
2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3132363, IEEE Internet of
Things Journal

1

A Communication-Efficient Federated Learning
Scheme for IoT-Based Traffic Forecasting

Chenhan Zhang, Student Member, IEEE, Lei Cui, Member, IEEE, Shui Yu, Senior Member, IEEE, and
James J.Q. Yu, Senior Member, IEEE

Abstract—Federated Learning (FL) is widely adopted in traf-
fic forecasting tasks involving large-scale IoT-enabled sensor
data since its decentralization nature enables data providers’
privacy to be preserved. When employing state-of-the-art deep
learning-based traffic predictors in FL systems, the existing FL
frameworks confront overlarge communication overhead when
transmitting these models’ parameter updates since the mod-
elling depth and breadth renders them incorporating enormous
number of parameters. In this paper, we propose a practical
FL scheme, namely, Clustering-based hierarchical and Two-
step-updated FL (CTFed), to tackle this issue. The proposed
scheme follows a divide et impera strategy that clusters the
clients into multiple groups based on the similarity between
their local models’ parameters. We integrate the particle swarm
optimization algorithm and devise a two-step approach for local
model update. This scheme enables only one but representative
local model update from each cluster to be uploaded to the central
server, thus reduces the communication overhead of the model
updates transmission in FL. CTFed is orthogonal to the gradient
compression- or sparsification-based approaches so that they can
orchestrate to optimize the communication overhead. Extensive
case studies on three real-world datasets and three state-of-
the-art models demonstrate the outstanding training efficiency,
accurate prediction performance and robustness to unstable
network environments of the proposed scheme.

Index Terms—Federated learning, communication efficiency,
graph neural networks, industrial IoTs, traffic forecasting.

I. INTRODUCTION

IN the notion of smart cities, people’s travel experience
significantly benefits from real-time and accurate traffic

states. Traffic speed and flow are critical indicators to monitor
the traffic conditions and estimate the future. Thus, a heap of
research attention has been attracted to the domain of traffic
forecasting. With the enhancement of massive data collection
techniques in intelligent transportation systems (ITS), deep
learning (DL)-based approaches, have been regarded as a pref-
erence to implement short- and long-term traffic forecasting.
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Among manifold DL-based approaches, the recently pop-
ular Graph Neural Networks (GNN)-based approaches are
recognized as the state-of-the-art due their powerful capacity
of spatial dependency learning that are well-suited to the
feature exploiting of transportation networks. GNN-based traf-
fic predictors are extensively adopted in de facto industrial
applications [1], [2]. Take the collaboration of Google Maps
and Deepmind as an example [2], GNN-based estimated time
of arrival (ETA) predictors are developed based on information
from Google Maps platform and applied to multiple cities
in the world, where the accuracy of real-time ETA has been
improved up to 50%.

Most GNN-based models are trained in a centralized man-
ner, where the traffic data are collected by multiple providers
such as governmental transportation organizations (e.g., Cal-
ifornia Department of Transportation) and authorized com-
panies (e.g., Google and NavInfo). Nevertheless, the traffic
data may incorporate personal privacy (e.g., GPS trajectories
and plate numbers) or business-sensitive information (e.g.,
allocation of the roadside unit (RSU)), which raises privacy
concerns. In the learning community, Federated Learning (FL)
has emerged as a technology for solving the aforementioned
centralized training privacy issues of ML and DL. Specifically,
FL achieves privacy protection for data providers by enabling
distributed ML/DL training without original data transfer and
keeping the providers’ data locally. In ITS domain, extensive
applications have shown the efficacy of FL in different tasks,
including vehicular networking [3], traffic control [4], and
traffic forecasting [5], [6].

While most optimization methods for FL systems are de-
veloped and tested considering conventional ML/DL models,
it is not surprising to generalize FL to GNN-based models.
However, the massive studies on GNNs and FL indicate a
practical concern. The majority of FL systems adopt the aver-
aging algorithm (i.e., FedAvg [7]) to develop the global model,
which requires multiple participants (e.g., data providers and
workers1) to upload their local models to the central server.
This will lead to a considerable network communication
overhead and storage costs for the central server. Unlike the
conventional DNN models that handle low-dimensional grid-
like data, GNNs that handle high-dimensional and sparse
graph-structured data are more computationally intractable
and, meanwhile, involve more parameters with the same model
depth. The adoption of the latter will significantly enlarge the

1In crowdsourced FL systems, the local participants are usually termed as
“workers” which may only train the local model over data received from the
central server (task initiator) without providing personal data.
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overall computing and communication costs to FL systems
[8]. Furthermore, for existing data collection systems in ITS,
the data collecting nodes, such as RSUs, and mobile devices
(e.g., smartphones), may run in areas under unstable networks
(e.g., Wi-Fi). Such network environments pose a challenge
for achieving real-time data processing in any FL systems.
Existing research towards the communication optimization
of FL includes gradient compression [9]–[11], asynchronous
update [12], [13], etc. However, as mentioned above, most
of these approaches are developed and tested considering
simple ML/DL tasks and models, whose generalization ca-
pacity and effect to practical tasks equipped with state-of-the-
art models are sceptical. Furthermore, there are few practical
communication-efficient solutions that merge GNN-based traf-
fic forecasting approaches into FL. These approaches either
engender a multitude of information loss in the compression
process or are not applicable to large-scale and real-time
systems.

To bridge the research gap, in this paper, we propose a
practical FL scheme, namely, Clustering-based hierarchical
and Two-step-updated FL (CTFed). In CTFed, we follow the
idea of dispersed FL and propose a hierarchical FL architec-
ture, and accordingly devise a clustering approach to cluster
the clients into multiple groups. Particularly, the proposed
clustering rule is based on the clients’ local model parameter
similarity, and we attempt to put the clients with similar
model parameters into the same cluster. Then we integrate
the particle swarm optimization (PSO) algorithm and devise
a two-step approach for local model update. Particularly,
this scheme attempts to find the best local model by fitness
evaluation, which only requires the client to upload a measured
value regarding the fitness to the server deployed in each
cluster instead of the model parameters. Consequently, the
scheme of CTFed enables only one representative local model
update from each cluster to be uploaded to the central server,
which significantly reduces the communication overhead of
the model updates transmission in the FL.

The highlights of this paper are summarized below:
• We propose a communication-efficient scheme, named

CTFed, for reducing the communication overhead of FL
system equipped with state-of-the-art deep learning-based
traffic predictors. The proposed CTFed is orthogonal to
the prevailing gradient compression- or sparsification-
based approaches.

• In the proposed CTFed, we propose a model parameters
similarity-based clients clustering approach that can clus-
ter the client with similar model parameter. Furthermore,
we devise a two-step local model update approach is
devised based on the PSO algorithm.

• The proposed CTFed is divide-and-conquer, which en-
ables only one representative local model update from
each cluster to be uploaded to the central server in the
model uploading phase of FL. The incorporated model
parameters similarity-based clients clustering approach
and two-step local model update approach can orchestrate
to guarantee the contribution ability of the uploaded
single model.

• A series of comprehensive case studies on three state-of-

the-art GNN-based traffic predictors and three real-world
traffic datasets are conducted to demonstrate the efficacy
of the proposed CTFed scheme.

The rest of this paper is organized as follows. In Section
II, we review the related literature on traffic speed forecasting
approaches and communication optimization approaches for
FL. Section III gives a basic formulation of the traffic speed
forecasting problem and the federated learning scenario to
be investigated in this paper. We elaborate on the proposed
CTFed scheme in Section IV. Section V presents the results
and discussion of the case studies. Section VI discusses the
traits of the proposed scheme, and this paper is concluded in
Section VII with a summary of potential future studies.

II. RELATED WORK

A. State-of-the-art Approaches for Traffic Forecasting

The great success of deep learning has been witnessed in the
traffic forecasting domain. Deep learning-based models such
as Recurrent Neural Networks (e.g., Long Short-Term Memory
(LSTM) and Gated Recurrent Unit (GRU)), and Convolutional
Neural Networks (CNN) are employed in the literature [1],
[14]. Due to the discovery of the spatial correlation among
traffic nodes’ latent influence on time-series traffic data, a
great many research efforts have been made to develop spatial
feature capturing algorithms in traffic forecasting approaches
[15]. In [16], the authors proposed an approach that treats the
transportation information as an image and adopts CNN to
exploit the latent spatial correlation from the image. Yu et al.
[17] proposed a hybrid spatial-temporal model by integrating
CNN and LSTM, in which the output of CNN are adopted as
the input for LSTM hierarchically.

Albeit the effect in spatial feature learning, CNN-based
approaches [16], [17] can only process grid-like spatial struc-
tures which are Euclidean while the traffic data is sampled
from traffic networks that are non-Euclidean. To overcome this
problem, researchers start to use graphs for traffic modeling by
treating the irregular traffic networks as graphs incorporating
topology of different traffic nodes (e.g., road intersections)
[18], [19]. Moreover, with the Graph Deep learning (GDL)
techniques springing up, researchers extend the conventional
neural networks to graph domain, i.e., Graph Neural Net-
works (GNN) – Graph Convolutional Network (GCN) [20]
for CNN, Graph Attention Networks (GAT) [21] for attention
mechanism to name a few. ITS researchers employ GNNs
to learn the spatial correlations of traffic graphs. Li et al.
[22] utilized directional diffusion convolution on the road
network to capture the spatial correlations and GRU for time-
series dependency. Yu et al. [23] adopted spectral-domain
GCN and Gated CNN to extract the spatial and temporal
correlations, respectively. Do et al. [24] computed spatial and
temporal attentional factors in traffic graph data to extract
the spatial-temporal dependencies. Some other state-of-the-art
GNN-based traffic forecasting approaches can be seen in [25],
[26].

Moreover, traffic forecasting is an ideal investigated appli-
cation for the proposed scheme in this paper. The prevailing
graph representation-based deep learning in this area usually
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involve complex modeling that introduce forecasting models
incorporating large number of model parameters.

B. Communication Optimization of FL
To optimize the communications of FL systems, some

efforts have been made, and the consequential approaches
can be categorized into two classes, namely, gradient com-
pression and asynchronous update [27]. In [11], the authors
employed gradient quantization and encoding techniques in
the stochastic gradient descent (SGD) optimizer to shrink the
uploaded gradients from local models. Wu et al. [28] proposed
an error compensated quantization-based SGD algorithm to
improve the training efficiency. Specifically, the algorithm uti-
lizes accumulated quantization error to accelerate the training
convergence. Lin et al. [29] used gradient sparsification that
makes local participants only send important gradients to the
central server for efficient communication. Stich et al. [30] and
Liu et al. [31] studied the top-k sparsification algorithm from
theoretical level and application level, respectively. Shi et al.
[32] and Wangni et al. [10] presented rigorous mathematical
proof of the convergence developed by gradient sparsification-
based optimizers. Kang et al. [33] indicated that in addition
to communication optimization, gradient sparsification also
relieves the inference attack issues by only sharing partial
gradient information. Meanwhile, some studies also pointed
out the limitation of gradient compressed- or sparsified-based
approaches’ practicality limitation. In [34], the authors demon-
strated the instances that gradient compression-based methods
cannot converge. In [35], the authors found only a small
number of successful cases that can provide salient speedup
over optimized synchronous data-parallel training among their
large number of tests on gradient compression methods.

Asynchronous update introduces another communication
optimization solution where local participants can commu-
nicate with the central server by asynchronous updates in a
FL system, which can achieve a reduction in the computing
waiting time of the local participants [12], [13], [36].

This work proposes a series of schemes for easing overlarge
communication burden in FL systems applied to traffic fore-
casting tasks using deep models. The proposed FL scheme is
communication-efficient. Also, it guarantees accurate forecast-
ing performance, circumventing the adoption of any gradient
quantization or sparsification approaches that may degrade
the performance of collaboratively-trained models when the
model’s architecture is complex and the number of involved
parameters for feature learning is large. Nonetheless, the pro-
posed approach is also orthogonal to the gradient quantization
or sparsification approaches; this opens the possibility of their
integration for a better solution in future studies.

III. PRELIMINARY

In this work, the involved state-of-the-art traffic predictors
are graph representation-based. Therefore, in this section, we
first formulate the problem of traffic forecasting problem on
graphs. Then, the investigated FL scenario of traffic forecasting
with GNN-based models is presented. For the sake of clarity,
we summarize the frequently used symbols of this paper in
Table I.
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Fig. 1. The investigated FL scenario of this work2.

A. Traffic Forecasting Problems

Traffic forecasting on graphs denotes the inference process
of traffic data using observed ones sampled from several
topology-correlated nodes (e.g., sensor stations) deployed in
the traffic networks. The definition is given as below.

Definition 1 Traffic forecasting on graphs. We represent a
transportation network as an undirected graph, G = (V, E ,A),
where V is the set of nodes and each of them is defined as a
road segment, E is the set of edges, and A ∈ R|V|×|V| is the
adjacency matrix of G. For all vi, vj ∈ V , we have [Ai,j ] = 1
if vi and vj are connected and otherwise [Ai,j ] = 0, where
[Ai,j ] is the entry of A that represents the connectivity between
node vi and node vj . This is a common formulation among
spatial-temporal traffic forecasting, see examples in [22], [23],
[37]. The traffic data observed on G is denoted as a graph-
wide feature matrix X ∈ R|V|×F where F is the dimension
of involved features (i.e., traffic records) of each node. Let
vector Xt ∈ R|V| denote the traffic data observed at time
t ∈ F , the objective is to learn a predictor f(·) that can
develop graph-wide traffic predictions X̂t+1, X̂t+2, . . . , X̂t+s

in the following s time stamps (i.e., the prediction time horizon
is s), given historical traffic observations of T stamps (i.e., the
historical time horizon is T ) Xt−T+1,Xt−T+2, . . . ,Xt.

B. Federated Learning Scenario

In this paper, we consider a realistic FL scenario for the
proposed scheme. Particularly, we deploy advanced GNN-
based models that can exploit the spatial correlation of the
traffic graph in the FL system to achieve more accurate traffic
forecasting. To enable any local organization to fully leverage
spatial correlations, all clients have unrestricted access to the
entire traffic network’s topological knowledge but must keep
their particular traffic data private. This is to say that the topol-
ogy privacy regarding each organization is not considered in
this paper. Additionally, this study is based on the assumption
that there are no overlapping sensor stations between any two
organizations, and thus the data. This refers to a common
privacy assumption among the literature, see [38]–[40] for
some instances. The preceding definitions of the central server

2Note that this figure only presents the working scenario and related
assumptions for the proposed approach, and the readers who attempt to know
the systematic structure and working procedures of the proposed approach
can refer to Fig. 3.
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TABLE I
SUMMARY OF SYMBOLS

Symbol Explanation

G Traffic graph.
V Set of road segments (nodes) of G.
E Set of road intersections (edges) of G.
A Adjacency matrix of G.
X Graph-wide traffic record matrix.
F Dimension of traffic record.
Ci Organization i.
M Number of organizations.
Di Database of Ci.
fi Local model of Ci.
θi Model parameters of fi

simi,j Cosine similarity between θi and θj .
k Number of clusters.
R⃗ Lower-dimensional vector of θ.
v⃗i Speed of particle i in PSO algorithm.
x⃗i Position of particle i in PSO algorithm.

p⃗bi Personal best of particle i in PSO algorithm.
g⃗b Global best of all particles in PSO algorithm.
ω Inertia constants for particles in PSO algorithm.
ϕ Acceleration constants for particles in PSO algorithm.

and local clients and in the investigated FL scenario can be
seen as below.

Definition 2 Central server. The central server is a third-
party and trustworthy data center in the cloud. It se-
lects a proper state-of-the-art GNN-based model, f , for the
task. In the broadcasting phase of FL system, the central
server distributes a group of copies of the adopted model,
{f1, f2, . . . , fM}, and the adjacency matrix of the graph-
represented entire traffic network G, A, to the local clients. In
the uploading phase of FL system, the central server receives
locally trained models from the clients and updates the global
model.

Definition 3 Local clients. The entire transportation net-
work is divided and possessed by multiple organizations3

(e.g., companies, governments, and individuals). Let C =
{C1, C2, . . . , CM} denote the organization set where M is the
number of organizations. Each of the organizations operates
several sensor stations, i.e., several nodes of the graph, and
their respective node sets are denoted by {V1,V2, . . . ,VM}.
Let D = {D1, D2, . . . , DM} denote the database set of the
organizations, each of which stores traffic data collected from
the organization’s respectively operated sensor stations, which
satisfies Di∩Dj = ∅ ∀ Ci, Cj ∈ C. The organizations treat the
distributed models {f1, f2, . . . , fM} as local model and train
them simultaneously and locally utilizing the stored training
data from D.

Furthermore, this paper only focuses on the synchronous
update that the organizations communicate with the server
regularly for model updates as the adoptions demonstrated
in [38], [41]. This paper assumes that all the participants of
the FL system are honest. An honest participant will strictly
execute the FL’s operating rules and will not perform any
actual malicious behavior. An illustration of the introduced
scenario can be seen in Fig. 1.

3In this paper, “organization” and “client” are used interchangeably.
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Fig. 2. The schematic of CTFed.

IV. METHODOLOGY

This section first briefly introduces the architecture of the
proposed FL scheme. Subsequently, we will elaborate on the
proposed technical components involved in the scheme and
discuss how it achieves communication-efficient and accurate
FL for GNN-based traffic forecasting.

A. Scheme Overview

As illustrated in Fig. 2, the proposed scheme involves
two phases, namely, clustering phase and FL phase. In
the organization clustering phase, following a “divide-and-
conquer” strategy, the organizations are clustered into multiple
clusters by the similarity between their pre-trained models’
parameters. This clustering algorithm will be presented in
Section IV-B. In the FL phase, we propose a novel Particle
Swarm Optimization (PSO)-based algorithm for local model
training, which will be detailed in Section IV-C along with the
system’s communication protocol.

B. Parameters Similarity-based Organizations Clustering

Due to the homogeneity of the datasets’ time series and spa-
tial correlations, for some organizations, the differences among
the learnt parameters of their models are small. Aggregating
homogeneous models does not contribute to the development
of a generic global model, and it also imposes an unnecessary
communication overhead by transmitting such homogeneous
model parameters to the central server, especially when a
large number of participating organizations is involved [42]. To
cope with this issue, inspired by the similarity-based clustering
algorithms proposed in [41] and the hierarchical and dispersed
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FL structure introduced in [43], we propose a parameter
similarity-based approach to clustering the organizations.

In this approach, the clustering decision is determined by
the similarity of organizations’ model parameters. Specified
to the high dimensional characteristics of the GNN-based
model parameters, we adopt Principal Component Analysis
(PCA) [44] to implement a dimensionality reduction on the
model parameters and the spherical K-means algorithm, i.e.,
the K-means algorithm with cosine similarity to achieve the
clustering. Note that the dimensionality reduction is executed
within the client while the clustering is implemented by
the central server with the received reduced model parame-
ter vectors. Specifically, to obtain the model parameters for
similarity computing, we first define a pre-learned model
parameters for each organization. Particularly, we pre-train the
local models of each organization. For organization Ci and its
data Xi ∈ R|V|×F , we use a portion of its historical data
X∗i ∈ R|V|×F∗

which is randomly sampled from the time
series windows, satisfying F∗ ≪ F is the sampled dataset4.
From our offline Monte Carlo simulations, the influence of the
randomness in this step on the final clustering decision is not
significant. Subsequently, X∗i is used to train the local model,
and the trained model parameters θ∗i is regarded as the pre-
learned model parameters. Treating the model parameters as
a high-dimensional vector θ∗i → θ⃗hi , we use PCA to project
the high-dimensional θ⃗hi into a vector R⃗i which is in a lower-
dimensional space. Particularly, we do not set a pre-defined
targeted dimension; instead, we empirically set the summative
variance of all individual principal components

∑
σ2 = 0.9

to avoid information loss.
Then, following the spherical K-means algorithm, given

a number of clusters k satisfying k ≪ M , we randomly
select k organizations as the initial cluster centroids. For
each organization, we seriatim compute the similarity between
its model parameters vector and the cluster centroids’ ones.
Particularly, for any two organizations Ci and Cj , the cosine
similarity between their lower-dimensional model parameter
vectors R⃗i and R⃗j is defined as

simi,j := sim(R⃗i, R⃗j) :=

∑l
u=1 ri,urj,u√∑l

u=1 r
2
i,u

√∑l
u=1 r

2
j,u

, (1)

4The number of random sampling time points, i.e., F ∗, are set the same
for each organization.

where l is the dimension of the model parameter vector; ri,u
and rj,u denote the scalars of R⃗i and R⃗j respectively, and
u is the index. By the nature of the cosine similarity metric,
the scoring between any two total factor vectors is symmetric;
thus, we have sim(R⃗i, R⃗j) = sim(R⃗j , R⃗i). Whereafter, we
assign the organization to the cluster whose centroid has
the highest parameter similarity with it. This optimization
proceeds iteratively until the optimal solution is found, i.e.,
the assignments no longer change. The detailed pipeline of this
clustering algorithm and involved communication procedure is
illustrated in Algorithm 1 and Fig. 3.

C. Particle Swarm Optimization-based Two-step Parameters
Updating

In the traditional FL paradigm, FedAvg [7] as a Secure Pa-
rameters Aggregation Mechanism (SPAM) is usually adopted
to perform synchronous optimization, which privately aggre-
gates the outputs of local models from clients to update
a global model on the central server. As thus, the process
of FedAvg consists of two parts, i.e., client-end update and
server-end update. The client-end update describes that the
client trains the server-distributed model over its local dataset,
which presents a commonplace model training. The server-
end update of FedAvg describes that the central server takes
an average of the resulting models parameters θi, which can
be formulated as

θ ←
∑

Ci∈C∗
piθi, C∗ ⊆ C, (2)

where C∗ denotes the set of clients who participate in the
update, C∗ = C denotes there is a full client participation and
otherwise partial client participation; pi ≥ 0 is the weight of
the i-th client and

∑
Ci∈C∗ pi = 1. We consider ∀pi = 1

|C∗| as
unweighted averaging and otherwise weighted averaging.

Limitations of FedAvg: FedAvg requires the clients to
upload the complete model parameters to the central server.
For state-of-the-art GNN-based spatial-temporal prediction
models, the number of incorporated parameters can be enor-
mous as shown in Table II. In practical FL systems, the
communication bandwidth and network delay become the bot-
tlenecks of transmitting a large number of gradients between
the cloud server and clients since the transmission will result
in expensive communication overhead [42]. Additionally, as
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Algorithm 1: Parameters Similarity-based Organiza-
tions Clustering
Input: Organization set C = {C1, C2, . . . , CM}, traffic

data records {X1,X2, . . . ,XM}, adjacency
matrix of traffic graph A, number of clusters k,
GNN-based model f , gradient optimizer
∇L(·, ·, ·), learning rate η, number of training
epochs E, mini-batch size B.

Output: Cluster set P = {P1, P2, . . . , Pk}.
CentralServer: // running on the central server

1 Initialize the GNN-based model f
2 Broadcast copies of f and A to {C1, C2, . . . , CM}
3 if {R⃗1, R⃗2, . . . , R⃗M} are received then
4 Initialize cluster set P = {P1, P2, . . . , Pk}
5 Randomly select k organizations

O = {O1, O2, . . . , Ok} as the initial cluster
centroids

6 while not convergence do
7 foreach Cj ∈ C do
8 foreach Oi ∈ O do
9 simi,j ← sim(R⃗i←centroid, R⃗j) via (1)

10 Ou ← argmax([simi,j ])
11 Assign Ci to Pu

12 foreach Pi ∈ P do
13 R⃗i←centroid ← 1

|Pi|
∑

Cj∈Pi
R⃗j

14 Update P
15 Announce P to Organizations;

Organization: // running on the organization Ci

16 X∗i ← RandomSample(Xi)
17 B ← (split X∗i into batches of size B)
18 if fi is received then
19 foreach epoch e ∈ E do
20 foreach batch b ∈ B do
21 θ∗i ← θ∗i − η · ∇L(θ∗i ,A, b)

22 R⃗i = PCA∑
σ2(θ⃗hi )

23 Upload R⃗i to CentralServer

a synchronous optimization approach, FedAvg may suffer
from serious “straggler’s effect” (i.e., everyone waits for the
slowest one) in real-world applications. For example, if there
are thousands of clients in the FL system, a portion of
clients go slow due to various practical reasons (e.g., unstable
network environment, inferior computing power, and passive
participation). The requirement of full client participation asks
the central server must wait for these “stragglers”, which
lengthens the training cycle. While partial client participation
can mitigate this problem to some extent, the aggregation
result may be biased due to fewer clients’ participation.

To overcome the problems mentioned above that happened

5The numbers of model parameters are counted on the modelling of
PeMSD7 dataset.

6The presented ARIMA model is the vanilla one that only considers single
time-series prediction.

TABLE II
INCORPORATED PARAMETERS OF TRAFFIC PREDICTION MODELS

Model GNN-based No. parameters5

ARIMA6 − 684
CNN-LSTM [17] − 5 596
T-GCN [45] ✓ 13 257
STGAT [19] ✓ 100 779
Graph WaveNet [46] ✓ 246 089
STGCN [23] ✓ 330 345
MTGNN [25] ✓ 433 721
DCRNN [22] ✓ 495 518

to FedAvg, in the proposed FL scheme, we devise a two-
step parameter update approach incorporating particle swarm
optimization (PSO) algorithms integrated into FedAvg’s client-
end update (i.e., local model training).

Originally proposed in [47], PSO is an iterative optimization
algorithm that combines extensive global optimization capa-
bilities with ease of implementation, rapid convergence, and
robustness. With simple mathematical operators, PSO is of
less computational overhead with regards to both speed and
memory [48]. The PSO algorithm incorporates a group of
particles, namely, a swarm. Each particle represents a solution
to the global problem, which has its specified position and
speed in the solution space. Particularly, the speed determines
the next position that the particle will move to. The fitness
value is to evaluate the performance of the particle. To find
the global optimal solution, the particles interact with each
other repeatedly to tweak themselves to the optimal. The PSO
algorithm in an iteration can be mathematically formulated as

v⃗τ+1
i = ω · v⃗τi + U⃗(0, ϕ1) · (p⃗bi − x⃗τ

i )

+ U⃗(0, ϕ2) · (g⃗b− x⃗τ
i )

x⃗τ+1
i = x⃗τ

i + v⃗τ+1
i

, (3)

where τ denotes the τ -th iteration of the PSO algorithm; ω
denotes the inertia constant; v⃗τi and x⃗τ

i are the speed and
position of the particle i at iteration τ , respectively; p⃗bi
denotes the “personal best”, which is the best solution that
the particle i can individually develop heretofore; g⃗b denotes
the “global best”, which is the best solution that all particles
can reach heretofore; ϕ1 and ϕ2 are the acceleration constants
for p⃗bi and g⃗b, respectively; U⃗(0, ϕ1) and U⃗(0, ϕ2) denotes
two vectors of random values uniformly sampled from [0, ϕ1]
and [0, ϕ2] respectively, which are initialized at each iteration
for each particle.

The idea of PSO is leveraged in the local model training of
the proposed scheme, in which we devise a two-step parameter
update algorithm.

Step 1: in a local training epoch, we first use PSO to update
the model parameters, and the process can be formulated as

∇PSO :


v⃗τ+1
i,j = ω · v⃗τi,j + U⃗(0, ϕ1) · (p⃗bi,j − v⃗τi,j)

+ U⃗(0, ϕ2) · (c⃗bj − v⃗τi,j)

θ⃗τ+1
i,j = θ⃗τi,j + v⃗τ+1

i,j

p⃗bi,j = θ⃗τ+1
i,j

, (4)

where i, j denotes the i-th client in the j-th cluster; c⃗bj

 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3132363, IEEE Internet of
Things Journal

7

Algorithm 2: FL phase of CTFed
Input: Cluster set P = {P1, P2, . . . , Pk}, inertia

constant ω, acceleration constants ϕ1 and ϕ2,
number of global training rounds Eglobal,
learning rate η, number of local training epochs
Elocal, number of batches B.

Output: Global model parameters θ⃗global.
CentralServer: // running on the central server

1 Initialize the GNN-based model f
2 Broadcast copies of f to {P1, P2, . . . , Pk}
3 foreach epoch e ∈ Eglobal do
4 if {θ⃗best1 , θ⃗best2 , . . . , θ⃗bestk } are received then
5 θ⃗global ← execute FedAvg via (7)
6 Broadcast θ⃗global to {P1, P2, . . . , Pk}

ClusterServer: // running on cluster server Pj

7 if fj (or θ⃗global) is received then
8 if ⃗cb∗j exists then
9 Broadcast c⃗bj derived by (8) to Ci,j ∈ Pj

10 else
11 Broadcast fj (or θ⃗global) as c⃗bj to Ci,j ∈ Pj

12 if all si,j are received then
13 Cb,j ← argmin [si,j ] via (6)
14 Send token to Cb,j

15 if θ⃗tsb,j is received then
16 Upload θ⃗tsb,j as θ⃗bestj to central server and store a

copy of θ⃗bestj as ⃗cb∗j

Organization: // running on organization Ci,j

17 B ← (split Xi,j into batches of size B)
18 if c⃗bj is received then
19 Initialize v⃗i,j , θ⃗i,j , ω, ϕ1, ϕ2, p⃗bi,j
20 θ⃗psoi,j ← update θ⃗i,j using PSO via (4)

21 foreach epoch e ∈ Elocal do
22 foreach batch b ∈ B do
23 θ⃗psoi,j ← θ⃗psoi,j − η · ∇L(θ⃗psoi,j ,A, b)

24 θ⃗tsi,j ← θ⃗psoi,j

25 X∗i,j ← RandomSample(Xi,j)

26 si ← θ⃗tsi,j ,X
∗
i,j via (6)

27 Upload si to ClusterServer
28 if token is received then
29 Upload θ⃗tsi,j to ClusterServer

represents the optimal model parameter of cluster Pj before
this iteration. We denote the pso-updated model parameter by
θ⃗psoi,j .

Step 2: Subsequently, we further update θ⃗psoi,j by a con-
ventional gradient descent approach in a mini-batch manner,
which can be formulated as

∇GD : θ⃗psoi,j ← θ⃗psoi,j − η · ∇L(θ⃗psoi,j ,A,Xi,j). (5)

To find the optimal local model of a cluster, we introduce

a fitness scalar s among the clients, which is obtained by the
loss of the two-step updated fi,j on a section of randomly
sampled data denoted by X∗i,j whose size is predefined by q,
and the loss is measured by Mean Absolute Percentage Error
(MAPE) without percentage operation. After receiving all the
fitness scalars from clients, the cluster server then performs a
fitness evaluation that quests for the smallest one among the
scalars denoted by sb,j , and correspondingly, Cb,j denotes the
organization which has the smallest scalar. The whole process
of fitness evaluation can be formulated as

b := argmin
i

s =
1∣∣X∗i,j∣∣
|X∗

i,j|∑
u=1

∣∣∣∣∣∣
X∗u − X̂∗

u←θ⃗ts
i,j

X∗u

∣∣∣∣∣∣, (6)

where X∗u denotes a data sample of X∗i,j and u is the index;
X̂∗

u←θ⃗ts
i,j

represents the prediction developed by the model with

two-step-updated parameter θ⃗tsi,j . Consequently, the cluster
server identify organization Cb,j as the “cluster best” and asks
Cb,j to upload its model parameters (by sending a token) and
1) store a copy of it temporarily as ⃗cb∗j and 2) upload another
copy of it to the central server. Additionally, we introduce a
second-string mechanism to remedy the transmission failure.
Specifically, if the communication between the “cluster best”
client and cluster server fails, the cluster server will request
the client that has the second-highest fitness scalar to upload
its model parameters, and so forth.

According the divide-and-conquer strategy of the proposed
scheme, a sub-global model with θ⃗bestj is first developed for
different clusters by fitness evaluation. In this step, we directly
select the local model developing the smallest fitness scalar as
the sub-global model rather than aggregating all local models,
since PSO can calibrate the local model with global optimiza-
tion locally to develop “global-optimized” local models. From
the perspective of communication optimization, only one client
is asked to upload the model parameters in such a case, which
obviously reduces the overall communication cost. Then, we
aggregate the sub-global models from different clusters in the
central server to update the global model using FedAvg, which
can be formulated as

θ⃗global =
1

k

∑
j∈k

θ⃗bestj , (7)

where θ⃗global denotes the model parameters of the global
model. It is worth noting that we do not let the clients who are
cluster best to send their model parameters directly to the cen-
tral server is because this requires additional communication
channels (clients – central server) which may raise additional
security concerns in practice [49].

In the model broadcasting step, instead of directly assign
the global update to the clients, we first let the cluster server
to average the previously stored ⃗cb∗j and the received global
model’s parameters θ⃗global by

c⃗bj =
1

2
( ⃗cb∗j + θ⃗global). (8)

Then, the cluster server broadcasts c⃗bj to included clients for
the next iteration of local model optimization. In this way, we
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TABLE III
SUMMARY OF PEMSD4, PEMSD7, AND METR-LA DATASETS.

Dataset No. sensors No. time stamps Sampling period

PeMSD4 307 16 992 01/01/18-02/28/18
PeMSD7 228 12 672 05/01/12-06/30/12
METR-LA 207 12 302 03/01/12-06/30/12

TABLE IV
TRAINING CONFIGURATION FOR GNN-BASED MODELS.

Model Optimizer Learning rate Weight decay Dropout

STGCN RMSprop 5× 10−5 0 0.2
T-GCN Adam 2× 10−6 5× 10−4 0.1
MTGNN Adam 10−3 10−4 0.1

send an aggregation of the global update and the cluster best
to the clients, which can make the PSO algorithm develop a
relatively smooth optimization following the previous global
epoch [50].

For a better understanding of the audience, we present the
procedures and communication protocol of the FL phase of
CTFed detailedly in Algorithm 2.

V. EXPERIMENTS

In this paper, we propose CTFed as a FL scheme for
collaborative traffic forecasting tasks. To fully evaluate the
efficacy of the proposed scheme, we conduct a series of
comprehensive case studies on three real-world traffic datasets.
Particularly, we first investigate the accuracy and training
efficiency of forecasting speed using the proposed scheme.
Subsequently, we conduct a hyperparameter sensitivity test to
illustrate how to design the scheme to yield the best system
performance. Then, an ablation study is conducted to evaluate
the critical components of CTFed. Finally, we exhibit the
performance of CTFed under different FL settings.

A. Dataset and Configurations

In our case studies, three real-world datasets are adopted
for investigation, i.e., PeMSD4, PeMSD7, and METR-LA.
PeMSD4 and PeMSD7 are two public datasets published
by California Department of Transportation7, which contains
traffic speed data of Bay area and Greater Los Angeles Area.
METR-LA incorporates traffic information collected from loop
detectors in the highway of Los Angeles County by LA-
Metro [22]. The traffic graph topology of the three datasets
is developed based on sensor stations’ distance, referring to
[23]. The adoption of the three public datasets is to provide a
fair comparison for other researchers in the traffic forecast-
ing community. We summarize the three datasets in Table
III. The data points in all three datasets are with a 5-min
sampling interval. Z-score is adopted to normalize the speed
values, and linear interpolation is used to recover missing data
points. For each dataset, the training, validation, and test sets
are correspondingly constructed for supervised learning, each
containing 60%, 20%, and 20% of all data, respectively. In all
case studies of traffic speed forecasting, the past time window

7https://pems.dot.ca.gov/

is 60 minutes (i.e., 12 timestamps), and we use them to predict
the speed in the next 45 minutes (i.e., nine timestamps). MAPE
and RMSE are used as the accuracy metrics, which are defined
as

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Xi − X̂i

Xi

∣∣∣∣∣× 100%, (9a)

RMSE =

√√√√ 1

n

n∑
i=1

(
Xi − X̂i

)2

, (9b)

where Xi and X̂i are observed and predicted traffic speeds at
time i, respectively. In particular, MAPE is considered as a
preferable one (see [51], [52] for examples).

We include three state-of-the-art GNN-based models in our
case studies:
• STGCN [23]: A GNN-based and CNN-based model

which integrates graph convolutions with 1D convolu-
tions.

• T-GCN [45]: A GNN-based and RNN-based model
which incorporates graph convolutions with GRU.

• MTGNN [25]: A GNN-based and CNN-based model
which leverages mix-hop propagation, adaptive graph,
and dilated inception to exploit spatial-temporal depen-
dencies.

The architectures of the three models follow the best settings
accessible in their corresponding literature, and their respective
training configurations are set as shown in Table IV.

Unless otherwise noted, for a fair comparison, we set the
global epoch Eglobal = 30 and the mini-batch size B = 50
for all case studies. Additionally, we set the number of local
training epochs Elocal = 1 for all the FL-based approaches to
make them compared with the centralized training approach
fairly. Additionally, to simulate the FL training scenario for
the proposed scheme, we construct the respective dataset of
different organizations. In particular, we first partition the
whole traffic graph into M sub-graphs for M organizations
using Metis partitioner [53]. Then we select the traffic data
of included sensors (nodes) in a sub-graph and construct
the dataset for the corresponding organization. Subject to the
computing resource, we let M = 8 for all FL simulations. For
CTFed, we by default let k = 3 and ω, ϕ1, ϕ2 = 0.1, 1, 4.

CTFed and the baseline approaches are implemented with
PyTorch using half-precision (i.e., float16) tensors. All case
studies are conducted on a computing server with two Intel
Xeon E5 CPUs, and eight nVidia GTX 2080 Ti GPUs are
used for computing acceleration.

B. Learning Performance Comparison

In this case study, we configure the aforementioned three
GNN-based models to the proposed scheme and evaluate the
traffic forecasting accuracy performance on the three datasets,
respectively. Moreover, we compare the performance between
the proposed scheme and five baseline approaches:
• Centralized: Centralized training algorithm (i.e., training

without FL).
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TABLE V
PREDICTION ACCURACY COMPARISON.

MAPE
PeMSD4 PeMSD7 METR-LA

STGCN T-GCN MTGNN STGCN T-GCN MTGNN STGCN T-GCN MTGNN

Centralized 4.75% 5.53% 4.72% 6.93% 5.53% 7.02% 7.31% 8.47% 7.36%
FedAvg 4.79% 5.53% 4.73% 6.90% 8.04% 6.99% 7.48% 8.32% 7.45%
FedP 4.84% 5.72% 4.77% 7.09% 9.15% 7.09% 7.53% 8.73% 7.60%
FedQSGD 8.31% 13.46% 5.73% 15.56% 27.25% 11.62% 12.32% 19.73% 10.45%
FedTopK 16.70% 13.55% 11.51% 29.02% 27.12% 23.27% 22.07% 20.15% 17.38%
CTFed 4.80% 5.62% 4.78% 6.96% 8.07% 6.98% 7.69% 8.40% 7.55%

RMSE
PeMSD4 PeMSD7 METR-LA

STGCN T-GCN MTGNN STGCN T-GCN MTGNN STGCN T-GCN MTGNN

Centralized 4.78 5.35 4.93 5.11 5.35 5.33 5.33 5.81 5.44
FedAvg 4.82 5.36 4.90 5.13 5.79 5.29 5.31 5.76 5.40
FedP 4.89 5.47 5.00 5.27 6.23 5.38 5.42 5.89 5.48
FedQSGD 7.16 10.06 5.55 8.30 13.27 7.19 6.90 10.05 6.38
FedTopK 11.44 10.31 8.92 13.76 13.26 11.45 11.00 10.32 9.11
CTFed 4.87 5.39 4.90 5.16 5.79 5.21 5.38 5.78 5.35

• FedAvg: Unweighted FedAvg algorithm with full client
participation as introduced in Eq. (2).

• FedP: Unweighted FedAvg algorithm with partial client
participation in each global epoch as introduced in Eq.
(2). For a fair comparison with CTFed, we let |C∗| = 3
in our simulations.

• FedQSGD: FedAvg algorithm integrating with gradient
compression [11]. QGSD 4-bit is adopted in our simula-
tions.

• FedTopK: FedAvg algorithm integrating with k-
sparsification for gradient sparsification [30]. k = 1 for
sparsification is adopted in our simulations8.

For FedQSGD and FedTopK, we implement them following
the algorithms in the respective literature with minuscule non-
algorithmic changes.

Table V summarizes the prediction accuracy results of
the proposed scheme and baselines. Figure 4 presents the
corresponding learning curves, and Figure 5 illustrates the
data transmission volume for the FL-based approaches. From
the results, a few conclusions can be derived. First, the
GNN-based models can obtain satisfying prediction accuracy
with the proposed CTFed scheme, which is close to FedAvg
and Centralized. This is credited to the efficacy of the two
approaches in CTFed. First, the clustering approach makes
the model parameters of the clients in the same cluster more
possibly similar; thus, any one of them can be regarded as a
representative one for others in the cluster. On this basis, the
proposed two-step local model updating approach integrated
PSO algorithm can efficiently calibrate the local parameter
with global parameter, and the conventional GD algorithm
can further lead to a correct convergence direction, which
orchestrates a promising learning performance. Furthermore,
as shown in Figure 5, CTFed has lower communication
overhead than FedAvg while achieving comparable accuracy
performance. Comparing CTFed and FedP, while their com-
munication overhead is close, the latter’s convergence rate is

8The FedAvg is with full client participation for FedQSGD and FedTopK.

not as fast as CTFed. The fewer clients’ participation in each
global epoch makes FedP harder convergence; while in CTFed,
the equally fewer participated local models are updated by
the proposed approaches in CTFed that the models to be
aggregated by the center serval are more representative than
those of FedP.

While FedQSGD and FedTopK approaches can incur
demonstrably fewer communication overhead (See Figure 5)
due to their adopted gradient compression and sparsification
algorithms, in our simulations, we can find obviously poor
convergence and accuracy performance developed by these
two approaches. Especially for the FedTopK approach, the
model does not converge, and the MAPE metric quadruples
than the approaches without using gradient sparsification when
adopting STGCN on PeMSD7. This is due to that remarkably
spatial-temporal information learned and embedded by the
model parameters are undermined during the processes of gra-
dient compression/sparsification when using these approaches.
Although we find promising results presented in their original
literature [11], [30], it is worth noticing that these results
are developed using simpler or Euclidean modeling-based
approaches (e.g., logistic regression and CNN-based models).
That is to say unless there is further well-pointed optimization,
these gradient compression- or sparsification-based approaches
cannot achieve promising results using GNN-based models on
at least complex tasks such as traffic forecasting.

Last but not least, on all the three GNN-based models
and three real-world datasets, the proposed scheme can ob-
tain outstanding results, demonstrating the proposed scheme’s
generalization ability.

C. Ablation Test

1) Hyperparameter Sensitivity Test: The selection of hy-
perparameters included in the scheme is another significant
factor for FL performance. Particularly, we first assess the im-
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pact of the number of clusters k on the learning performance9.
In this experiment, we set k = 2, 3, 4 for CTFed and compare
the learning performance under this group of settings.

From the simulation results shown in Table VI and Figure
6, we have the following observations. First, the smaller
number of involved clusters, the more difficult the learning
curves converge. However, the final accuracy performance
under different k is with little difference. This can be explained
by the fact that a larger number of clusters can accelerate

9Note that since the performance results on three datasets demonstrate a
similar pattern, for conciseness without loss of generality, we only present the
FL performance on PeMSD7 dataset in the following simulations.
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TABLE VI
THE SENSITIVITY OF ACCURACY PERFORMANCE TO THE NUMBER OF

CLUSTERS k.

STGCN T-GCN MTGNN

MAPE RMSE MAPE RMSE MAPE RMSE

k = 2 7.10% 5.25 8.13% 5.82 7.07% 5.20
k = 3 7.10% 5.25 8.09% 5.81 7.01% 5.21
k = 4 7.10% 5.25 8.09% 5.81 7.10% 5.21

TABLE VII
ACCURACY PERFORMANCE COMPARISON BETWEEN CTFED AND

VARIANTS.

STGCN T-GCN MTGNN

MAPE RMSE MAPE RMSE MAPE RMSE

OG 7.10% 5.22 8.13% 5.81 7.07% 5.19
AC 7.09% 5.22 8.09% 5.81 6.93% 5.19
WC 7.11% 5.23 8.40% 5.98 7.09% 5.31
FP 28.41% 14.04 28.75% 14.05 28.48% 13.98

the convergence speed since the global model can aggregate
learned information from more local models according to
the algorithm of the proposed scheme. Nevertheless, as the
number of iterations increases, the global model can aggregate
information from more local models even with a small k,
and consequently, it will be more generic to develop accurate
results. Furthermore, recalling the advantage of the proposed
scheme as presented in Section IV, we know that the smaller
k, the less communication overhead the FL system develops.
These results support the previous statement that the CTFed
is capable of achieving the trade-off between accuracy and
communication overhead.

In addition to the number of clusters k, it is also interesting
to investigate the impact of the hyperparameters of the PSO
algorithm in the proposed scheme, i.e., inertia constant ω,
acceleration constants ϕ1 and ϕ2. Specifically, we let ω ∈
{0.05, 0.1, 0.2}, ϕ1 ∈ {0.5, 1, 2, 3, 4} and ϕ2 ∈ {2, 3, 4, 5, 6}
to conduct a grid-search to identify the best portfolio. The
results are visualized in Figure 7.

The simulation results imply that CTFed is limitedly sen-
sitive to the different selection of hyperparameters in the
PSO algorithm. In particular, the MAPE ranges for the three
models are 6.90% − 7.20% (STGCN), 8.06% − 8.19% (T-
GCN), and 6.84%− 7.14% (MTGNN). While the grid-search
results do not demonstrate a clear pattern to determine a better
hyperparameters portfolio, such fine-tuning work can slightly
improve the FL performance.

2) Derived Approaches Test: In the proposed scheme,
two core approaches, namely, parameters similarity-based or-
ganizations clustering and PSO-based two-step local model
parameters update, are orchestrated to achieve communication-
efficient and accurate collaborative traffic forecasting. In this
case study, a comprehensive ablation test is conducted to
validate the contribution of these components to the overall
FL performance. Specifically, several variants are constructed
based on the original CTFed design as follows:

• CTFed-AC (Adaptive-Clustering): The proposed cluster-
ing approach is implemented iteratively in the FL phase
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by the central server.
• CTFed-WC (Without-Clustering): The clustering and Fe-

dAvg algorithms are removed. The clients send their
fitness scalars to the central server directly, and the central
server implements the fitness evaluation and requests the
best local model’s parameter for global model updating.

• CTFed-FP (Full-PSO): In the proposed two-step update
for local models, the GD optimization is removed, and
only the PSO is used (i.e., one-step optimization).

We use CTFed-OG to denote the original CTFed scheme in
this case study. The simulation results are shown in Table VII
and Figure 8.

Comparing CTFed-OG and CTFed-AC, we find that the
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Fig. 9. Accuracy performance with different transmission failure rates.

performance difference is minuscule; however, the latter’s
design renders it costing more communication and computing
overhead due to its repetitive clustering computation. This
result clearly indicates that the design of one-off clustering
in the proposed approach can provide the same level of per-
formance as the iterative one with less overhead. Comparing
CTFed-OG and CTFed-WC, it can be observed that the latter’s
convergence speed is slower than the former. This is because
the clustering and FedAvg algorithms in the proposed scheme
can speed up the global model’s generalization, which does
not have a counterpart in the CTFed-WC. Additionally, we can
observe that the variant CTFed-FP does not converge. Without
the assist of gradient descent, PSO cannot exclusively steer the
model in the desired direction of convergence, which explains
the necessity of a two-step update strategy in the proposed
scheme. To conclude, these results support the adoption of
constituting components of CTFed.

D. Robustness to Volatile Network Transmission

In real-world FL-based traffic forecasting tasks, unstable
network environments is an inevitable problem that may
deteriorate the quality of data transmissions between different
participants [54], [55], and consequently, render the system
developing inferior accuracy performance. In this case study,
we carry out a preliminary test on the accuracy performance of
CTFed under an unstable network transmission environment.
Specifically, we simulate the unstable network transmission
environment by randomly dropping the data transmitted from
the client to the cluster server. Denoting the failure rate (i.e.,
dropping rate) as Z , we evaluate the FL performance with
Z = 0%, 10%, 20%, 40% where Z = 0% represents the
CTFed’s performance in ideal condition.

The results are summarized in Figure 9. We can observe
the accuracy performance remains on the same level when the
failure rate increase from 0% to 40%. This test demonstrates
the robustness of CTFed to an unstable network transmission
environment, which is contributed by the failure-tolerance
capability of the fitness evaluation strategy. In particular,
recalling the communication protocol of the proposed scheme
as introduced in Section IV-C, only the model parameters from
one client of each cluster is required to be uploaded to the
central server. If some clients’ data transmissions are failed, for
those who are the “cluster best” client, the introduced second-
string will request the second-best client to upload the model
parameters, which mitigates the possible issue.

VI. DISCUSSION

In this section, we present a discussion from three perspec-
tive, 1) communication, 2) generalization and applicability, and
3) security and privacy, to highlight the merits as well as the
limitations of the proposed scheme.

A. Communication

As discussed in Section IV-C, communication bandwidth is
an inevitable bottleneck for FL since scores of clients attempt
to communicate with the server. Furthermore, the communi-
cation volume of gradient/parameter is large, especially for
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the investigated GNN-based models for spatial-temporal traffic
forecasting.

CTFed mitigates these issues in two aspects. First, the
fitness evaluation step on the clustering server does not require
the clients to send the whole updated model parameters
but a scalar (i.e., the fitness scalar which is introduced in
Section IV-C), which reduces the data transmission volume
significantly. Referring to the number of training parameters of
GNN-based models that used to be transmitted in FL systems
as listed in Table II, the reduction in data transfer volume
in a single transmission can reach 100,000 times for the
proposed scheme. Second, the hierarchical structure of CTFed
disperses the communication pressure to the cluster servers.
For example, assuming that there are M clients participating
in the FL and k clusters obtained by CTFed, the number of
concurrent communications to be handled by the central server
is reduced from M to k where k ≪M .

B. Generalization and Applicability

In this work, CTFed is proposed to reduce the commu-
nication overhead in the FL systems that configure state-
of-the-art deep learning-based traffic predictors. While the
communication overhead problem is investigated around the
models for traffic forecasting, this problem is not peculiar to
traffic forecasting, which also exists in other scenarios. Thus,
the proposed scheme can be used for a broader range of
FL-based applications. For those scenarios which have, but
not limited to, the following characteristics, CTFed are well-
suited:
• The number of the parameters in the collaborative model

is huge, and thus the advantages of CTFed can be fully
realized.

• Horizontal federated learning. It uses datasets with the
same feature space across all clients, which means that
any two clients have the same set of features; thus, the
homogeneity between different clients’ data and locally
trained models exists.

C. Security and Privacy

While the security and privacy problems are out of this
paper’s scope, the proposed FL scheme can lower the risk of
the clients’ models or data being compromised. Considering
a rough scenario of gradient/parameter leakage attack in the
model updating phase, assume that there are M clients partic-
ipating in the FL, the security protection level is the same for
different transmission channels, and the probability that the
parameters are compromised in each transmission is α. For
those conventional FL frameworks, the overall probability that
the FL framework is compromised is PFL =

∑M
α = Mα.

Comparatively, in CTFed with k clusters, according to Al-
gorithm 2, the overall probability that the FL framework is
compromised is PCTFed = 2

∑k
α = 2kα. As k ≪ M , we

have PCTFed ≪ PFL. Therefore, without regard to adopting
any defense mechanisms or cryptographic techniques, the
proposed FL scheme can reduce the risk that the clients’
models or data are compromised.

Furthermore, the divide-and-conquer strategy adopted in
the proposed FL scheme can help avoid cascading failure.
Considering the scenario that the global model is poisoned,
for the conventional FL frameworks, all the clients will be
influenced inevitably. However, for CTFed, the broadcasted
global model update can be further examined on the cluster
servers (e.g., there is a proactive system configured in the
cluster server to assess if the global model is poisoned), if
one of the cluster servers finds that the model is poisoned, it
can terminate further broadcasting the global model update to
the clients belonging to its cluster, which saves these clients.
We will include the above discussion in the future work. We
also expect and welcome the interested readers to conduct in-
depth investigation together.

VII. CONCLUSION

In this paper, we propose a practical scheme to reduce the
communication overhead of FL system equipped with state-of-
the-art deep learning-based traffic predictors. Compared with
the existing FL frameworks, the proposed CTFed employs a
dispersed and hierarchical architecture by using a clustering
approach to cluster the clients into different groups based
on their parameters similarity. We also devise a two-step
approach for the local models’ update in the proposed scheme,
which follows the idea of particle swarm optimization. This
scheme enables the model parameters from only one client
of each cluster to be uploaded to the central server, which
remarkably cuts down on the communication cost of model
update transmissions in the FL.

To evaluate the performance of the proposed scheme, we
conduct a series of comprehensive case studies with three
state-of-the-art GNN-based predictors on three real-world
traffic datasets. Compared with baselines, the proposed scheme
can achieve the trade-off between efficient model communi-
cation and accurate model performance in the investigated
FL scenario. We also conduct an ablation test to assess the
efficacy of the components of CTFed and the hyperparameters
sensitivity to the prediction performance.

In the future, on the one hand, we will extend our study to
more complex traffic conditions (e.g., prediction considering
traffic accident factors and communication delay caused by
extreme weather). On the other hand, we will conduct a
theoretical analysis of the proposed scheme and investigate
its applicability on other tasks beyond traffic forecasting.

REFERENCES

[1] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. H. Lee, “Enhancing
transportation systems via deep learning: a survey,” Transportation
research part C: emerging technologies, vol. 99, pp. 144–163, 2018.

[2] O. Lange and L. Perez, “Traffic prediction with advanced graph neural
networks,” 2020.

[3] Z. Yu, J. Hu, G. Min, Z. Zhao, W. Miao, and M. S. Hossain, “Mobility-
aware proactive edge caching for connected vehicles using federated
learning,” IEEE Transactions on Intelligent Transportation Systems,
2020.

[4] G. Hua, L. Zhu, J. Wu, C. Shen, L. Zhou, and Q. Lin, “Blockchain-
based federated learning for intelligent control in heavy haul railway,”
IEEE Access, vol. 8, pp. 176830–176839, 2020.

[5] Y. Liu, S. Zhang, C. Zhang, and J. James, “Fedgru: Privacy-preserving
traffic flow prediction via federated learning,” in 2020 IEEE 23rd
International Conference on Intelligent Transportation Systems (ITSC),
pp. 1–6, IEEE, 2020.

 



2327-4662 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2021.3132363, IEEE Internet of
Things Journal

13

[6] C. Zhang, S. Zhang, J. James, and S. Yu, “Fastgnn: A topological
information protected federated learning approach for traffic speed
forecasting,” IEEE Transactions on Industrial Informatics, 2021.

[7] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics, pp. 1273–1282, 2017.

[8] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai, “Towards
efficient large-scale graph neural network computing,” arXiv preprint
arXiv:1810.08403, 2018.

[9] J. Xu, W. Du, Y. Jin, W. He, and R. Cheng, “Ternary compression
for communication-efficient federated learning,” IEEE Transactions on
Neural Networks and Learning Systems, 2020.

[10] J. Wangni, J. Wang, J. Liu, and T. Zhang, “Gradient sparsification
for communication-efficient distributed optimization,” in Proceedings of
the 32nd International Conference on Neural Information Processing
Systems, pp. 1306–1316, 2018.

[11] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in Neural Information Processing Systems, vol. 30, pp. 1709–
1720, 2017.

[12] M. R. Sprague, A. Jalalirad, M. Scavuzzo, C. Capota, M. Neun,
L. Do, and M. Kopp, “Asynchronous federated learning for geospatial
applications,” in Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pp. 21–28, Springer, 2018.

[13] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Differentially
private asynchronous federated learning for mobile edge computing in
urban informatics,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 3, pp. 2134–2143, 2019.

[14] J. Wang, Q. Gu, J. Wu, G. Liu, and Z. Xiong, “Traffic speed prediction
and congestion source exploration: A deep learning method,” in 2016
IEEE 16th International Conference on Data Mining (ICDM), pp. 499–
508, 2016.

[15] A. M. Nagy and V. Simon, “Survey on traffic prediction in smart cities,”
Pervasive and Mobile Computing, vol. 50, pp. 148–163, 2018.

[16] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning
traffic as images: a deep convolutional neural network for large-scale
transportation network speed prediction,” Sensors, vol. 17, no. 4, p. 818,
Apr. 2017.

[17] H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma, “Spatiotemporal recurrent
convolutional networks for traffic prediction in transportation networks,”
Sensors, vol. 17, no. 7, p. 1501, Jun. 2017.

[18] C. Chen, K. Li, S. G. Teo, X. Zou, K. Wang, J. Wang, and Z. Zeng,
“Gated residual recurrent graph neural networks for traffic prediction,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 485–492, 2019.

[19] C. Zhang, J. J. Yu, and Y. Liu, “Spatial-temporal graph attention net-
works: A deep learning approach for traffic forecasting,” IEEE Access,
vol. 7, pp. 166246–166256, 2019.

[20] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” arXiv preprint arXiv:1609.02907, 2016.
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