " Da(t) + Au(t),

13)

where Aprp = (x(t), omp(t)) denotes the approximation
coefficient at level M, ¢(t) represents a companion scaling
function. We can utilize to decompose the signal z(¢) into
a detailed signal D, (t) and an approximation signal Ap;(¢).

In this work, since we emphasize more on the general
trend of GPS trajectory characteristics, the detailed signals
are omitted, and only the approximation signal A (t) of the
pre-processed quarternary feature (i.e., x; = (d;, si,a;,j;))
is reserved. The daubechies mother wavelets are used to
decompose the feature, following [48]. Finally, we can obtain
the tensor of quarternary feature X € R7*"*4 and the tensor
after DWT X%t ¢ RT>*7*1 ith the latter forming the output
of Model 3.

4) Ensemble and Voting: Multi-view Ensemble Learning
(MEL) is a type of semi-supervised learning aiming to train
different learning models with different views of the original
data [49]. In the feature extraction stage, we constructed
three sub-models to learn different latent representations of
the input. Following the concept of MEL, we create four
ensembles by concatenating the outputs of the three sub-
models as:

XEl = concat(XM!, XM2 XM3) (14)
XFE?2 = Concat(XMl, XM2), (15)
X3 = concat(XM! XM3), (16)
XE4 = concat(XM?2 XM3), (17)

where XM1 XM2 and X3 are the outputs of the three sub-
models; XEFL XE2 XE3 and XE1 denote the four ensemble
tensors for corresponding ensembles. After a series of linear
transformation of the ensemble tensor, we use a softmax
function to estimate the probability that a trajectory segment
pertain to a certain transportation mode for each ensemble,
and further obtain the transportation mode by:

modepyed ¢ arg max softmax(X), (18)

where X denotes the linear transformed tensor of each
ensemble.

Finally, we use a voting strategy to decide the final trans-
portation mode classification from the predictions of the four
ensembles. Specifically, we regard the inferred transportation
mode of each ensemble as a candidate. A hard voting proce-
dure [50] is adopted, in which we select the final class as the
one with the largest sum of votes among the classes predicted

by the four candidates. In the case of a tie, we consider the
transportation mode classification provided by Ensemble 1 as
the final classification, since Ensemble 1 is trained on more
inputs and is thus expected to be more reliable than the others.

As shown in Fig.[I] we adopt batch normalization followed
by dropout with rate 0.5 to ensure training stability. We use the
Rectified Linear Unit (ReLU) function to activate all hidden
layers. Please note that all model hyperparameters are selected
following standard deep learning practice, i.e., via grid search
based on model performance on the validation set.

5) Sub-model Design Principles: We construct the above
three sub-models based on the following intuition. Model 1
incorporates convolution layers and recurrent GRU modules
to extract both spatial and temporal correlations of the trans-
formed trajectory data. The combination of CNN and RNN
has been demonstrated to be effective in exploiting the spatial-
temporal correlations in traffic data [22]], [51]]. Models 2 and
3 are instead tailored to time series feature learning, each
producing different latent representations due to the nature of
the attention mechanism and DWT. Particularly, for Model 2,
the adopted attention mechanism enables to “attend” to the
parts that are relevant to the current part of the data since
arbitrary parts of time-series can be more important at different
time steps, which overcomes the limitation of GRU adopted
in Model 1 that encode everything into one or more hidden
layers of fixed size. For Model 3, the adopted DWT, as a
signal decomposition technique, can extract frequency-domain
data features of the input motion feature vectors. Compared
with other frequency-domain processing techniques, DWT
is also capable of developing a relatively stable spectrum
when handling temporally non-stationary signals [52], which
is applicable to the input motion feature vectors of our model.
Given that each of the three sub-models has strengths that
the others do not, and although it is uncertain which one is
the most discriminative for transportation mode identification,
ensembling them aggregates their predictions and ensures that
their collective knowledge is utilized towards the final decision
making.

C. Mean Teacher Semi-Supervised Federated Learning
(MTSSFL)

In this paper, we propose a semi-supervised FL framework,
MTSSFL, to solve the massive unlabeled data problems in
data collaboration of federated learning for crowdsourced
TML. In this subsection, we introduce the proposed frame-
work by firstly presenting the architecture, participants, and
communication protocol. Then, we elaborate on the proposed
model optimization and aggregating algorithms of MTSSFL.
Lastly, we describe the designs for the privacy protection and
trustworthiness of MTSSFL.

1) Architecture, Participants, and Communication Proto-
col: As illustrated in Fig.[2) MTSSFL is a framework designed
for privacy-protected FL data collaboration. There are three
main entities in MTSSFL, namely, publisher, workers, and
third-party evaluator. The publisher intends to train a powerful
model; however, it only possesses a small amount of labeled
GPS trajectory data in its own central server. Therefore,
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Fig. 2. Framework overview of the proposed MTSSFL.

the publisher publishes a crowdsourcing TMI task. Workers
receive the task and process the local model training to serve
the data collaboration with the publisher and other workers;
however, each of them only possesses a set number of GPS
trajectory data which is unlabeled. The third-party evaluator
is independent of other participants, which is assumed to
be trustworthy. The security of training and data is critical
in FL-based crowdsourcing task [53]], [54]]; therefore, the
independently trained TMI model from different participants
and the data for training will be firstly assessed by the third-
party evaluator before any aggregation or collaborationﬂ In
this work, since all the data and participants are assumed
to be benign, we consider all the evaluations are passed in
our simulations. To successfully achieve the training goal
under such biased data distribution, MTSSFL introduces a
novel semi-supervised learning scheme. Specifically, MTSSFL
regards the local models owned by workers as student models,
and the global model on the central server as teacher model.
We additionally introduce the monitor model on the central

2The technical detail of the operation of the third-party evaluator is out of
the scope of this paper since it is not an influential factor of the investigated
semi-supervised federated learning performance. Related investigation will be
included in future work.

Algorithm 1: MTSSFL Communication Protocol

Initialization:

1 Central server pre-trains the monitor model with
labeled data, and update the pre-trained model
parameter to the teacher model.

Iteration:

2 The central server distributes the copies of the teacher
model to all workers, and each worker trains its
copies with unlabeled data using the pseudo-labeling,
and consistency-updating approaches.

3 Each worker uploads the updated model parameters to
the central server. The central server aggregates the
model parameters from the teacher model, student
models, and the monitor model using the
mean-teacher-averaging approach and updates the
teacher model’s parameters with the aggregation
result.

server to train with the labeled data. Terming it “monitor”
is because trained with the labeled data can guarantee itself
obtain the best training effect compared to the student models
of workers, like a student who has the best learning ability in
a class. The teacher model is not trained directly but updated
by the aggregation of the monitor model and student models.
Therefore, while the teacher and monitor models are both on
the central server, they are of different functionality and can-
not be conflated. Furthermore, since the communication and
computation overhead by aggregation is minuscule compared
with the training and data transmission process [35], a benefit
of this design is that the development of the teacher model
will not introduce extra computation burden.

The communication protocol between the entities is demon-
strated in Algorithm [I] In the following subsections, we
will give details to the involved approaches, i.e., consistency-
updating and mean-teacher-averaging.

2) Consistency-updating: Before presenting the proposed
consistency-updating approach, we first briefly introduce the
pseudo-labeling approach. Pseudo-labeling is a popular ap-
proach in the semi-supervised learning community, which is
a process of using the model trained on the labeled data to
make predictions on the unlabeled data, filtering the samples
based on the classification results, and re-inputting them into
the model for training [35]. Particularly, the pseudo-labeling
approach considers the training balance between labeled data
and unlabeled data, which defines a loss function as

B ¢ 1 B" ¢ , ,
S T o) 5 D0 S ),

m=1 i=1 m=1 i=1
(19)

where B and B’ denote the size of mini-batch in labeled and
unlabeled data, respectively; ;" and Q;m are the output of m
samples in labeled and unlabeled data, respectively; y;" and
y;m are the labels of m samples in labeled and unlabeled data,
respectively; «(t) is a balancing weight.

In the condition of data collaboration defined in this paper,
it is hard to directly adopt the pseudo-labeling approach due
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to that local student models cannot access the labeled data for
pre-training. In this context, we proposed consistency-updating
approach. Specifically, we follow the pseudo-label generation
as proposed in [35] to develop the pseudo labels for unlabeled
dateﬂ Moreover, to fine-tune the student models in the data
collaboration condition, we incorporate the loss developed by
the teacher model when updating the local student models. A
consistency cost J.o, is introduced to measure the distance
between the prediction of student model and teacher model
on unlabeled data using L2 loss, which can be formulated as:

c

Teom = 237 (Fa™) = F@™)’,

i=1

(20)

where f and f denote the teacher and student TMI model,
respectively; x;m is the unlabeled data. Further, we can define
a final loss function Js; for the student model’s update by
combining Eq. (20) and the second half of the Eq. (I9), which
can be formulated as

1 & 1 E& ,
Jo =5 > Jeon + o SN T f@m), @
m=1 m=1 =1

3) Mean-teacher-averaging: In this work, we proposed
a mean-teacher-averaging as a secure parameter aggregation
mechanism for the TMI models based on the approach pro-
posed in [37]]. In [37]], the authors proposed an EMA-based
approach to update the model parameter of the teacher model

at communication round ¢, which can be defined as

Qgt = 5(1.51671 + (1 =98)¢y,

where ¢ and ¢ are the parameters of teacher model and student
model, respectively; J is a smoothing coefficient. The adoption
of EMA make ¢, react more significantly to the most recent
learned parameters, which can guarantee a satiating training
effect [37].

We extend this method into a model parameter aggregation
method applicable to FL. Specifically, we first use the naive
FedAvg [56] to aggregate model updates of student and
monitor models, which can be formulated as

(22)

1 a ..

Ot = g q(; bi + 1), (23)
where ¢ denotes the number of student models (i.e., workers);
é is the model parameter of monitor model; ¢x, represents
the aggregated parameters from student and monitor models
by FedAvg. Subsequently, we incorprate the ¢y by Eq.
into Eq. 22)), and finally obtain the aggregation mechanism
for MTSSFL as

b = 5¢.5t—1 +(1—0)ps,.

Note that appropriate selection of the smoothing coefficient is
vital when training the teacher model. We empirically found
that a default value of § = 0.1 works well in practice; Section
includes a hyperparameter sensitivity test for § and

(24)

3Interested readers can refer the detailed process of pseudo-labeling in the
reference.

provides guidelines into setting its value based on application
requirements.

To summarize, the entire working process of MTSSFL is
shown as Algorithm [2]

V. CASE STUDIES

To fully assess the performance of the proposed MTSSFL
framework in identifying the transportation modes with mas-
sive unanotated data, a series of comprehensive case studies
are carried out with a real-world data set. Firstly, we com-
pare the proposed scheme with previous transportation mode
models in the literature. Subsequently, the performance of
the proposed scheme on non-IID data is investigated. Then,
we investigate the performance sensitivity of the proposed
scheme to the hyperparameters of MTSSFL. Lastly, a study
on the performance of the proposed scheme with fewer local
iterations is conducted.

A. Experimental Setup

1) Dataset Description: MTSSFL is evaluated on Geolife
[12]], [57], an open dataset of real-world GPS trajectories
by Microsoft Research Asia. It contains a total of 17,621
trajectories collected by 182 users over 2,090 days, with a total
traveled distance of 1,292,951 kilometers. Among these users,
only 69 have labeled parts of their trajectories by transportation
mode. The labeled trajectories are considered as ground truth
and pre-processed as per Section Even though a total
of eleven transportation modes are labeled, not all of them
are sufficiently represented in the dataset. As such, we follow
the dataset authors’ recommendations in only considering the
five most prominent transportation modes (see Section [[II-A).
We also perform data augmentation by flipping the input
motion features along the temporal dimension as in [5§].
Finally, a total of T* = 16,370 single-transportation-mode
GPS trajectory segments are obtained based on the available
ground-truth labels. Note that, although evaluation on at least
one more dataset would be ideal, we are not aware of any
other dataset of similar or larger size that contains densely
sampled GPS trajectories labeled by transportation mode.

To train the TMI models involved in the proposed scheme
in a semi-supervised manner, we first partition the original
dataset into two datasets using a 17:3 ratio. The second
dataset is used as the testing set and serves the purpose of
evaluating the identification accuracy of the monitor model
when assessing MTSSFL. We further partition the first of
the two datasets into a percentage of unlabeled dateE] and
labeled data, with the proportion of unlabeled and labeled
data being denoted by ~ and 1 — +, respectively; in other
words, we use hyperparameter 7y to control the percentage of
unlabeled data in the training set. In MTSSFL, the labeled data
are assigned to the monitor model, while the unlabeled data
are uniformly distributed among the student models. Please
note that v = 0 effectively corresponds to using all labels

4The numbers of epochs for the monitor model and student models are set
the same (i.e., Ej) to reduce macroscopic communication latency between
publisher and workers.

5The transportation mode labels of this data subset are discarded.
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Algorithm 2: MTSSFL Training

Input: workers C = {C1,C5,...,Cy}; number of
communication rounds (global epochs) E
cloud mini-batch size (for monitor model) B;
local mini-batch size (for student models) B’;
number of local epochs EZE]; learning rate 7;
gradient optimizer £(-) for TMI model;
gradient optimizer Loy, (-, ) for TMI model
used for consistency-updating as per Eq. 2I);
smoothing coefficient J; volunteer ratio p.

Output: Teacher model parameters gb

CentralServer:
Initialization:
2 initialize and pre-train monitor model
parameters ¢

-

3 update teacher model parameters QS with d)

4 Iteration:

5 for round t =1,2,...,t € E do

6 broadcast ¢; to workers

7 for epocht =1,2,...,t € F; do

s || ¢ < MU ($4_1. B)

9 wait until all ¢;¢,? € g are received

10 randomly select a ratio (i) of volunteers
to participate in this round of aggregation

nm | G141 < MTA (di i, 1, D15 0, Q)

Worker:

12 Initialization:

13 initialize student model parameters ¢,

14 Iteration:

15 for round t =1,2,...,t € E do

16 foreach worker C' € C in parallel do

17 receive ¢, from central server

18 for epocht =1,2,...,t € F; do

19 L ¢1 < CU (¢1-1, ¢4, B')

20 upload ¢; to central server

21 Approach MU (¢¢,B) :
// Model update

22 foreach batch b=1,2,..., b€ B do
23 | i1 o —1n- L)

24 Approach CU (¢t,1,q§t, B):
// Consistency update
25 foreach batch b=1,2,..., b€ B do

26 L d)t <_th—l _n'ﬁcon(ﬁbt—hét)
27 Approach MTA (<l5i,t,§5t, th_l, 3,q) :

// Mean-teacher average

28 bt = 01 + i%‘;(é bit + br)

in fully supervised learning. In this case, we only report the
identification accuracy of the monitor model when evaluating
MTSSFL, since no data are distributed to the student models.

TABLE 1
COMPARISON OF TRANSPORTATION MODE IDENTIFICATION METHODS

Method Accuracy Semi-supervised Secure crowdsourcing

MLP 33.1% - -
SVM 47.0% - -
KNN 54.9% - -
CNN 83.6% - -
LSTM 81.7% - -
SPL 72.5% v -
SGAN 83.1% v -
SECA 73.2% v -
STS 59.1% v -
ELSTM 90.3% v —
MTSSFL  89.2% v v

2) Experimental Settings: Our simulations were conducted
on a server equipped with eight NVIDIA GeForce RTX 2080
GPUs and an Intel Xeon E5-2620 v4 CPU. All neural networks
were developed using PyTorch v1.6.

3) MTSSFL Configuration: Unless otherwise stated, we
set the number of workers ¢ = 20, the number of communi-
cation rounds (i.e., global epochs) I = 100, and the number
of local epochs E/; = 5. We also select the mini-batch size for
the monitor and student models as B = 256 and B’ = 50,
respectively. All models in MTSSFL are trained using the
Adam optimizer [59] with learning rate n = 0.0005. We
also set the smoothing coefficient for mean-teacher-averaging
0 = 0.2, the volunteer ratio ; = 0.5, and the proportion
of unlabeled data v = 0.5. Please note that all baselines’
hyperparameters are selected according to their corresponding
literature.

4) Baselines: We evaluate MTSSFL against a series of
established TMI baselines. Specifically, we consider the fol-
lowing fully supervised machine and deep learning models: (1)
Multi-Layer Perceptron (MLP) [19]], (2) k-Nearest Neighbors
(KNN) [19], (3) Support Vector Machine (SVM) [19], (4)
CNN [13]], and (5) LSTM [60]. We also include the following
state-of-the-art semi-supervised TMI approaches: (6) SEmi-
supervised Convolutional Autoencoder (SECA) [21]], (7) Semi-
Pseudo-Label (SPL) [21]], (8) Semi-supervised Generative Ad-
versarial Network (SGAN) [38]], (9) Ensemble-based LSTM
(ELSTM) [19]], and (10) Semi-two-steps (STS) [21]. It is worth
mentioning that, since models (1)-(5) are not designed for
semi-supervised learning, we only use labeled data to train
them.

B. Identification Accuracy

1) Results: The comparison of identification accuracy is
shown in Table [Il It is evident the proposed scheme out-
performed the traditional machine and deep learning base-
lines while performing comparably to the state-of-the-art
semi-supervised frameworks. The inferior performance of the
conventional machine learning approaches, MLP, SVM, and
KNN can be attributed to their shortage in handling complex
nonlinearity of data features. Nevertheless, we can observe a
satisfying result obtained by CNN and LSTM, which implies
their capacity of capturing spatial correlation information
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TABLE 11
SENSITIVITY OF TRANSPORTATION MODE IDENTIFICATION ACCURACY TO PERCENTAGE OF UNLABELED DATA

Accuracy (%)

Method
¥=099 ~v=095 ~=090 ~+=0.80 ~=0.50 -~ =0 (Supervised)

SPL 50.9 56.0 61.8 68.6 72.5 75.4
SGAN 68.4 777 80.5 82.1 83.1 83.8
SECA 52.0 56.1 62.9 69.3 73.2 76.8
STS 50.7 53 50.6 54.4 57.7 59.1
ELSTM 84.8 86.5 89.0 90.0 90.8 91.5
MTSSFL 82.4 83.1 85.7 87.3 89.2 91.4
MTSSFL-non-I1ID 82.3 82.5 85.7 86.9 89.0 91.3

and long-term temporal correlation information from the data
respectively regardless of user data privacy. Among the semi-
supervised state-of-the-arts approaches, the proposed scheme
scores the second. Compared to STS, SGAN, and SECA,
ELSTM and the proposed scheme achieve higher accuracy
thanks to the learning capability of the ensemble design.
The difference between the proposed scheme and the first-
performing ELSTM method is due to the difference in network
size that the number of our employed neurons is only ap-
proximately a third of the latter’s. Meanwhile, considering the
distributed configuration of the proposed scheme, the actual
performance gap could be even smaller.

2) Accuracy for Different Percentages of Unlabeled Data:
To evaluate MTSSFL against the selected baselines when
different percentages of unlabeled data are available at training
time, we vary v € {0.99,0.95,0.9,0.8,0.5,0}. According to
the results reported in Table we observe that MTSSFL
achieved 82.4% accuracy when only 1% of training data are
labeled, ie., v = 0.99. Accuracy only declined by 6.8%
compared to when 7 = 0.5. We note that, although ELSTM
attained the highest classification accuracy for all percentages
of unlabeled data, it was not designed with federated learn-
ing in mind and thus cannot provide secure crowdsourcing.
Achieving the third best overall results, SGAN scored an
accuracy of 83.1% for v = 0.50; yet it only achieved
68.4% accuracy when v = 0.99, demonstrating significant
performance degradation when labeled data were scarce.

3) Accuracy on non-IID Data: As discussed in Section
non-IID data are commonly encountered in crowd-
sourcing applications. Therefore, we additionally study the
proposed scheme’s performance on non-IID data. We construct
a non-IID dataset based on Eg. @, where R = 1. Our
simulation results are shown in Table [l MTSSFL-non-1ID. We
find that, regardless of the percentage of unlabeled data ~, the
proposed scheme performed similarly on both IID and non-IID
data. This indicates that MTSSFL is indeed robust to non-IID
data.

C. Performance with Different MTSSFL Hyperparameters

1) Number of Workers q: The default number of workers
in our simulations is set to ¢ = 20. However, in real-world
crowdsourced TMI, the number of workers is expected to
be very large. To examine the performance of the proposed
scheme with a larger number of workers, we conduct a series

of simulations with ¢ € {20, 30,40, 50, 100} f]

From the results shown in Fig. it is evident that the
number of workers has a negative correlation with the accuracy
of the proposed scheme on both IID and non-IID data. This is
not surprising, as more workers mean more model parameters
to be learned and more unlabeled data to be used in training;
this makes performing the required aggregation algorithms
more challenging for the centralized server. We can draw the
same conclusion from the convergence curves shown in Fig.
[3(a)] and [3(d)] where larger numbers of workers resulted in
slower training convergence. Nonetheless, it is important to
note that the accuracy degradation was not significant. In the
case of 100 workers, only a 0.9 — 1% accuracy reduction was
observed.

2) Fraction of Volunteers 11: In the above tests, the fraction
of volunteers participating in a communication epoch was
empirically set to ;4 = 0.5. It is interesting to investigate the
impact of different ;1 on the proposed scheme’s performance.
In this experiment, we evaluate classification accuracy by
varying p € {0.1,0.2,0.5,0.8,1}.

The simulation results are shown in Fig. [3(b)] and f(b)|
It appears that higher volunteer fractions negatively affect the
convergence speed of the global model, yet the impact on
the final classification accuracy is negligible: the difference
between the highest accuracy and the lowest accuracy is
merely 0.3% (IID) and 0.8% (non-IID), respectively. This
implies that a properly selected fraction of volunteers can
somewhat improve model performance, while too many may
slow down convergence.

3) Smoothing Coefficient §: The proposed secure param-
eter aggregation mechanism of MTSSFL, termed emphmean-
teacher-averaging, uses smoothing coefficient § to control the
exponential moving average when training the global model.
Here, we examine the training impact of different values for
d by varying ¢ € {0.1,0.2,...,0.9}.

According to the learning curves shown in Fig. and
3(f), it appears that the higher the value for J, the faster
training converges. However, Fig. shows that the final
accuracy decreased as ¢ increased, with the best value for §
on IID and non-I1ID data being 0.2 and 0.3, respectively. The
above trade-off has a significant implication for MTSSFL’s
real-world applicability: system operators will be able to either
increase § to accelerate convergence, or use relatively smaller

6Simulations are limited to ¢ < 100 due to the dataset’s moderate size.
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Fig. 4. Accuracy of MTSSFL for different hyperparameter settings.

values for § when maximizing classification accuracy is the on our assumption in Section [[lI-BT] The other is the workers’
main target. training time consumption. In this work, we empirically set
the default number of local training epochs E; = 5. To
further investigate whether the proposed scheme can meet the
requirements of crowdsourced TMI in fewer training iterations,
we also evaluate its performance with fewer local training

4) Local Iterations E;: 1t is rather challenging to guarantee
both high accuracy and low latency in the crowdsourced TMI.
Latency may occur due to two factors: one is the latency of
workers, which is excluded from the scope of this study based
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Fig. 5. Learning curves of MTSSFL for different numbers of local epochs.
TABLE I
ACCURACY AND TRAINING TIME OF MTSSFL FOR DIFFERENT NUMBERS
OF LocAL EPOCHS

FE; Accuracy (%) Training time (s)

1 89.1 750 £ 30
2 88.9 1480 £ 30
3 88.8 1920 + 45
4 88.3 2620 £ 70
5 89.2 3110 £ 80

Note: Deviations are due to fluctuations in the performance of
the computing device.

epochs, i.e., we test E; € {1,2,3,4,5}.

The corresponding simulation results are shown in Fig. |
and Table It is evident that the performance of MTSSFL
did not deteriorate when decreasing FEj. In fact, F; = 1
resulted in nearly the same accuracy and convergence speed
as F; = 5. However, the former led to a 75.6% reduc-
tion in training time. This reduction can be attributed to
the proposed consistency-updating scheme performing fewer
iterations. Thus, for time-critical scenarios, training time can
be reduced without significantly compromising TMI accuracy
by employing fewer local training iterations.

In summary, the learning curves presented in Fig. 3 and
5 shows that MTSSFL can achieve the satisfying conver-
gence performance under different conditions even though
the convergence speed may differ, which demonstrates the
convergence robustness of MTSSFL.

VI. SECURITY AND PRIVACY (S&P), AND
GENERALIZATION DISCUSSION ON MTSSFL

A. Security and Privacy

The FL nature can guarantee MTSSFL with good TMI
performance of the collaborative model without involving any
data exchange among the workers. Furthermore, MTSSFL also
allows workers only having unlabeled data to contribute to
training the global model without accessing the central server’s
labeled data. While in-depth S&P issues such as defense
against malicious attackers are out of the scope of this paper,

MTSSFL incorporates the following advantages in terms of
security and privacy:

¢ Resiliance. In MTSSFL, the amount of unlabeled data
involved in training is equal for each worker regardless
of how much data they actually have. For example,
in real-world scenarios, different workers may generate
different numbers of GPS trajectories due to factors such
as frequency of travel or online connectivity. This leads
to a mismatch in the amount of data they possess and can
therefore be used for training. For workers who contribute
significantly more data during training, if their data are
adversarially mixed with malicious or low-quality data,
the teacher model may easily be poisoned, and its TMI
performance may suffer. To mitigate this issue, we set the
constraint that the amount of data involved in training is
equal for each worker. Furthermore, in Section [[II-B1] we
assume that the security of uplink channels is higher than
that of downlink broadcasting channels. In MTSSFL, the
two channels (denoted in Fig. 2] by blue and red dotted
lines, respectively) are set up to use different frequency
bands or time slots, while the frequency bands also
change dynamically to protect the model transmission
from eavesdropping attacks.

o Trustworthiness. To preserve the contribution of each
worker and enhance trustworthiness during crowdsourc-
ing, an authorized third-party evaluator is involved in
examining the model updating, performance evaluation,
and aggregation processes of MTSSFL. The workers that
are tested to be anomalous will be disqualified from the
crowdsourcing. It is also worth mentioning that, as illus-
trated in Fig. [2] the third-party evaluator operates locally,
thereby reducing additional communication overhead and
avoiding possible malicious attacks during transmissions.

In this work, we focus on the semi-supervised federated learn-
ing performance of MTSSFL, and we will further investigate
the above S&P factors in future work.

B. Generalization

In this work, MTSSFL is proposed to solve the lack of
labeled data problems, which is a realistic problem in crowd-
sourcing TMI tasks. However, this problem is not peculiar to
the crowdsourcing TMI tasks, which also exists in other tasks.
Thus, the proposed framework can be used for a broader range
of semi-supervised federated learning. For those applications
which have, but not limited to, the following characteristics,
MTSSFL are well-suited:

o Expensive data labeling. Unlike some simple classifi-
cation tasks, the manual labeling of transportation mode
to raw GPS data can be very expensive since it requires
massive expert knowledge. However, ideally, supervised
learning is more advised since massive data with exact
labels usually develop more ideal training results [61].
MTSSFL can be considered in the cases where the
manual labeling is indeed unattainable.

o Stable and timely communication (data transmission).
As can be seen from the communication protocol of
MTSSFL in Algorithm [2] the data transmission between
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the central server and workers is relatively frequent
due to the design of consistency update approach. For
applications running in unstable or inferior network envi-
ronments, the possible straggling effects may degenerate
the framework’s overall efficiency.

o Semi-supervised classification task. As a semi-
supervised learning approach, MTSSFL is designed for
TMI, which is a classification task. For these “semi-
supervised classification” tasks, MTSSFL can be directly
applied. However, for “semi-supervised regression” tasks
where the output variable is real-valued (e.g., missing
data imputation) [|62f], a specific variant of MTSSFL is
required to handle them which is out of the scope of this

paper.

VII. SUMMARY AND FUTURE WORK

In this paper, we proposed a novel semi-supervised FL
approach for TMI to address a de facto problem that hinders
the realization of crowdsourced TMI: the fact that only a small
number of labeled data (owned by the central server) can be
used in model training, while the distributed workers only
possess their sensed (unlabeled) data. To this end, we first
introduced a deep ensemble-learning-based TMI scheme to
exploit the spatial-temporal relationships within GPS trajectory
data. We then proposed a semi-supervised FL framework,
MTSSFL, tailored to the aforementioned problem. To train the
distributed models having only unlabeled data at the workers’
end, we proposed an approach named consistency-updating
to get the central model trained with labeled data involved
in the worker models’ training process, under a “teacher-
monitor-student” triad. Furthermore, to improve classification
performance without the need for further training, we proposed
an EMA-based approach named mean-teacher-averaging for
model aggregation. In addition, we introduced a series of
privacy and security design of MTSSFL. Our extensive case
studies on a real-world GPS trajectory dataset showed that the
proposed scheme outperformed established TMI approaches
while protecting data privacy, performing comparably to the
state-of-the-art with only marginally lower classification accu-
racy. We also find the capacity of the proposed scheme for
handling non-IID data. By studying the influence of different
hyperparameters on the model performance, we demonstrated
the outstanding training efficiency of the proposed scheme,
which can benefit the crowdsourced task.

In future work, we will further investigate in-depth privacy
and security mechanisms for crowdsourced TMI. We will
also extend MTSSFL to other domains to consolidate its
universality and address other potential issues related to semi-
supervised FL.
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