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Abstract—Intelligent transportation systems (ITS) depend on
accurate and reliable traffic speed prediction to improve the
safety, efficiency, and sustainability of transportation activities.
Recently, deep learning approaches have significantly contributed
to the development of ITS, but are still facing challenges
in cyber-physical context due to the aleatoric uncertainty of
increasingly uncertain traffic data and epistemic uncertainty
of point-to-point estimation training models. In this work, a
Bayesian deep learning model reframing with a universal traffic
forecasting framework is devised for traffic speed forecasting with
uncertainty quantification. The key idea of proposed network
is to introduce time-series features in a latent distribution
space. Compared to traditional point estimation neural networks,
case studies show that the proposed model can predict more
reliable results in cross domain learning tests and is capable of
discovering good feature representations in missing traffic data
or data-deficient scenarios.

I. INTRODUCTION

ITS is one of the essential components in smart cities. Due
to emerging technologies including advanced sensing, data
transmission, big data computing and smart control technolo-
gies, ITS is expected to provide better services for road users,
greater reliability for transportation systems, and “smarter” use
of transport networks [1]–[3]. Traffic speed prediction is a vital
branch of ITS. Many ITS applications (e.g., traffic congestion
management [4], bus dispatching [5]) rely heavily on accurate
and reliable traffic prediction speed systems.

Owing to the considerable effectiveness of the traffic speed
forecast, many researchers have contributed to the develop-
ment of algorithms to provide more precise traffic forecasts.
These algorithms can be roughly divided into two categories,
namely, model-driven and the data-driven approaches. They
both have their own merits. Model-driven approaches (i.e.,
queuing network [6]) analyze the physical features and dy-
namic patterns of traffic systems based on prior knowledge,
and are thus best suited to instantaneous traffic prediction tasks
(i.e., traffic state estimation [6], [7]). Classic statistical models
(i.e., Autoregressive Integrated Moving Average (ARIMA)
models [8], K-Nearest Neighbors algorithm (k-NN) [9]) and
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machine learning models [10]–[12]) are two important repre-
sentations of the data-driven approaches that are typically more
resilient to noise and have high versatility applied in various
traffic situations without taking into account complex traffic
modeling. They map statistical regularity and relationships
from complex high-dimensional data, making them competent
for regression and classification tasks.

However, research gaps in the traffic speed prediction tasks
still present. Most of the previous traffic prediction methods
cannot take into account uncertainty quantification (UQ) of
their forecast performance. UQ tries to measure the probability
of certain outcomes of a situation in which something is
unknown or uncertain. The UQ of output is crucial to decision-
making. For instance, in bus dispatching applications such
as prediction arriving time tasks, the UQ of the prediction
determines how confidence the prediction time is, which can
provide better services for passengers. Moreover, the UQ of
model parameters is significant in training. The point estima-
tion machine learning methods may be deployed as a rigid
decision-making engine during the testing process. Typically,
they tend to run models from scratch, assuming them had with
minimal prior knowledge. This limits the model’s potential
performance and application. When the domain distribution
changes, the model needs to be reconstructed, such can be
very costly computationally and repetitive in real-world appli-
cations.

To bridge this research gap, this paper presents a universal
traffic forecasting model with Bayesian inference. In com-
parison to the current point estimation work, the proposed
model explicitly takes into account for the uncertainty of
the model in both network parameters and the prediction
output. Specially, Bayesian deep learning provides us with
confidence of network parameters. Since the parameters follow
the posterior distribution, accurate predictions can be made
by averaging multiple inferences via the Monte-Carlo (MC)
sampling. The major efforts of this work are summarized as
follows:

• A Bayesian STGCN model is proposed by reframing a
universal traffic forecasting framework Spatio-Temporal
Graph Convolutional Networks (STGCN) with Bayesian
inference.
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• In contrast to existing point estimation approaches, the
Bayesian STGCN model is used not only to forecast but
also to measure uncertainty in spatial-temporal data for
traffic speed prediction tasks.

• We test the proposed approach in two real world datasets.
The properties of our model such as prediction accuracy,
model uncertainty, and cross-domain/dataset learning are
investigated. The results indicate that the proposed algo-
rithm is capable of transfer knowledge to the issue of
traffic speed forecasting for a number of related tasks.

The rest of this paper is organized as follows. Mathematical
representation of investigated traffic speed prediction tasks
and Bayesian deep learning are introduced in Section II.
Section III presents how to convert the Spatio-Temporal Graph
Convolutional Networks to Bayesian traffic forecasting neural
networks. Section IV presents real-world benchmark data and
experimental settings. Experimental results and analysis are
also shown in Section IV. Section V concludes the paper and
presents future work.

II. RELATED WORK

Owing to its complex interdependence (i.e., temporal rela-
tionships in a single traffic series), inconsistent interactivity
(i.e., spatial correlations in traffic networks with multiplexed
interactions), and extra-disturbing elements (i.e., weather and
traffic accidents), traffic forecasting is an incredibly difficult
job.

Traditional classic statistical approaches, such as Historical
Average (HA) and ARIMA [13]), rely solely on the periodicity
of time series to map statistical regularity and relationships
from complicated high-dimensional data, which cannot pro-
vide an accurate predictor for long-term traffic forecasting on
a wide scale traffic data. Recurrent neural network (RNN)
and its variants (e.g., Long Short-term Memory (LSTM) [14]
and Gated Recurrent Unit (GRU)) are capable of captur-
ing nonlinear traffic dynamics and overcome the issue of
backwards propagated error postponement in long temporal
dependencies. Despite their superior capability for time series
prediction with long temporal dependency, they overlook the
significance of spatial dependency for accurate prediction. To
better understand the spatial connections in traffic networks,
researchers shift to think Graph Neural Networks (GNN) [15],
[16] to capture spatial information of road links. Models
derived from GNN and RNN (e.g., T-gcn [17], GMAN [18],
GCNN [19] ) are capable of learning complex topological
architectures of traffic networks while understanding dynamic
temporal changes.

However, despite a wide range of the existing efficient traffic
state prediction methods, there still remain some primary
challenges. First and foremost, massive random inaccurate and
fuzzy uncertainty exist in the raw traffic data recorded by GPS
and sensors. Such uncertainty is the variability in the outcome
of an experiment, called aleatoric uncertainty [20]. The typical
problem is that the random systematic residual errors exist in
the speed data from speedometers on the highway even after
correction. Secondly, interpolation uncertainty may arise from

a lack of available data for model simulations or experimental
measurements. This requires predictors to identify the latent
features of the small datasets where the training data is sparse.

III. PRELIMINARIES

A. Problem Formulation

In the traffic network, the traffic state forecast pattern refers
to the process of the inference of traffic variables using
partially observed traffic big data. Specifically, traffic data is
the sampling of dynamics of moving objects using vehicle-
mounted GPS, WiFi, Bluetooth and RFID [21], [22] in both
temporal and spatial dimensions. The main key of the traffic
speed prediction problem is the study and mining of time series
data to discover and analyze the underlying knowledge and
patterns on transportation activities, vehicular traffic relations
and even the city dynamics.

Formally, traffic speed forecasting is a time series prediction
task. The input domain of feature space can be defined as{
xt−m+1, ..., xt

}
, which is an observation vector at time step

t.
{
xt+1, ..., xt+n

}
is the vector of traffic speed vector in the

following n time steps given the past m steps and f(·) is the
mapping function. The process can be defined as:{

xt−m+1, ..., xt
} f(·)→

{
xt+1, ..., xt+n

}
(1)

B. Bayesian deep learning

To overcome these challenges, the predictors need to catch
the latent travel dynamics patterns within an area instead of
fixed point-to-point methods. The key problem, however, is
that it is difficult for machine learning predictors to model un-
certainties. This section introduces a deep learning framework
which can produce a state-of-the-art result while recognizing
uncertainty. This Bayesian deep learning framework can model
complex tasks by leveraging the hierarchical representation of
deep learning, while forming uncertainty by placing region
over parameters of model, or by learning a mapping to
probabilistic outputs.

Formally, given training inputs
{
xt−m+1, ..., xt

}
and their

corresponding outputs
{
xt+1, ..., xt+n

}
, objective predictive

function f(·) is likely to produce outputs that can be rewritten
as P (y | x) with well-learned parameters w from a probabilis-
tic viewpoint. Each parameter can be trained to minimize the
maximum likelihood estimation (MLE):

wMLE = arg min
θ

logP (D | w)

= arg min
θ

logP (yi | xi,w)
(2)

Instead, the Bayesian neural network assumes that both
of these parameters are accompanied by posterior probability
distributions over the P (w | D) domain of the dataset. With
this, we can predict the output of the new input point x∗ by
ensembling all possible function:

P (y∗ | x∗) = EP (w|D)[P (y∗ | x∗,W )]

=

∫
P (y∗ | x∗,W )P (w | D)dw

(3)



Nevertheless, there remains an issue in Eq. 3: how to present
a prior distribution of the network parameters, considering the
sophistication of the network parameters’ posterior distribu-
tion. In the Bayesian network, a prior distribution implies
a distribution of probabilities that may give rise to a belief
before taking any evidence into account. Although the physical
definition of the prior belief is ambiguous, a variety of methods
can be used to establish prior distribution in previous studies.
It can be determined from subjective assessment of empir-
ical analysis, as well as being chosen according to domain
principles. In this work, we utilize the standard parametric
distribution which assumes the prior probability distributions
follow zero-mean Gaussian distributions due to the its merit
of regularizations [23].

With this hypothesis, the main challenge is on how to
determine the postprior distribution. Previous work in [24]–
[26] suggested that it is possible to use a variational approx-
imation to prune the latent parameters θ of a region on the
weights q(w | θ). The parameter can be found by minimizing
the divergence of Kullback-Leibler (KL) with truth Bayesian
posterior on the weights:

θ∗ = arg min
θ

KL [q(w | θ) ‖ P (w | D)]

= arg min
θ

∫
q(w | θ)log

q(w | θ)

P (w)P (w | D)

(4)

The resulting cost function is variously known as the
negative variational free energy [26]–[28] or expected evidence
lower bound (ELBO) [26], [27]. The cost function allowing for
MC sampling and prior/posterior combination is formulated as

F(D, θ) = KL [q(w | θ) ‖ P (w)]− Eq(w|θ) [logP (w | D)]

≈
n∑
i=1

q(w(i) | θ)− logP (w(i))− logP (D | w(i))

(5)
where w(i) is the i-th MC sample from q(w(i) | θ).

From Eq. 5, it is clear that the cost function is composed
of two terms, namely a data-dependent part that refers to the
likelihood cost and a prior dependent part that refers to the
complexity [26].

IV. BAYESIAN SPATIO TEMPORAL GRAPH

CONVOLUTIONAL MODEL

In this section, we introduce STGCN, a universal time
series system that processes [29]. Afterward, how to ensemble
STGCN with the Bayesian deep learning method is discussed.

A. STGCN

As a graph-based neural network, STGCN sees the traffic
network nodes as the sensors mounted on the road, and the
edges being determined by the distance between pairs of
nodes. Each node considers the average speed of traffic within
a window as its input features [16], [29]. STGCN builds
two spatial-temporal convolution blocks and a fully-connected
output layer, as illustrated in Figure 1. It collects spatial infor-
mation on the basis of 1-D convolutional layers with ChebNet

[30] and captures the temporal features of the 1-D convolution
layers [31]. Residual connection, bottleneck strategy, and layer
normalization are implemented within each block to prevent
overfitting and achieve fast spatial-state propagation [29]. As
a consequence, the spatial-temporal convolution block can be
described as:

υl+1 = Γ l1 ∗ τReLU
(
Θl ∗ G

(
Γ l0 ∗ τυl

))
(6)

where Γ l0 and Γ l1 are the upper and lower temporal convolution
kernels of layer l, respectively. Γ l1 ∗ τY = P � σ (Q) is the
gated linear units (GLU) convolution shown in Figure 2(b),
where P and Q are the splits with the same size of previous
output. Θl is the spatio convolution kernel of layer l.

The benefits of STGCN can be summarized as follows.
First, the architecture incorporates spatial and temporal re-
liance on traffic prediction tasks and achieves substantial
improvement in short- and mid-to-long term forecasting issues
compared to current baselines. It expands spatio-temporal
sequence learning methods due to its spatio-temporal convo-
lutional “sandwich” structure. More general spatial-temporal
sequence learning tasks can be transferred to this architecture.
Third, higher training speed and easier convergence is achieved
due to convolution rather than RNN-based approaches as in
[32]. Finally, it trains with less parameters. Special designs in
ST-Conv blocks ensure that STGCN parameters are more time-
efficient compared to FC-LSTM [33] and Graph Convolutional
GRU (GCGRU) [34].

Fig. 1. Hierarchical Architecture of STGCN.

B. Bayesian STGCN with Bayes by Backprop
Although STGCN achieves superior performance in traffic

prediction tasks, the method learns directly from data with-
out imposing specific uncertainty on the inference process.
STGCN neglects the diversity and ambiguity of network
parameters and provides deterministic forecast performance in
time series issues. Here, the Bayesian STGCN is proposed in
this work to model the uncertainty in the traffic forecasting
problem.

Instead of using a single set of fixed parameters, Bayesian
STGCN assumes that all parameters follow the posterior prob-
ability distribution. However, the expectation of the posterior



(a) Graph CNNs in probability distributions over weights (b) Gated CNNs in probability distributions over weights

Fig. 2. Bayesian perspective of Graph CNNs and Gated CNNs. Each convolutional weight has a probability distribution

distribution of weights shall be intractable for any practical use
as introduced in Section II. Therefore, a variational parameter
parameterized by θ =

{
µ, σ

}
is adopted to approximate the

true probability distribution [26].
Each of the weights in graph convolutions layer and gated

temporal convolutions layer follows a probability distributions,
as illustrated in Figure 2. A sample of weights can be obtained
from the Gaussian distribution parameterized by

{
µ, σ

}
. After

that, the forward neural network can be estimated as normal.
Then the predictors turns into how to implement backprop-

agation in Bayes. As defined in Section II-B, local q(w | θ)
is used by the deterministic function θ =

{
µ,σ

}
, where

w = t(θ, ε) = µ + log(1 + exp(ρ)) ◦ ε, and ◦ is point-wise
multiplication in Bayes by the Backprop process [25], [26],
[35], [36]. The term of the gradients ∂f(w,θ)

∂w (refer to Eqs. 7
and 8) for the mean and standard variation are shared which
can be done through normal backward propagation. To prune
the complexity of the model, the bias of each layer still follows
the single-fixed value:

∆µ =
∂f(w,θ)

∂w
+
∂f(w,θ)

∂µ
(7)

∆ρ =
∂f(w,θ)

∂w

ε

1 + exp(−ρ)
+
∂f(w,θ)

∂ρ
(8)

The cost function is set to minimizing the ELBO cost as
described in Eq. 5. The model is trained with the RMSProp
optimizer (initial learning rate is 10−3 with a decay rate of
0.7 for every 5 epoch). The prior of the network weights [26],
[37] is taken as a mixture scale of two Gaussian densities with
zero-mean, variance σ1 and σ2, respectively:

p(θ) =
∏
j

πN (θi | (0, σ2
1) + (1− π)N (θj | (0, σ2

2)) (9)

where π is the parameter of mixture distribution.
In Eq. 3, the new output x∗ is defined as integrating over all

possible functions. We can approximate it by MC integration:

P (y∗ | x∗, D) ≈
∫
P (y∗ | x∗,W )q(w)dw

≈ 1

T

T∑
t=1

(y∗ | x∗, Ŵt)

(10)

with Ŵt ∼ q(w | θ), where q(w | θ) is the posterior
distribution. T denotes the sampling coefficient. The parameter
training of Bayesian STGCN can be outlined as Algorithm 1.

Algorithm 1: Parameter Training of Bayesian STGCN

Input: X =
{
xi
}N
i=1

Output: θ∗
1 Randomly initialize θ
2 while θ not not converged do
3 Sample εi ∼ N (0, I), w = t(θ, ε).
4 Calculate derivative of θ as loss function L defined

in Eq. 5
5 Update the posterior variable parameters as

θ∗ ← θ − α∆θ

V. EXPERIMENTS

In this work, a Bayesian learning network called Bayesian
STGCN, is proposed to develop traffic speed forecasts with
uncertainty quantification. Several comprehensive case studies
with two real-world traffic speed data have been developed
to fully evaluate the performance of the proposed network.
Subsequently, to evaluate the generation and transfer learning
ability of proposed network, we employ Bayesian STCGN
and point estimating STGCN with training and testing in
different but related domain datasets. Finally, we investigate
the sensitivity of MC sampling in the proposed network.

A. Configurations

PeMSD7 collects traffic data from more than 39,000 senor
stations on the highways of Los Angeles County by the
Caltrans Output Assessment System (PeMS) [38]. The dataset
is aggregated with 5-minute interval. We select PeMSD7(M)
with the time covering the weekends of May and June of 2012.
It contains 228 stations in 34 days dataset of PeMSD7. The
first month of historical speed records is chosen as a training
list, and the remainder acts as validation and test sets.

SZ-taxi is deployed and maintained by Shenzhen Transport
Committee. The dataset identified the GPS data of the taxicab
in Shenzhen. 156 major roads of Luohu District is chosen as
the study area.



The data input is standardized by the Z-Score method. The
data preprocessing follows [29]. Three metrics are used to
assess and evaluate the efficiency of the proposed models,
i.e., mean absolute error (MAE), mean absolute percent error
(MAPE), and root mean square error (RMSE). All experiments
are compiled and tested on a Linux cluster (CPU: Intel(R)
Xeon(R) E5-2620 v4, GPU: NVIDIA GeForce RTX 2080 Ti).
All the tests adopts approximately 60 minutes historical data
(12 data points) and forecast traffic statues in the next 15, 30
and 45 minutes (3, 6, 9 prediction data points).

B. Bayesian STGCN vs Point Estimation STGCN

We first present results on the performance comparison of
Bayesian STGCN and point estimation STGCN with three
evaluation metrics as well as T=2 and T=50 forward passing
through the Bayesian STGCN network as shown in Table I. As
expected, point estimation STGCN develops better accuracy
in prediction than Bayesian STGCN in Table I (a) with best
accuracy among three evaluation metrics. It is construable
that the output of Bayesian STGCN forecast is an average
of the ensemble of neural networks weighted by the qualified
mapping feature distribution set. The point estimation STGCN
is not required to consider “averaging” but focuses on “best
guessing”. Another consistent observation is that, in Bayesian
STGCN at T=2, the output uncertainty is quantified by the
standard deviation error. For instance, in terms of MAPE, the
percentage of uncertainty quantification gradually increases
from 0.266% to 0.663% as the window speed forecast passes
from 15min to 45min forecast, which follows a common intu-
ition. The third inference that can be drawn from Table I (a)
is that the effects of the predictions are more striking at T=50
than at T=2 in the assessment metrics. For instance, in 15
forecasting window, the average value of MAPE substantially
declines from 6.203% to 5.696% with a 8.18% relative slides
and the quantified uncertainty significantly decreases from
0.266% to 0.019% with 91.6% drops.

Next, we evaluate the cross domain learning performance
with both networks. We train the Bayesian STGCN and point
estimation STGCN in PeMS dataset but test in SZ dataset
respectively. The use of such an estimation technique is often
linked to worse efficiency while the algorithm produces over-
optimistic outcomes. However, this approach will decide the
true capacity of STGCN and Bayesian STGCN to assess the
traffic status of the large traffic dataset. The results from
Table I (b) indicates that Bayesian STGCN can provide more
generality across domains. The outcome of Bayesian STGCN
in domain learning efficiency is far higher than at of STGCN
with a statistical significance level of 99% (two-sided T-test).
Another observation is that although the missing rate in SZ
data is 16%, the Bayesian STGCN still still has a striking
performance. This shows that the Bayesian STGCN is capable
of finding strong representation in traffic data missing issue or
data-deficient situations.

Figure 3 shows a histogram with the kernel destiny estima-
tion curve of SZ test daset normalized by the Z-Score method.
From this illustration, we can draw the following conclusions.

TABLE I
TESTING GENERALIZATION OF NETWORK, PERFORMANCE COMPARISON

OF TWO APPROACHES ON THE DATASET PEMSD7 AND DATASET SZ

(a) Train on PeMS, Test on PeMS (15min/30min/45min)

Model MAPE (%) MAE RMSE

STGCN

5.242

7.493

9.264

2.228

3.019

3.600

4.053

5.742

6.878

Bayesian STGCN

(MC sampling = 2)

6.203±0.266

8.687±0.289

11.663±0.663

2.652±0.142

3.666±0.209

4.571±0.260

4.605±0.155

6.669±0.322

8.208±0.315

Bayesian STGCN

(MC sampling = 50)

5.696±0.019

8.137±0.032

10.077±0.042

2.449±0.018

3.448±0.026

4.257±0.027

4.433±0.032

6.532±0.048

8.118±0.052

(b) Train on PeMS, Test on SZ (15min/30min/45min)

Model MAPE(%) MAE RMSE

STGCN

19.132

28.68

28.641

10.774

13.499

17.568

15.316

18.657

23.529

Bayesian STGCN

(MC sampling = 2)

20.649 ±0.818

21.049±0.759

21.388±0.804

10.010±1.018

12.210±1.954

13.114±2.317

13.517±1.722

16.110±2.821

18.085±3.185

Bayesian STGCN

(MC sampling = 50)

18.9464 ±0.118

19.261±0.165

20.507±0.136

9.607±0.123

11.572±0.153

12.550±0.152

12.896±0.228

15.020±0.239

16.146±0.230

Fig. 3. The histogram of prediction output with kernel destiny curve regarding
to the increasing of MC sampling.

In SZ data histogram (blue), the SZ data protrudes significantly
in the -1 bin due to the fact that the missing rate of the raw
real-world dataset. Subsequently, in point estimation STGCN
histogram (green), the prediction output P (y | x,w) follows
the Gaussian distribution relating to the square error residual
sum. Root stands for square error (RMSE) corresponding to



(a) MAPE (b) MAE (c) RMSE

Fig. 4. The histogram of prediction output evaluation (MAPE, MAE, RMSE)with kernel destiny curve regarding to the increasing of MC sampling.

the standard deviation σ in the output distribution.

C. Sensitivity of Hyperparameters MC sampling

The sensitivity of the MC sampling number in Bayesian
STGCN is evaluated as shown in Figure 4. We note that
the MAPE, MAE and RMSE of Bayesian STGCN improve
smoothly with the increase in MC sampling and variance
convergence with more than 30 samples. This means that
an appropriate increase in MC sampling can improve the
performance of Bayesian STGCN. However, the improvement
in accuracy is at the cost of complexity, with training in
computational time of 9.381s at T=2 significantly increasing to
250.76s at T=100. Therefore, a trade-off between performance
and computational cost needs to be considered for large
datasets.

VI. CONCLUSION

In this work, we propose a Bayesian STGCN to address
traffic speed forecasting problem. In comparison to current
point estimation methods, the proposed method integrates
uncertainty quantification in decision-making. The proposed
method assumes that all parameters follow the posterior
distribution which is approximated by Bayes by Backprop
variational inference. In order to build strategies for computing
credible predictions, MC sampling is designed to average
over these probabilistic predictions. Case studies on two real
datasets demonstrate that the proposed model can develop
more reliable results in cross-domain learning tests.

UQ in deep forecasting models is a critical issue for
optimum decision-making, but spatio-temporal traffic data
makes the problem harder due to its unclear uncertainty
estimation, efficient optimization in the regression latent space
and heterogeneous traffic data sources. In the future work, we
expect to investigate extensions and application of Bayesian
deep learning neural networks in ITS and explore alternative
approaches for uncertainty in deep learning (e.g., dropout as a
Bayesian approximation [39], [40], embedding network [41]).
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