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Abstract— In modern traffic management, one of the most
essential yet challenging tasks is accurately and timely predict-
ing traffic. It has been well investigated and examined that
deep learning-based Spatio-temporal models have an edge when
exploiting Spatio-temporal relationships in traffic data. Typically,
data-driven models require vast volumes of data, but gathering
data in small cities can be difficult owing to constraints such
as equipment deployment and maintenance costs. To resolve this
problem, we propose TrafficTL, a cross-city traffic prediction
approach that uses big data from other cities to aid data-scarce
cities in traffic prediction. Utilizing a periodicity-based transfer
paradigm, it identifies data similarity and reduces negative
transfer caused by the disparity between two data distributions
from distant cities. In addition, the suggested method employs
graph reconstruction techniques to rectify defects in data from
small data cities. TrafficTL is evaluated by comprehensive case
studies on three real-world datasets and outperforms the state-
of-the-art baseline by around 8 to 25 percent.

Index Terms— Traffic prediction, transfer learning, graph
neural network, time-series cluster, mutual information.

I. INTRODUCTION

RELIABLE traffic forecasting is considered an indispens-
able component in modern smart city construction, which

can benefit tasks such as route planning, traffic control, and
traffic network management [1], [2], [3] in the Intelligent
Transportation Systems (ITSs). A number of studies have
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investigated traffic prediction for decades. Autoregressive inte-
grated moving average (ARIMA) [4] and Kalman filter have
been widely used for time-series data in traffic prediction
problems. However, these methods use only historical observa-
tions from a single site to make predictions of future speed at
that location. As technology advances, data collection devices’
geographical information, i.e., longitude and latitude, are eas-
ily accessible for constructing spatial relationships among the
raw data. Convolutional Neural Networks (CNNs) are applied
to capture spatial features, considering that traffic states in
nearby areas are influencing each other. In addition, taking
the historical observation value of time-series into account,
Recurrent Neural Networks (RNN) are popular in capturing
temporal features within traffic data.

In recent years, traffic prediction methods, especially graph-
based methods, have attracted remarkable attention from the
intelligent transportation community [5]. Benefiting from the
fact that road networks inherently resemble graph struc-
tures, i.e., data collection devices on roads are represented
as nodes, and the connection between the roads are repre-
sented as edges, Graph Neural Networks (GNNs) are intu-
itively more suitable than CNNs to capture the non-Euclidean
spatial features from the road network [6]. Representative
methods including Temporal Graph Convolutional Network
(T-GCN) model [5], Spatio-Temporal Graph Convolutional
Networks (STGCN) [6], Diffusion Convolutional Recurrent
Neural Network (DCRNN) [7] exploit GNNs to model the
spatial information of road network and furthermore embed it
by the fine-grained high-dimensional features, and achieving
satisfactory results.

Although graph-based methods have brought strides in
traffic prediction, these methods ignore a practical problem
of this ITS application: the difficulty in data acquisition.
Despite the emergence of the industrial internet of things and
embedded computing devices, massive amounts of traffic data
are collected by interconnected stationery or dynamic traffic
devices (e.g., loop detectors [8], [9], radio frequency iden-
tification detectors [10], and traffic cameras [11]). However,
given the high maintenance costs, medium and small cities are
unable to deploy or maintain a large number of traffic sensors
in the long term to collect sufficient available traffic data.
Consequently, these cities may lack the methods of accessing
data or the correct prior knowledge to guide the construction
of smart cities [12], in particular ITS. Simultaneously, a lack
of smart city construction precludes the acquisition of more
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data. This phenomenon is also known as the “cold start”
problem. It also leads to a data imbalance in traffic data
collection in different cities. For instance, smaller cities are
more challenging to acquire data than larger cities, and they
have relatively rare knowledge of their historical patterns.
On the other hand, megacities with improving infrastructure
can conveniently collect traffic data from more connected
vehicles. Consequently, devising a reliable traffic forecasting
algorithm upon scarce and imbalanced data is essential for
small and medium cities.

The recent transfer learning technique can be a feasible
solution to achieve this objective. The core idea of transfer
learning for traffic prediction is to use large amounts of data
from other cities to provide intelligent predictions for cities
with scarce historical data [13]. It has preliminary applications
in other data analytic services, e.g., air quality detection [14],
ride-sharing detection [15], and cross-city chain-store site-
selection recommendation [16].

In the context of transfer learning, we regard the city
that provides a significant volume of data as the source
city. In the meantime, the target city refers to a city where
data is scarce. In transferable traffic forecasting tasks, [2]
trains a model directly with the large amount of source data
collected by the source city and then fine-tunes it with a small
amount of target data from the target city in the model’s
last few layers. [17] used support vector machine, and [18]
applied dynamic time wrapping to assist cross-city speed
prediction. Others introduced graph clustering to learn data
transfer methods [19]. However, the research above faces
notable challenges: 1) Uneven data distribution in different
cities may easily cause negative transfer of models in transfer
learning, which refers to the phenomenon that knowledge
learned on the source domain1 has a negative effect on target
domain feature extraction [13]; 2) Although the core discipline
of transfer learning is to share the same knowledge in two
similar domains, sharing incorrect prior knowledge may lead
to significant error accumulation [20]. To summarize, existing
transfer learning-based traffic speed forecasting approaches
mainly share the following drawbacks:

• Data distribution differences: While transfer learning is
to learn from the source domain and transfer knowledge
to the target domain, in almost all cases, the source and
target domains follow two different distributions. The dif-
ference in data distribution has a non-negligible adverse
impact on the effectiveness of transfer (negative transfer).
In addition, [21] points out that even time-series from
the same data source have uneven data distribution in
different time slots. Therefore, avoiding negative transfer
is a significant challenge in this problem.

• prior knowledge error: Existing traffic data often
record the GPS geographic location of detectors, allowing
GNN-based methods to capture features on the non-
Euclidean spatial structure constructed by location infor-
mation of traffic data. This approach requires predefined

1“Domain” in transfer learning consists of two parts: the feature space of
the city’s data and its marginal probability distribution. Typically, one city is
considered to be one domain.

Fig. 1. Red lines represents two Nav-BJ roads and blue lines are two Nav-HZ
roads, which come from different datasets. The figure shows a case where
roads in the same city can have different daily traffic trend, and ones from
different cities can be similar.

interconnection information developed by similarity or
metric distance, which requires significant domain knowl-
edge [22]. Furthermore, graphs generated in this way
are usually counter-intuitive and incomplete, contributing
irrelevantly to the target task [20]. In addition, the data
collection in the target cities is limited for the high costs
of deploying and maintaining facilities. Consequently,
there are concerns such as missing data from traffic sen-
sors and incorrectly designed adjacency matrix, indicating
that prior knowledge is not always reliable.

• Indistinguishable parameter sharing: Although deep
learning-based traffic prediction algorithms have shown
promising results, they tend to accentuate prominent
properties in the dataset. The data from the dataset follow
the same distribution, making traffic prediction possible
within one dataset. However, the shared parameters make
current methods perform poorly in capturing fine-grained
data features if transferred to another city [20]. As men-
tioned above, considering the different distributions of
two domains, directly transferring the model from the
source city to the target may inevitably result in inaccu-
rate predictions. Furthermore, the error caused by such
knowledge gaps accumulates during training.

To address these challenges, we design a graph-based traffic
prediction framework with transfer learning. In particular, the
main highlights of the proposed approach are summarized as
follows:
• Temporal Cluster Block: Temporal periodicity has been

proposed early on traffic tasks but is rarely applied to
transfer learning [23]. The graph structure’s properties
may differ for two data with divergent distributions.
However, traffic speed trends over time can be similar
in different cities, as shown in Fig. 1. Such common
features give us the idea of using transfer learning
methods for traffic prediction for small city governors.
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However, clustering of two differently distributed data in
transfer learning with conventional methods may produce
degenerate solutions. Therefore, we propose a temporal
clustering block (TCB) that uses mutual information
to better cluster road segments with similar temporal
properties.

• Graph Reconstruction Block: For the second challenge,
we propose a graph reconstruction block (GRB) that
generates a new graph of the clustered data produced
by TCB. The clustered data includes a subset of the
source and target data. This block uses the clustered data
without raw graph structure information to generate a
new adjacency matrix. The newly generated graph better
focuses on trend-categorically consistent data, i.e., data
with stronger speed-time trend relevance, which is helpful
to retain similar trend information during the transfer.

• Ensemble model: To address the third challenge (indis-
tinguishable parameter sharing), we propose an ensemble
model particularly focusing on local parameter sharing.
We feed multiple batches of clustered data into different
sub-models for training, reducing the data divergence
among the sub-models. Consequently, the more data sim-
ilarity, the better the transfer efficiency, notably reducing
negative transfer influence.

The rest of this paper is organized as follows. We first
review the background of traffic prediction, time-series cluster,
and transfer learning in Sec. II. Then, we present the prelim-
inaries in Sec. III. Sec. IV elaborates on the proposed system.
We conduct case studies and provide analytical discussions in
Sec. V. Finally, we conclude this paper in Sec. VII.

II. RELATED WORK

In this section, we review previous efforts on traffic
prediction. Transfer learning and time-series unsupervised
classification-related works are also presented.

A. Traffic Prediction

Traffic prediction has been extensively studied in past
decades. Some statistical methods, such as HA [24] and
ARIMA [4], are broadly adopted in the time-series commu-
nity. But these methods only consider temporal information,
neglecting the impact of adjoining roadways on each other.
Deep learning approaches show superior performance in cap-
turing spatial-temporal correlations and non-linear relations,
compared to the statistical methods above and machine learn-
ing techniques such as support vector regression (SVR) [25]
and K-nearest neighbor (KNN). Recurrent Neural Network
(RNN) is well-recognized for modeling time-series by extract-
ing information from past instances to capture temporal fea-
tures. Yet it suffers from the gradient vanishing and exploding
problems [26], [27]. The development of Long Short-Term
Memory (LSTM) and Gated Recurrent Unit (GRU) [28],
[29], [30] has advanced the capabilities of Recurrent Neu-
ral Networks (RNNs) for processing time-series data. These
techniques have evolved RNNs into a new generation of
models for handling time-dependent data. They address the
shortcomings of RNN and GRU, which further significantly

alleviates the computation burden by reducing the total number
of parameters learned from raw data.

In addition to RNNs and their variations, CNNs are another
type of deep learning approach that is frequently utilized to
incorporate spatial contextual information for traffic prediction
tasks [9], [30], [31]. In vanilla CNN-based traffic predictors,
the geographic map is intuitively divided into square cells to
form a grid. Each cell’s incoming and outgoing traffic flow
data are aggregated as the ground truth for prediction [32].
However, this approach destroys the non-Euclidean structure
of the road network. As a recent alternative, graph-based
neural networks provide a better choice to preserve the connec-
tivity and adjacency information of traffic networks [5], [33],
[34], [35], [36]. Specifically, Graph Convolutional Networks
(GCNs) utilize principles of spectral graph theory to extend the
concept of convolutional operations to non-Euclidean domains,
as demonstrated in [37] and [38]. These networks have been
shown to be effective in a variety of tasks, including those
involving graph-structured data. For example, [5] presented
T-GCN and applied GCN to learn the topology of road
networks and GRU to learn the dynamical changes of traf-
fic flow. [36] proposed an Attention-based Spatial-Temporal
Graph Convolutional Network (ASTGCN), which incorpo-
rates an attention mechanism to better model spatial-temporal
correlation. Furthermore, [7] extends the graph convolution
operator by introducing diffusion convolution and proposes
a deep learning framework named DCRNN for traffic flow
prediction. It uses bi-directional random-walk on graphs to
capture spatial correlation and encoder-decoder architecture
with GRU to capture temporal correlation. Reference [39]
uses a dynamic graph to improve traffic flow prediction.
Reference [40] proposes a new graph neural network layer
with an attention mechanism to better aggregate traffic flows
from neighboring roads.

The aforementioned methods provide extra spatial infor-
mation to traffic prediction while improving the prediction’s
overall performance. However, the road structures captured by
these methods are all predicated based on acquiring complete,
high-quality, and large volumes of traffic data. For cities
that lack accurate or sufficient historical data, typical traffic
predictors are insufficient to generate high-quality forecasts.
Alternative solutions are required in this context.

B. Transfer Learning for Traffic Forecasting Problems

Research on building traffic forecasting models has
significantly progressed and been applied in practical applica-
tions. However, these outstanding results are mainly produced
on large-scale datasets, making it difficult to train a model
with limited data. Concerning this fact, methods like Region-
Trans [41], and MetaST [42] try to tackle the data scarcity
problems in traffic forecasting by applying transfer learning
techniques. These two works focus on transferring knowl-
edge by building a region-matching and co-training principle
between cities. RegionTrans [41] transfers knowledge between
cities via regional similarity regularization. MetaST [42]
uses a vector array named ST-mem to store the meta-
information of source cites’ region clusters. It subsequently
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transfers knowledge between domains by matching the target
city’s region to ST-mem with an attention mechanism-based
approach. Nonetheless, either approach relies heavily on the
quality of initial road clustering: anomalous ones may lead
to negative transferability. Both methods are built based on
parameter sharing, which shares network parameters during
model training and transferring. They optimize the model
by calculating the losses between the prediction and ground
truth on different matching regions and combining them with
pre-defined coefficients. However, they ignore the inductive
sharing bias between the source and target domain, i.e., the
gradients computed on different sub-datasets clustered by
region matching are likely to cause conflicts in the gradient
descent direction, thereby undermining the overall perfor-
mance of the model.

Considering the defect of the aforementioned “global”
parameter sharing scheme, local parameter sharing is a wor-
thy strategy to reduce the negative transfer between mod-
els. TL_DCRNN [19] reduce information sharing on graphs
with fewer correlations by graph partitioning. However, this
graph partitioning approach requires that the sub-graph sizes
be aligned. Otherwise, the miss-aligned parts will be filled
with zero values, adversely affecting learning performance.
Moreover, as the graph partitioning operation is required on
both the source and target datasets, the accuracy of traffic
graphs becomes a crucial basis that influences the transfer
efficiency.

In this work, we follow this idea of sharing parameters in
local regions. This requires clustering methods to relax the
strong dependence on graph structure. Following, we briefly
introduce the major existing time-series clustering methods.

C. Time-Series Clustering

Time-series clustering methods are typically classified into
three categories: Whole time-series clustering, Subsequence
time-series clustering, and Time points clustering. We focus
on the Whole time-series clustering approach for its clear
correlation to this work. Interested readers are referred to [43]
for a more comprehensive overview of the clustering method.

Whole time-series clustering refers to clustering approaches
on discrete objects, where the objects in our work are the
discrete nodes with temporal properties. Generally, these clus-
tering methods can be further divided into the following
groups: partitioning, hierarchical, grid-based, density-based,
model-based, and multi-step clustering [43].

The most common partitioning method divides the n unla-
beled nodes into k groups, each containing at least one node
from the dataset. K-means [44] and K-Medoids [45] are
two widely-recognized representatives. However, they face the
challenge of determining the number of clusters k in advance,
which is difficult in practice [45]. While the hierarchical
analysis does not have this trouble, it is restricted to small
datasets due to the quadratic computing complexity [46].
At the same time, the grid-based method is either too slow
or too imprecise [47]. And the density-based way is not
widely employed in time-series data clustering due to its high
complexity [43]. Model-based methods attempt to recover the

Fig. 2. Graph construction process and the resulting feature tensor.

original model from a set of data. Representative models
are Markov chain [48], Neural Network [49], and Gaussian
mixture class models [50], etc. Previously, neural networks
were considered a less favored technique due to their pro-
longed execution time and small data volume capacity. Nev-
ertheless, the recent development of computing facilities and
deep learning techniques assist neural networks in analyzing
larger amounts of data with improved time and accuracy
performance. This method is becoming more prevalent than
ever in time-series clustering. Finally, the multi-step method
integrates multiple methods introduced above, aiming at their
respective advantages. In addition, [51] proposes calculating
the temporal similarity within a fixed time interval and treating
each road section as a single cluster merging the most similar
sections bottom-up to achieve clustering. Reference [52] uses
a hierarchical clustering algorithm with Pearson correlation
coefficients, again by continuously merging similar road sec-
tions for clustering. Reference [53] uses Gaussian mixture
model clustering. The first two, taken together, use a hierar-
chical clustering approach to merge bottom-up sections with
similar distance similarity functions. Still, this approach has
vague termination conditions, making the cluster formation
difficult to change. In contrast, the third uses a GMM approach
to clustering using probability, which may result in a single
data point belonging to multiple clusters, not the effect we
want to achieve in our task.

III. TRANSFERABLE TRAFFIC PREDICTION

This section introduces the preliminaries involved in transfer
prediction, including the definition of the traffic network,
transfer learning in traffic data, and the definition of traffic
prediction with transfer learning.

A. Traffic Network

We define each traffic road network as a graph G =

(V, E, A), where V is a set of N nodes (i.e., traffic sensors
in the city’s roads.); E is a set of edges, presenting the
connectivity among V; A ∈ BN×N is the adjacent matrix of
G. Fig. 2 gives a typical example of this graph construction
scheme and the resulting tensor formulation. If node 1 has
a connection to node 2, A12 = A21 = 1. Note that we
reconstruct the adjacency matrix in Sec. IV-B for the proposed
approach to capture the data correlation when historical data
is insufficient to build the nodal connectivity.

B. Transfer Learning in Traffic Network

Transfer learning is the knowledge transfer between the
source and the target domain. Let superscripts S and T
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Fig. 3. Data of the source and target cities in transfer learning.

represent the data of the source and target cities, respec-
tively. Subsequently, we denote the road network graph of
the source and target cities as GS

= (VS , ES , AS), GT
=

(VT , ET , AT ) respectively. Note that the number of nodes in
the two cities can be different. Fig. 3 gives an illustration to the
shape of source and target city data, namely, raw source data
XS ∈ RLS×NS×F and raw target data XT ∈ RLT ×NT ×F ,
where NS ̸= NT and the number of nodes in both cities,
LS ≫ LT are the length of time in the raw data from both
cities, and F is the number of traffic features. In our work,
we primarily investigate the traffic speed data transferability,
i.e., F = 1.

C. Problem Definition

The primary objective of transferable traffic prediction is
to predict future traffic data in data-scarce cities with the
transferred traffic knowledge from data-rich cities. In this
work, we integrate the data from the target city XT and the
source city XS in order to obtain trend-similar node clusters
C = (C1, C2, · · · , Cc) to facilitate the transfer, where c is
the number of clusters. Each cluster Ci includes a subset
XS ∈ RLS×NSi ×F , and XT ∈ RLT ×NTi ×F in the source
and the target cities, respectively, where

∑c
i=1 NSi = NS and∑c

i=1 NTi = NT are the respective nodes in all clusters.
For each cluster Ci , the H historical traffic observations on

graph GSi of the source city at time t is denoted as XSi
t =

(xSi
t−H , · · · , xSi

t−2, xSi
t−1) ∈ RH×NSi ×F . Each xSi

t ∈ R1×NSi ×F

represents a traffic state on sub-graph GSi at time t . The
aggregated XSi

t ∈ RH×NSi ×F is a set of traffic states from
time t − H to time t − 1. We apply XSi

t to train a model for
predicting the traffic speed of the next Q time instances YSi

t =

(xSi
t , xSi

t+1, · · · , xSi
t+Q−1) ∈ R(Q)×NSi ×F . In the transferring

process, we combine XSi
t and X Ti

t to predict the next Q
values of the target city YTi

t = (xTi
t , xTi

t+1, · · · , xTi
t+Q−1) ∈

RQ×NTi ×F . Finally, the following Q-step predictions on all
nodes of the target city at time t are derived by the results
from all clusters, i.e., YTt = {Y

Ti
t ∈ RQ×NTi ×F

}i .

IV. TRAFFICTL

This section proposes a novel transferable traffic predic-
tion model named TrafficTL to address the aforementioned
challenges in Sec. I. As depicted in Fig. 4, we first input
the integrated source and target city data into the proposed
clustering block (TCB), which is used to aggregate nodes with
similar temporal trends. With TCB, a group of clusters can be

obtained, each containing a portion of nodes with a similar
speed-trend in the source and target city. Subsequently, we use
a novel graph relation mining (GRB) module for each cluster
to calculate the similarities among nodes in the cluster and
obtain a similarity matrix W , which is used as the adjacency
matrix A. Finally, the adjacency matrix calculated by GRB
and the source city data are adopted in an ensemble module
for each cluster to train the network 9. During the transfer,
We replace a percentage β of the input data in the training
network with nodes from the target city. The training and
transferable network share parameters to obtain the prediction
results from the mixed cities’ data. We elaborate on the three
key building blocks in the following sub-sections.

A. Temporal Cluster Block

With regard to the first challenge (data distribution differ-
ence), we propose Temporal Cluster Block (TCB) to cluster all
potential shared factors based on a hidden feature generated
by a pre-trained GRU as shown in Fig. 5. We next add a
layer FC as a classification layer, which will be retrained
with a new number of clusters. The training optimization
objective is to maximize the mutual information between the
groups obtained after the left and right parts GRU-FC-Softmax
models. A comprehensive explanation of the method will be
displayed in the following paragraphs. In addition, the process
of clustering nodes is referred to as Node Aggregation in the
sequel.

It is worth noting that the traffic data are naturally unla-
beled, limiting the possibility of aggregating nodes in the
source and target cities with similar trends only based on
the feature data. Therefore, the problem becomes how to use
unsupervised learning to cluster similar nodes belonging to
two different distributed datasets. To that end, we propose
creating a comprehensive dataset that includes both source and
target data to eliminate the distribution gap. The samples from
the comprehensive dataset contain all nodes of the source and
target cities. Following that, we employ a contrastive learning
approach to classify all nodes in this comprehensive dataset.
Contrastive learning is an unsupervised learning method based
on mutual information. The basic idea is to cross-reflect the
object’s hidden features using different forms of the same
object. See references [54], [55], and [56] for more detailed
introduction.

During the process of node aggregation, we keep the set of
classification results with the largest mutual information and
regard it as inputs for the following blocks. In the sequel,
we first give the original definition of mutual information.
Then we describe the data pre-processing before node aggre-
gation and, finally, the mutual information computation in this
process. Fig. 5 illustrates the overall framework of TCB.

Mutual information refers to the infomax principle proposed
by Linsker [57], which plays a vital role in the quality
of the representations constructed and learned by generative
models [58]. The detailed definition of mutual information is
as follows:

Definition 1 (Mutual Information): For two discrete vari-
ables X and Y whose joint probability distribution is
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Fig. 4. Overview of the proposed traffic prediction framework with transfer learning. The TCB module clusters data with similar periodicity in the source
and target city. GRB reconstructs the traffic graph with the similarity matrix W . The training process uses the source data for Spatio-temporal information
extraction, and the transfer process replaces part of the source data with target data to get the prediction results.

PXY (x, y), the mutual information between them, denoted by
I (X; Y ), is defined by

I (X; Y ) =
∑
x,y

PXY (x, y)log
PXY (x, y)

PX (x, y)PY (x, y)
. (1)

Mutual information quantifies the probability that these two
variables share information. In the TCB module, we use it as
the loss function for the clustering network 8 to select the
best number of clusters k and calculate each node belonging
cluster.

1) Data Pre-Processing: Before aggregating nodes from
multiple cities, we pre-process and align the raw data for easier
subsequent computation. Without any data pre-processing,
traffic speed data of source and target cities are shaped as
shown in Fig. 3. We assume the source data to be n times
the length of the target data along the time dimension, i.e., n
is the ratio of source-target data quantities. To make them of
the same lengths, we employ a naïve resampling method and
replicate (n − 1)× XT along the time dimension to increase

the length, i.e., n · LT = LS as shown in Fig. 5. (The light
orange block is copied to dark orange ones and stacked to
reach the same length as the blue one, where n is the number
of orange blocks.) Subsequently, we concatenate the source
and target city data (the blue and orange blocks) to make
XC
= [XS , XT1 ∥X

T
2 ∥ . . . ∥X

T
n ] ∈ RLS×(NS+NT )×F , where

XTi is the i-th replication of the original XT . The new raw
dataset XC contains a total of NS + NT nodes. Following
the idea of contrastive learning that applies different forms
(views) of the same object to cross-reflect the object’s hidden
features, we sample two subsets from the comprehensive
dataset XC with time difference τ , where 0 < τ < H . In traffic
prediction, we predict the traffic states at future times with
historical data containing latent information about the future
data. Whereas the two subsets with a time gap of τ have
overlapping parts, i.e., they share potential future information.
Consequently, their predicted classification results should be

Fig. 5. Data pre-processing and node aggregation in TCB.

intuitively similar. In this work, the comprehensive dataset XC

is an object whose two subsets with gap τ are different forms
of itself. We expect the classification probabilities of each node
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learned from these two subsets to be as consistent as possible
and to maintain maximum mutual information.

We define these two subsets which sample from the com-
prehensive dataset as follows: The immediate past H his-
torical observations at time step t is the first subset XC

t =

(xC
t−H , · · · , xC

t−2, xC
t−1) ∈ RH×(NS+NT )×F . Take another H

historical observation traffic states at time step t + τ as
the second subset XC

t+τ = (xC
t+τ−H , · · · , xC

t+τ−2, xC
t+τ−1) ∈

RH×(NS+NT )×F after τ . Then, we combine the two subsets
XC

t and XC
t+τ into a pair of input data (XC

t ,XC
t+τ ).

2) Node Aggregation: (XC
t ,XC

t+τ ) ∈ XC is a paired data
sampled from a joint probability distribution P(XC

t ,XC
t+τ ).

We devise a neural network called Cluster Net 8 to extract
features from the pair of data, making probabilistic predictions
about classifying a couple of data with the same distribution
and reinforcing the mutual information collected in the clas-
sification results. The network comprises a pre-trained GRU,
a Fully Connected (FC) layer as a classification layer, and
a softmax activation layer. Specifically, GRU aims to extract
hidden temporal information. FC and the softmax active layers
generate the probability of which clusters the nodes belong
to. FC layer is retrained every time with a different number
of clusters c. We further acquire probabilistic information of
classifications when the inputs are XC

t and XC
t+τ , respectively

by a cluster network 8. Following that, we calculate the
likelihood (mutual information) of classification possibility
obtained by network 8, namely, I[8(XC

t ,XC
t+τ )]] depicted in

Fig. 5. The output classification probabilities 8c(X ) ∈ [0, 1]c

over c clusters can be represented by a distribution of a discrete
random variable z, namely, P(z = c|X ) = 8c(X ), where c is
determined by mutual information, and z is the representative
feature of the input data. For XC

t and XC
t+τ , zc and zc+τ

are their discrete representations, respectively. With the pair
of input data (XC

t ,XC
t+τ ), the conditional joint distributions

P(zc = c, zc+τ = c′|XC
t ,XC

t+τ ) = 8c(XC
t ) · 8c(XC

t+τ ) are
specified. This formula suggests that zc and zc+τ should be
independent. However, for the network 8, the inputs XC

t and
XC

t+τ obey the same distribution since both of them are taken
from the dataset XC. Hence, zc and zc+τ are not entirely
independent. This accords with the intuition that we can learn
from historical data to predict future data since both contain
common latent features. Accordingly, the classification proba-
bility obtained by the same network 8 should be similar when
the two historical data are developed with a time difference τ .
In other words, the predicted classification probability for zc
can alternatively be indicated by zc+τ . The joint probability
distribution P(zc = c, zc+τ = c′) is given by the c × c
matrix Pcc′ ,

Pcc′ =
1
m

m∑
i=1

8c(XC
t ) ·8c(XC

t+τ )
⊤, (2)

where m is the number of samples. Summing over the rows
and columns of this matrix yields marginal probabilities
Pc = P(zc = c) and Pc′ = P(zc+τ = c′). For convenient
calculation, Pcc′ is symmetrized by

P̂cc′, jk = P̂cc′,k j =
Pcc′, jk + Pcc′,k j

2
, (3)

Algorithm 1 Temporal Cluster Block (TCB)
Input:

Data XC
t , XC

t+τ ,
the number of clusters c ∈ {c1, c2, . . . , cm}

Output:
Clustering result C = {C1, C2, . . . Ck}.
the optimal number of cluster c

1: Initialize Ibst = None, C = None and cbst = None
2: for each c do
3: repeat
4: Calculate the mutual information I
5: if Ibst is None or Ibst < I then
6: Cbst ← C
7: cbst ← c
8: end if
9: until convergence

10: end for
11: return cbst and Cbst .

where j, k are the indices of rows and columns of Pcc′ . The
objective function can be correspondingly derived as follows:

I(zc, zc+τ ) = I( P̂cc′) =

c∑
1

c′∑
1

P̂cc′ ln
P̂cc′

Pc · Pc′
, (4)

The goal of TCB is to maximize (4) for the best clustering
results and the number of clusters with the largest mutual
information. The algorithm is shown in Alg. 1.

B. Graph Reconstruction Block

With respect to the second challenge (prior knowledge
error), we propose a new scheme for cluster correction on
the distance to compensate for the error. Besides, the scheme
also corrects accumulated errors in TCB. In Sec IV-A, we pre-
sented employing mutual information for node aggregation of
multiple cities’ mixed data. The clustering relies entirely on
validating the mutual information without using the cluster
label of the raw data. While it is true that no label exists in
practice to verify the clustering results, the minor clustering
error may accumulate and lead to notable performance degra-
dation if not properly counteracted. This issue needs to be
resolved for better prediction transferability, and we rely on
the proposed GRB to address the two issues.

Distance representation is commonly adopted in various
clustering and classification tasks. Among the representations,
Euclidean and Manhattan distances are more successful than
others for Euclidean-structured data like images. A variety
of improved versions have been developed to aid image
processing. However, time-series data is not naturally fit for
measuring Euclidean distance. This is because time-series
are more susceptible to temporal transformations, such as
shifts and practical scaling than others, which are inevitable
during data collection. If the error between data is established
based on Euclidean distance, it may not accurately reflect
their similarity. In contrast, DTW is more frequently used to
determine the time-series distance.
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In the previous section, we employed H historical traffic
states for learning data periodicity. For most studies, H
historical traffic states tend only to contain information for a
limited duration, e.g., 1 hour. On the other hand, the periodicity
is statistically observed in other time spans, e.g., days, weeks,
and even years. As a result, we apply the DTW approach in
GRB to reconstruct the graph structure among nodes based on
long-term internode correlation and strengthen the connection
of their periodical similarities.

For cluster Ci , i ∈ [1, 2, · · · , c] that contains N C
i =

NSi + NTi nodes (includes source and target), GRB first
randomly selects one day of data on each node. Let D be the
length of one day’s data,2 and D ⩽ LT . For any two nodes
N1, N2 ∈ RD×1 in Ci , i ∈ [1, 2, · · · , c], we compute their
distance matrix M ∈ RD×D , M jk =

∣∣N1, j − N2,k
∣∣ , j, k ∈

[1, 2, · · · , D]. N1, j is the j-th speed of node N1 and N2,k is
the k-th speed of node N2. The next step is to find the shortest
path from M11 to M DD as follows:

Lmin(1, 1) = M11;

Lmin( j, k) = min{Lmin( j − 1, k), Lmin( j, k − 1),

Lmin( j − 1, k − 1)} + M jk,

(5)

where Lmin( j, k) represents the minimized distance from M11
to M jk , and Lmin(D, D) is the minimum distance between
nodes N1 and N2.

The shortest distance Lmin(D, D) of every two nodes in
the cluster Ci is calculated to form a similarity matrix W =
{Wmn} ∈ RN C

i ×N C
i , where Wmn represents the minimum dis-

tance between node Nm and Nn, m, n ∈ [1, 2, · · · , N C
i ]. The

adjacency matrix A can be obtained by distance calculation
from geographic location information and can also be regarded
as a distance similarity matrix. In TrafficTL, to attenuate
the adverse influence of incorrect prior adjacency matrix and
to bolster the temporal trend connectedness between nodes,
we use the similarity matrix W in place of A for convolution
operation on graphs.

C. Ensemble Model

In response to the third challenge (indistinguishable param-
eters), we propose an ensemble scheme to minimize the
differences between data of multiple cities by training various
models with different clustered subsets to reduce the negative
impact of indistinguishable shared parameters in one model.
Each cluster in this design (depicted in Fig. 4) has its network
9 for training and sharing parameters with the transferable
network 9 ′. The whole complete model is stacked by c 9s
and 9 ′s. The architecture of networks 9 and 9 ′ in TrafficTL
is shown in Fig. 6. It is composed of an encoder and a decoder.
The encoder includes H GCN-GRU connection layers, each
receiving an observation state xt , t ∈ (1, 2, · · · , H), and then
saves and delivers the encoded information to the following
layer. The decoder comprises Q GCN-GRU layers to recover
encoded information and convert it to the following Q-steps
traffic states. Among the layers, GCN is a type of neural

2We use one day instead of weeks or years due to heavy computation and
scarce target city data concerns.

Fig. 6. The architecture of network 9’s and 9 ′’s in ensemble models.
H historical traffic states with their adjacency matrix A are fed into the
connective GCN-GRU layers. h is the hidden size of the GRU layer. The final
output of encoder ht contains the past H temporal and spatial information.
And we get the prediction Ypre through the decoder to decode the hidden
state ht .

network that captures spatial information on topological graph
structures. The spatial information of the topological graph
is represented by the adjacency matrix A, which records the
node connections. Additionally, GRU is a variant structure of
LSTM and RNN which alleviates the gradient disappearance
and explosion problem and has better results in solving the
long-term dependence problem over canonical RNNs.

1) GCN Layer: In GCN layers, we denote A as the adja-
cency matrix, and Ã = A + IN is the adjacency matrix
with added self-connections, where IN is the identity matrix.
Thereby, the graph Laplacian matrix can be computed as:

L = D−
1
2 Ã D−

1
2 , (6)

where D = diag(
∑

j Ai j ) is the diagonal degree matrix.
For each graph convolution operation, we have

H (l+1)
= σ(L H (l)θ (l)), (7)

where l is the layer index, H (l) stands for the output of the
l-th layers, θ (l) represents the l-th layer’s parameters, and σ(·)

is the sigmoid function. Combined with (7), the output is
calculated as follows:

f (X t , A) = σ(L ReLU(L X W0)W1), (8)

where f (X t , A) is the output, X t is the feature matrix of the
set XSi

t and X Ti
t , W0 stands for the weight matrix mapping

input to the hidden unit, and W1 represents the weight of the
next layer. ReLU(·) is the Rectified Linear Unit [59]. It is
worthwhile to note that the involved adjacency matrix A is
reconstructed as previously introduced in Sec IV-B considering
the lack of target city data.

2) GRU Layer: GRU contains a reset gate r and an update
gate z. The former aims to combine new information with
previous information, and the latter aims to choose the infor-
mation that needs to be remembered. The two gates can be
expressed as

rt = σ(Wr · [ht−1, X t ]), (9)
zt = σ(Wz · [ht−1, X t ]), (10)

where σ represents the sigmoid activate function, ht−1 is the
previous state at time step t−1, and X t is the input time-series
feature matrix at time t . Through the reset gate rt , we can get
the next state ĥt which contains part of previous information
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determined by rt

ĥt = tanh([rt ⊙ ht−1, X t ]), (11)

where ⊙ represents the Hadamard product, the tanh function
can alleviate the gradient explosion and reduce the computa-
tion. The update state at the current step is as follows:

ht = (1− zt )⊙ ht−1 + zt ⊙ ĥt . (12)

3) Transfer Process: As shown in Fig. 4, we take nodes
belonging to the source city in cluster Ci and their adjacency
matrix ASi to make up the input data XSi

t for training network
9i . YSi

pre is a set of the following Q traffic states’ predictions
at time t . Network 9i is optimized by minimizing the L1 loss
between YSi

pre and YSi
true, where YSi

true is the Q traffic states’
ground truth. Subsequently, we replace a portion (defined by a
control parameter β) of the source city nodes XSi

t with higher
similarity to the target city nodes (or randomly replace some
nodes in the source city), shown as red dots in Fig. 4. The
predictive network 9i shares parameters with the transferable
network 9 ′i . Y

Si+Ti
pre is the prediction of the mix-cities input

data. Evaluation metrics are calculated by the forecasting
results of the target city YTi

pre with their ground truth YTi
true.

The whole process can be described as follows:

XSi+Ti
t ←Rep(β · XSi

t ), (13)

9i
θi
↔9 ′i , (14)

YTi
pre =9 ′i (X

Si+Ti
t ), (15)

Mi =Evaluation(YTi
pre,Y

Ti
true), (16)

where Rep(·) means replacing β of XSi
t with target nodes,

θi is the shared parameters in predictive network 9i and
transferable network 9 ′i , Mi is a set of metrics of cluster
Ci and Evaluation(·, ·) stands for the performance evaluation
metric. At last, we summarize the overall metric M by,

M =
1
c

c∑
i=1

Mi , (17)

where c is the number of clusters. We also provide the
algorithm of Ensemble models in Alg. 2.

V. CASE STUDIES

This section compares the proposed TrafficTL with cur-
rent state-of-the-art over three widely-recognized datasets.
Next, we evaluate the effectiveness of TCB and GRB mod-
ules. Finally, we investigate the model sensitivity to hyper-
parameters.

A. Dataset and Configurations

In the case studies, we adopt three real-world traffic speed
datasets as follows.
• Nav-BJ: The dataset collects the average vehicle speeds

of 1, 362 on major roads in Beijing, China, from January
1st to July 1st, 2019. Specifically, there are two sets
of available data, the adjacency matrix and the feature
matrix. The former is binary and consists of 1, 362 roads.

Algorithm 2 Ensemble Models Algorithm
Input:

Clustering set C = {C1, C2, . . . Cc}

Output:
metrics E

1: Initialize sub-model parameters θc
2: for each C ∈ C do
3: repeat
4: Train model with data XS ∈ C
5: Calculate the loss
6: Update model parameters θk
7: until convergence
8: Save sub-model Mc
9: end for

10: for each C ∈ C do
11: for round 1, 2, . . . do
12: Replace β of all nodes in XS with X T
13: Get prediction YS+Tpre with sub-model Mc

14: Calculate metric between (YTpre,YTtrue)

15: end for
16: Calculate average cluster metric Mi
17: end for
18: Calculate average total cluster metric M = 1

c
∑c

i=1Mi .
19: return M

Fig. 7. Overview of the three investigated cities with road segments colored
by black.

The 52, 128× 1, 362 feature matrix contains 8, 990 time
steps, and row data exhibits the speed of all roads at the
corresponding time.

• Nav-SH: The dataset includes the average vehicle speeds
of 1, 401 on major roads in Shanghai, China, from
January 1st to May 1st, 2019. The feature matrix’s shape
in Nav-SH is 34, 560× 1, 401, and the adjacency matrix
shape is 1, 401 × 1, 401. We employ the feature matrix
as training data.

• Nav-HZ: The dataset includes the average speed in
Hangzhou from January 1st to July 1st, 2019. The survey
data includes 413 major roads in Hangzhou, China.
It includes a 52, 128 × 413 feature matrix and a 413 ×
413 adjacency matrix.

All three datasets were collected with a constant 5 min
interval. The main collection roads of the three datasets are
visualized in Fig. 7. We investigate the effect of transfer
learning on traffic prediction for cities with scarce data.
In particular, we use Nav-SH, which contains fewer data in
time horizon, and Nav-HZ, with fewer roads (413) as the
target cities to be transferred to. We use only one day of data
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(i.e., 288 time steps) from the target city as the validation
dataset and ten days of data as the test dataset. In order to
obtain the correlation on the time trend, max-min normaliza-
tion is applied to the data.

All experiments are conducted on a Linux server with
Intel E5-2620v4 CPUs and GeForce RTX 2080Ti GPUs. All
baselines and the proposed model are built with Pytorch
1.7.0 and Python 3.8.3. When making predictions, we use
historical data of the immediate past hour to forecast the
next 15 min/30 min/60 min traffic speed, namely, H = 12,
Q = 3/6/12, respectively. We train our model with the Adam
optimizer. The initial learning rate is set to 0.05, the batch size
is 64, the maximum training epoch for proposed models is 50,
and the early stopping strategy is adopted where the training
is terminated if the best result is not updated for consecutive
5 epochs. The cluster number is 10. The percentage β of the
replaced nodes is 0.2.

B. Evaluation Metrics

We adopt the following three metrics to evaluate the per-
formance of models:

1) Mean Absolute Error (MAE):

MAE =
1
m

m∑
i=1

∣∣∣(Yi − Ŷi )

∣∣∣ (18)

2) Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1
m

m∑
i=1

(Yi − Ŷi )2 (19)

3) Mean Absolute Percentage Error (MAPE):

MAPE =
100%

m

m∑
i=1

∣∣∣∣∣ Ŷi − Yi

Yi

∣∣∣∣∣ (20)

where Yi and Ŷi are ground truth and predicted speed, and m
is the number of samples.

C. Baseline Models

We compare the proposed model with two categories of
methods: non-transfer learning and transfer learning meth-
ods. For non-transfer learning methods, we employ T-GCN,
ASTGCN, DCRNN and XGBoost as baselines. For trans-
fer learning models, we choose RegionTrans, MetaST, and
TL-DCRNN:
• T-GCN [5]: A temporal graph convolutional network

model combining GCN with GRU.
• ASTGCN [36]: A Spatial-Temporal Graph Convolution

Network model based on a self-attention mechanism.
• DCRNN [7]: A traffic predicting model capturing the

spatial dependency with bidirectional random walks on
the graph.

• XGBoost [60]: An efficient gradient-boosting decision
tree algorithm that uses multiple trees to make decisions
together.

• RegionTrans [41]: A transferable model with knowledge
transfer that matches source cities with similar regions in
target cities by learning city-region matching functions.

• MetaST [42]: A spatial-temporal network with a meta-
learning paradigm learns the generic initialization of a
spatio-temporal network to adapt to the target city and
achieve knowledge transfer.

• TL_DCRNN [19]: A model for transferable traffic predic-
tion based on DCRNN model, and transfer the knowledge
between source and target cities with graph partitioning
and clustering.

D. Model Performance Comparison

Table. I presents the simulation results of the proposed and
baseline approaches. Underlines highlight the best-performing
results. It is obvious that the proposed TrafficTL outperforms
all competing baselines by achieving the lowest MAPE and
RMSE. MAE is also the lowest in most cases and is minus-
culely inferior to the best non-transfer model DCRNN in the
two cases.

Compared with the non-transfer models without †, TrafficTL
adds additional information from the source city data for the
traffic prediction task in the target city. As a non-transfer
approach, T_GCN, ASTGCN, and DCRNN are trained using
one day of the target data training for prediction. TrafficTL,
on the other hand, employs the data from the source city
instead of the target city in training, which decreases the inac-
curacy caused by defective prior knowledge in the target city’s
data in comparison. It effectively transfers potential knowledge
from the source city to the target city, reducing negative
transfer. Additionally, TrafficTL is superior to XGBoost in that
it can simultaneously learn the data of large cities, allowing
it to understand the later state of the target city. XGBoost
is capable of learning the temporal features of individual
roads from corresponding single nodes, leading to valuable
predictions. Specifically, the data used for these predictions is
more closely aligned with the distribution of data collected for
the target road, allowing for a more accurate representation of
traffic conditions on the concrete road. However, the potential
for missing data and long intervals between training and
test datasets can ultimately hinder the ability of XGBoost to
forecast future traffic conditions in a target city accurately.
Compared to the model with † and without, incorrect prior
knowledge negatively impacts the whole model. Nevertheless,
TrafficTL avoids the risk of negativization initially because it
does not rely on information from unreliable data.

In terms of the transfer models, Transfer models are overall
better than non-transfer models, except for TL_DCRNN. The
reason for this is that the model’s performance on the target
task may be hampered by the generalization gained from the
source domain. TL_DCRNN may result in different types
of roads being classified together. Then features from other
roads may interfere with learning road features in one class,
causing negative effects. Therefore, TrafficTL is taken to learn
the respective road section situations, even if the same type
of intersection is divided into multiple classes, to minimize
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TABLE I
THE PERFORMANCE OF TRAFFICTL AND BASELINE APPROACHES

TABLE II
PERFORMANCE COMPARISON OF DIFFERENT AREAS. METRICS ARE

SHOWN IN MAE/RMSE/MAPE. MAPE IS REPORTED
IN PERCENTAGE (%)

the occurrence of misclassification and to try to avoid the
interference of negative transfer.

TrafficTL outperforms all three baselines, namely,
TL_DCRNN, MetaST, and RegionTrans. Compared with
TL_DCRNN, TrafficTL uses a more flexible node clustering
method (TCB) and generates a comprehensive dataset to
alleviate the source and target dataset gap. In addition,
an error rectified module (GRB) is applied to eliminate the

error between the prior knowledge and the clustered data.
Compared with MetaST, RegionTrans, we apply ensemble
models to distinguish parameters for reducing the conflicts
caused by combining coefficients in the direction of gradient
descent. Furthermore, our approach surpasses the non-transfer
model in terms of long-term series prediction stability. When
predicting the long-term traffic speed in the target city,
a much larger amount of historical data is required to extract
the long-term data dependency. However, such historical
data are scarce in the target city. Incorporating source data
in this scenario adds value to long-term prediction, which
cannot be utilized in other baselines. Finally, the dataset
with fewer nodes (Nav-HZ) produces superior results when
learning from source datasets since the dataset in the source
city provides sufficient auxiliary samples for the target with
fewer nodes to learn. Fig. 8 visualizes the predicted values
of several non-transfer methods for four road sections in
Nav-HZ.3 In order to compare the transfer effects among
different countries and datasets, we also used the Hong Kong
dataset and the PEMSD7 dataset to compare different types

3DCRNN results are adopted from DL-Traff-Graph [61]. We employ source
codes published by the authors for T-GCN [5] and ASTGCN [36].
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Fig. 8. The predictions of T-GCN, DCRNN, ASTGCN, and TrafficTL for the selected roads in Nav-HZ.

of regions. We use the second-best performing DCRNN in
Table I as the comparison model, and Table II shows the
performance of TrafficTL on the two datasets. From Table II,
we can see that the transfer effect of TrafficTL is improved
on both datasets. The improvements are greater on dataset
PEMSD7 than Hongkong, which may be due to the difference
in the similarity between the datasets.

E. Ablation Study

Three components comprise TrafficTL, where TCB enables
unsupervised clustering of traffic nodes across multiple cities,
and GRB corrects prior and cumulative errors. Finally,
the ensemble calculates the results across different clusters.
To evaluate the performance of TCB and GRB on TrafficTL,
we remove a block each time while keeping the others. Note
that the ensemble aggregates the results of each cluster, which
change according to the clustering module TCB. Hence, it is
coupled with TCB in the ablation study. We define two new
variants of TrafficTL as follows:
• Traffic(w/o TCB): The traffic nodes of the two cities are

not clustered by TCB.
• Traffic(w/o GRB): The adjacency matrix is the typical

diag(ASi , ATi ) ∈ RN C
i ×N C

i instead of the similarity
matrix W generated by GRB.

The results of the ablation study are shown in Table I.
Without the TCB or GRB block, the models’ performance
falls short of TrafficTL. Nonetheless, TrafficTL(w/o TCB) and

TrafficTL(w/o GRB) still perform better in the transfer process
from Nav-BJ to Nav-SH and Nav-HZ than the non-transfer
models. This result is caused by the fact that there are still
data from the source city that can be used as learning samples
for the target city’s traffic prediction. In addition, a comparison
of the results obtained from the transfer of traffic data from
Nav-BJ to Nav-SH versus the transfer from Nav-BJ to Nav-HZ
revealed that the latter process resulted in a more successful
transfer when the target city (Nav-HZ) had a smaller number
of road nodes (413). Specifically, the transfer from a source
city with a larger number of road nodes (e.g., Nav-BJ) to a
target city with a smaller number of road nodes (e.g., Nav-HZ)
was found to be more successful than the transfer from the
same source city to a target city with a larger number of
road nodes (e.g., Nav-SH). This suggests that the presence of
fewer road nodes in the target city may facilitate the process
of finding similar nodes in the source city in terms of traffic
states, leading to a more effective transfer. Moreover, it also
indicates that better results can be obtained when performing
transfer learning in truly small cities. While it is unfortunate
that datasets from three large cities were used as ground truth
to validate the model’s effectiveness, this finding suggests
that better results may be obtained when performing transfer
learning on truly small cities that have fewer roads.

F. Transfer Ability Analyze

In this sub-section, we try to give an example to clarify
transferable knowledge. Fig. 9 shows the data collected on a
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Fig. 9. An illustration of one road in dataset.

Fig. 10. Predictions with several methods of the data between red lines.

particular road. It can be seen that there are missing values
for a significant portion at the beginning of the section. In this
experiment, only a tiny portion of the data prior to the green
line is utilized as training data, while the portion after the green
line is used as test data to evaluate the model’s performance.

Fig. 10 shows the predictions of each model for the ground
truth between the two red lines in Fig. 9. As demonstrated in
Section V-D, XGBoost’s performance is largely dependent on
the historical data distribution for a specific road. While this
focus on individual road data can be beneficial, it also limits
XGBoost’s ability to make accurate predictions in situations
where no available data for learning. As seen in Fig. 10,
XGBoost cannot predict the future well from historical values
with missing data because it uses historical data for each road
segment, i.e., only temporal attributes are involved. Several
other models can learn some traffic states of the road node
from the normal recorded values in other adjacent road nodes
through the adjacency matrix. However, they are limited by
the size of the available data, and the performances of these
models are not better than the predictions learned by TrafficTL
through a large amount of reliable source city data.

G. Parameter Sensitivity

In this subsection, we investigate the influence of cluster
number c and source data quantity n on the transfer prediction
performance. Given the small data size (fewer nodes) of Nav-
HZ, it is more representative of the task of providing traffic
forecasts for small cities by transferring data from large cities.
The results presented in this subsection are based on the
transfer from Nav-BJ to Nav-HZ.

1) The Optimal Number of Clusters: We explore the ideal
number of clusters in this test. Selecting the optimal number
of clusters c is a well-known challenging problem in unsu-
pervised clustering [46] In TrafficTL, we explore the optimal

cluster number according to mutual information and model
performance, and the candidate c values are from 2 to 20.
Note that mutual information is calculated according to the
likelihood that the possibility of the source and target city’s
nodes (with dataset XC) are classified, which is described in
detail in Sec. IV-A.

The Mutual Information clustering scores (MI scores) of
TCB are shown in Fig. 11. When cluster number c gets
large, there is a tendency for the clusters to share more
mutual information, which is consistent with the intuition.
The larger the number of clusters, the more nodes each
cluster contains, and the more fine-grained the same features.
However, increasing the number of clusters increases training
time and model storage requirements. From Fig. 11, we can
observe that when cluster number c reaches 9, the trend
of MI increase is slowed down. Besides, the figure also
shows the performance (MAPE) of different c in Fig. 11.
A negative correlation is clearly reflected between the MI score
and MAPE. Furthermore, the cluster block TCB based on
mutual information provides an unsupervised node aggregation
method. The correlation between the MI score and MAPE
demonstrates its effectiveness.

2) Transferability of Source Data Quantity: The concept
of transfer learning is to use a large amount of data from
other cities to assist cities where data is scarce. Therefore,
a natural question arises: how much source information is
required to help the target city learn? Finding an appropriate
amount of data minimizes the computational effort of the
model and improves its efficiency. We investigate the effect
of source-target data quantity size ratio n used on the transfer
performance.

As illustrated in Fig. 12, MAE and RMSE decrease before
n = 120, where the degradation is slowed down thereafter.
When the source data “richness” is saturated, more source
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Fig. 11. The mutual information scores and model prediction performance
shown with MAPE under different number of clusters.

Fig. 12. The performance metrics under various ratio of source-target data
quantity size.

data do not further improve the transferability, thereby, the
performance metrics. In addition, increasing n involves more
training data. However, the figure illustrates that increasing n
does not lead to a consistent linear improvement in perfor-
mance, resulting in unnecessary computation.

VI. DISCUSSION

In this section, we aim to explore potential concerns related
to the applications of our work. As mentioned earlier, during
the initial stages of urban development, the deployment of
equipment can be quite expensive. Our previous sections
have highlighted that transfer learning can potentially reduce
these costs by offering cost-effective city-wide traffic forecasts.
However, two questions naturally arise with this model: “Is it
necessary to build a data collection network of fixed-point
devices for cities?” and “Why do we need transfer learning?”

Regarding the first problem, Floating Car Data (FCD) has
been widely utilized in transportation research for some time.
According to a 2008 report [62], FCD offers low cost and
ease of access, and with improvements in GPS accuracy,
it has become a potentially viable data source for traffic
analysis. However, several academic papers have noted chal-
lenges in utilizing FCD as a source of information for traffic
analysis. These challenges include privacy concerns when
working with companies that collect FCD, and difficulties in

Fig. 13. (best viewed in color) Green Part: Reasons for RCD. Purple
Part: Challenges of considering data source from companies. Orange Part:
Challenges of plans by managers self. Blue Part: The solution of the facing
problem.

effectively integrating and processing FCD data collected by
the government.

• One such challenge is privacy concerns when working
with companies that collect FCD. As FCD collection
becomes more feasible with advancements in GPS tech-
nology [63], there is growing concern about protecting
personal privacy [41], [64]. When working with major
providers of FCD collection sources such as Didi and
Uber, governments may become embroiled in commercial
transactions and privacy-related issues [65].

• Another challenge is related to data collection by the city
itself. There may be difficulties in effectively integrating
and processing data when the government collects FCD.
Several challenges arise when collecting FCD data, such
as inaccurate data resulting from drivers forgetting to end
their trips, the complexity of integrating multiple tracks of
varying lengths for a particular road [63], [65], [66], [67],
and the limitation of data coverage, as the government can
only mandate the installation of FCD collection devices
for its controlled departments such as taxi groups, rather
than requiring all residents to upload their data [64].

Further, we figured that the form of data used has a high
correlation with the task and the proposed method according
to [61]. Methods based on graph structures have become more
prevalent since the publication of STGCN in 2018, as fixed-
point data in the Roadside Collected Data (RCD) style makes
it easier to turn traffic networks into graphs that capture
spatial information. While 58% of the works still relied on
RCD as their data source, 42% utilized FCD as their data
source [68]. City managers aiming for growth should consider
utilizing both types of data [69] and give greater attention to
establishing their own intelligent transportation data collection
networks.

Regarding the second problem, data collection can often
take several months [63]. Utilizing transfer learning as a
means to expedite the implementation of urban prediction
models is a viable approach that only entails a modicum of
additional expenses [70]. The deployment of detectors by the
government is not a one-time affair, and implementing it in
phases would prolong the data collection period and extend the
time required to build and deploy models. Privacy concerns
restrict the public release of collected data, making transfer
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learning a promising approach to overcome these limitations.
Models trained on large datasets from cities may perform
poorly on smaller datasets [70], leading to the exploration
of alternative methods such as federal learning and data
generation techniques. Transfer learning, which utilizes large
amounts of publicly available data to optimize models, is a
promising approach that reduces the time and financial burden
associated with constructing models during the early stages of
urban development.

In conclusion, transfer learning is a cost-effective and
beneficial approach for city managers, particularly for those
cities in their early stages of development. We have distilled
the potential risks, challenges, and questions into Figure 13,
offering a visual illustration of the concerns.

VII. CONCLUSION

In this paper, we propose a cross-city traffic prediction
method named TrafficTL. This approach can extract common
knowledge in datasets from data-rich cities to provide traffic
forecasts for data-scarce cities and help traffic management
agencies make decisions accordingly. TrafficTL devises a node
aggregation scheme (TCB) to reduce the negative impact of the
data distribution difference between source and target cities.
A graph reconstruction method (GRB) is proposed to rectify
the negative impact of prior knowledge inaccuracies from
data-scarce cities and the accumulated errors that come from
unsupervised clustering in TCB. Additionally, it integrates
ensemble learning to distinguish model parameters to lessen
the adverse effects of parameter sharing across node clusters.

To evaluate the performance of TrafficTL, we conduct
comprehensive experiments based on three real-world datasets.
Comparisons with the state-of-the-art baselines show the supe-
riority of TrafficTL over existing solutions. In addition, we test
the model performance over a variety of cluster numbers to
reveal the influence of clustering on the transferability of
TrafficTL. Furthermore, we investigate the ratio of the source
data provision in transfer to reduce the computational burden
and trial-and-error cost.

In the future, we plan to explore other transfer learning
mechanisms from perspectives such as traffic graph construc-
tion and graph comparison. We look forward to follow-up
research on developing general schemes for traffic transfer
prediction based on graph learning. In addition, the findings of
our analysis in Section V-E indicate that transfer learning may
be effective for small cities with fewer urban roads. However,
the data used in our study were drawn from three large cities
in order to provide ground-truth for our experiments, which
may not be representative of the transfer effects between large
and small cities. We look forward to obtaining more consistent
data in order to validate our results in the future.
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