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a b s t r a c t

Economic Load Dispatch (ELD) is one of the essential components in power system control and operation.
Although conventional ELD formulation can be solved using mathematical programming techniques,
modern power system introduces new models of the power units which are non-convex, non-differenti-
able, and sometimes non-continuous. In order to solve such non-convex ELD problems, in this paper we
propose a new approach based on the Social Spider Algorithm (SSA). The classical SSA is modified and
enhanced to adapt to the unique characteristics of ELD problems, e.g., valve-point effects, multi-fuel
operations, prohibited operating zones, and line losses. To demonstrate the superiority of our proposed
approach, five widely adopted test systems are employed and the simulation results are compared with
the state-of-the-art algorithms. In addition, the parameter sensitivity is illustrated by a series of
simulations. The simulation results show that SSA can solve ELD problems effectively and efficiently.

& 2015 Elsevier B.V. All rights reserved.

1. Introduction

Economic Load Dispatch (ELD) is a fundamental problem in
power system control and operation. The goal of ELD is to find a
best feasible power generation schedule with a minimal fuel cost,
while satisfying the generation constraints of the power units [1].
In the canonical formulation of ELD, the fuel costs of power units
are represented by quadratic functions, which are convex and can
be easily solved using mathematical programming methods. Many
classical methods have been employed to solve ELD in the past
decades, e.g., the gradient method [2], the lambda iteration
method [3], and quadratic programming [4]. These methods have
also been employed to solve other optimization problems in power
system like the Unit Commitment problem [5] and the Optimal
Power Flow problem [6].

Although the convex, differentiable, and monotonically increasing
canonical formulation of ELD is simple to solve, it is unrealistic
because valve-point effects (VPE), multi-fuel options (MFO), and
prohibited operating zones (POZ) are not considered. However, all
these factors shall be accounted for in the real-world industrial
production process. Incorporating these factors, the modern ELD is
represented by a non-convex, non-continuous, and non-differentiable
optimization problem with many equality and inequality constraints,
making it very challenging to find the global optimum solution. For

the sake of simplicity, ELD is used to refer to the modern formulation
of the problem hereafter.

Despite the complexity of the problem, a number of techniques
have been devised to solve ELD in the past decade, e.g., Tabu
search [7], Taguchi method [8], and variants of particle swarm
optimization [9,10]. Evolutionary algorithms (EAs) also play an
important role in solving ELD problems. Currently most state-of-
the-art solvers for ELD are EAs and their variants according to the
analysis in [11].

Social Spider Algorithm (SSA) is a recently proposed evolu-
tionary algorithm to solve global numerical optimization problems
[12]. By mimicking the foraging behavior of the social spiders, SSA
explores and exploits the solution space in an iterative manner. In
the formulation of SSA, searching information is propagated
among the individuals, i.e., spiders, through the means of vibra-
tions, which are lossy. In addition to this lossy information feature,
SSA also incorporates a new social animal foraging model, namely,
the information sharing model [13]. In this model, individuals in a
population perform searching and joining behaviors simulta-
neously, which could potentially result in improved searching
efficiency [12,14]. The reasons leading to the outstanding perfor-
mance of SSA have been investigated in [12], and the improve-
ments are mainly credited to the unique design of the information
loss scheme and the searching pattern. Besides its superiority in
solving optimization benchmark problems [12], SSA has also
demonstrated its potential to be applied to address real world
complex optimization problems [15]. This makes it a good candi-
date to generate outstanding power schedules for ELD.
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In this paper, we propose a variant of SSA to solve ELD problem,
accounting for VPE, MFO, POZ, and power line loss. The advantage
of our proposed algorithm is that it can generate more cost-
efficient power schedules when compared with other algorithms.
The rest of the paper is organized as follows. We first introduce the
related work in Section 2. Section 3 presents the formulation of
ELD with VPE, MFO, POZ, and power line loss. Our proposed
algorithm is elaborated in Section 4, and simulation problems,
results, and comparisons are shown in Section 5. Finally we
conclude this paper in Section 6.

2. Related work

Over the past decades, many methods have been developed to
solve ELD. Lin and Viviani proposed a hierarchical numerical
method to solve the economic dispatch problem with piecewise
quadratic cost functions [16]. In this work the authors considered
multiple intersecting cost functions for each generator, which is an
analogy of MFO. A similar formulation of the problem is addressed
by Park et al. [17] with hopfield neural networks. This work is
among the first attempts of adopting computational intelligence
methodologies in solving ELD. Lee et al. later proposed an adaptive
hopfield neural network to solve the same problem [18]. Their
algorithm introduced a slope adjustment and bias adjustment
method to speed up the convergence of the hopfield neural
network system with adaptive learning rates. Lee and Breipohl
proposed a decomposition technique to solve ELD with POZ [19].
Their algorithm decomposes the nonconvex decision space into
subsets which can be solved via the conventional Lagrangian
relaxation approach. Binetti proposed a distributed algorithm
based on the auction techniques and consensus protocols to solve
ELD [20]. In their work, each power unit locally evaluates its
possible fuel costs as bids. The bids are later employed in the
auction mechanism to come up with a consensus. A very recent
work by Zhan et al. proposed a dimensional steepest decline
method [11]. This method utilizes the local minimum analysis of
the ELD problem to reduce the solution space to singular points.

Besides the above non-EA approaches, many EA methods have
also been developed to solve various formulations of ELD. Orero
and Irving proposed a simple Genetic Algorithm (GA) to solve ELD
with POZ [21]. Besides the standard GA, this work also devised a
deterministic crowding GA model to solve the problem. Chiang
developed an improved GA with the multiplier updating scheme
for ELD with VPE and MFO [22]. In this work, the proposed GA is
incorporated with an improved evolutionary direction operator. In
addition, the tailor-made migration operator efficiently searches
the solution space. He et al. proposed a hybrid GA approach to
solve ELD with VPE [23]. The algorithm proposed is a hybrid GA
with differential evolution (DE) and sequential quadratic program-
ming (SQP). Sinha et al. developed an Evolutionary Programming
(EP) method to solve ELP with VPE [24]. Pereira-Neto et al.
proposed an Evolutionary Strategy (ES) method to solve ELP with
VPE and POZ [25]. DE has also been adapted to solve ELD [26,27].

Swarm Intelligence (SI), a branch of EA, has also attracted researchers’
attention. Particle Swarm Optimization (PSO) has made a significant
contribution in solving ELD problems. Selvakumar and Thanushkodi
proposed a “new PSO” based on the classical PSO for ELD with VPE,
MFO, and POZ [28]. They manipulated the cognitive searching behavior
in PSO to facilitate the solution space exploration. They also proposed an
anti-predatory PSO in [29]. In this algorithm, a new anti-predator
scheme is modeled and introduced in the classical PSO. Chaturvedi
et al. proposed a hierarchical PSO for ELD with VPE and POZ [30]. In this
work, a time-varying acceleration coefficient is introduced to act as the
inertia factor of PSO. Meng et al. proposed a Quantum PSO for ELD with
VPE [31]. Their algorithm demonstrated strong searching ability and fast

convergence speed, which are contributed by the introduction of
quantum computing theory, self-adaptive probability selection, and
chaotic sequence mutation. Safari and Shayeghi developed an Iteration
PSO for ELDwith VPE and POZ [32]. Besides the conventional global best
(gBest) and personal best (pBest) positions considered in canonical PSO,
the proposed algorithm also considers an iteration best (iBest) position in
the searching process. Nature-inspired EAs also yield satisfactory results
in solving ELD variants. Some outstanding ones are Bee Colony
Optimization Algorithm [33], Biogeography-Based Optimization [34],
Ant Swarm Optimization [35], Harmony Search Algorithm [36], and
Chemical Reaction Optimization [37].

3. Economic load dispatch problem

The objective of the ELD problem is to find an optimal power
generation schedule with minimal fuel cost while satisfying
different power system operating constraints, including power
unit and load balancing constraints. In this paper we adopt the
formulation described in [11] and [37]. The problem is formulated
on one-hour time spans.

3.1. Objective function

The objective function of ELD is defined as follows:

min
P

Xn
i ¼ 1

Fci ðPiÞ; ð1Þ

where n is the total number of power units, Fci ðPiÞ is the fuel cost
function for the ith power unit, and Pi is the power generation for
the ith power unit according to the power generation schedule.

3.1.1. Valve-point effect
Conventionally the fuel cost of power units are formulated by a

quadratic function with the following form:

Fci ¼ aiþbiPiþciP
2
i ; ð2Þ

where a, b, and c are constant coefficients determined by the
physical characteristics of the power units. However, the fuel cost
function exhibits a larger variation in practice due to VPE, which
generates ripple like effect during the valve-opening process of
multi-valve units. A more precise formulation with both a quad-
ratic component and a rectified sinusoidal component is adopted.
In (1), the fuel cost is defined by

Fci ¼ aiþbiPiþciP
2
i þjei sin ðf iðPmin

i Þ�PiÞj ; ð3Þ
where e and f are new coefficients describing VPE, and Pmin

i is the
minimum power generation for the ith power unit in the system.

3.1.2. Multi-fuel options
Modern power units can be operated with multiple fuels [11],

and each fuel has a different fuel cost function. The unit will
always utilize the fuel with a minimum fuel cost given a specified
power generation requirement. Thus the fuel cost defined in (3) is
further modified to reflect the effects of multiple fuel options. A
piecewise quadratic function is adopted to calculate the fuel cost
of such power units, defined as follows:

Fci ¼minðai;1þbi;1Piþci;1P
2
i þjei;1 sin ðf i;1ðPmin

i Þ�PiÞj ;
ai;2þbi;2Piþci;2P

2
i þj ei;2 sin ðf i;2ðPmin

i Þ�PiÞj ;
⋯;

ai;hþbi;hPiþci;hP
2
i þjei;h sin ðf i;hðPmin

i Þ�PiÞj Þ; ð4Þ
where ai;k, bi;k, ci;k, ei;k, and f i;k are the fuel cost coefficients of the
kth fuel option of the ith power unit, and h is the total number of
fuel options. Note that our formulation of MFO is different from

J.J.Q. Yu, V.O.K. Li / Neurocomputing 171 (2016) 955–965956



the previous ones [11,37], in which predefined power levels of
switching among fuel options are listed as follows:

Fci ¼

ai;1þbi;1Piþci;1P
2
i þjei;1 sin ðf i;1ðPmin

i Þ�PiÞj if PiA ½Pmin
i ; P1Þ

ai;2þbi;2Piþci;2P
2
i þjei;2 sin ðf i;2ðPmin

i Þ�PiÞj if PiA ½P1; P2Þ
⋯
ai;hþbi;hPiþci;hP

2
i þjei;h sin ðf i;hðPmin

i Þ�PiÞj if PiA ½Ph�1; P
max
i �

;

8>>>>><
>>>>>:

ð5Þ

where Pmax
i is the maximum power generation for the ith power

unit, and P1; P2;…; Ph�1 are the predefined power levels of switch-
ing fuel options. As all the formulations considering MFO makes
the assumption that power units can choose fuel options freely a-
priori, our formulation is a more practical one. Meanwhile, as the
predefined power levels in the simulation cases presented in
Section 5 were previously manipulated to make Eqs. (4) and (5)
equivalent, it is still fair to compare the performance of our
proposed algorithm with the existing ones. For example, P1 value
given in the previous test cases makes

Fci ¼ ai;1þbi;1P1þci;1P
2
1þjei;1 sin ðf i;1ðPmin

i Þ�P1Þj
¼ ai;2þbi;2P1þci;2P

2
1þjei;2 sin ðf i;2ðPmin

i Þ�P1Þj : ð6Þ

Thus it is equivalent to

Fci ¼minðai;1þbi;1P1þci;1P
2
1þj ei;1 sin ðf i;1ðPmin

i Þ�P1Þj ;
ai;2þbi;2P1þci;2P

2
1þjei;2 sin ðf i;2ðPmin

i Þ�P1Þj Þ: ð7Þ

3.2. Constraints

3.2.1. Active power balance
In this formulation we take the transmission line loss into con-

sideration. Thus the active power balance is defined as an equilibrium
between generated power and load demand plus line loss:

Xn
i ¼ 1

Pi ¼ PdemandþPloss; ð8Þ

where Pdemand and Ploss are the load demand and line loss, respectively.
The line loss is calculated by [1]:

Ploss ¼
Xn
i ¼ 1

Xn
j ¼ 1

PiBijPjþ
Xn
i ¼ 1

Bi0PiþB00; ð9Þ

where Bij are the line loss coefficients.

3.2.2. Power generation constraint
The amount of power that each power unit can generate is

limited by three factors: power limits, ramp rate limits, and POZ,
each of which is represented by a set of inequalities. First, the
power generation shall be within each power unit's minimum and
maximum limits:

Pmin
i rPirPmax

i ; ð10Þ
where Pmin

i and Pmax
i are the minimum and maximum power

output of the ith power unit, respectively. Second, ramp rates are
employed to prevent severe power output changes, which are
actually restricted by the physical properties of the power units.
The operating ranges of all units are limited by their correspond-
ing ramp rates:

Pprev
i �PDRrPirPprev

i þPUR; ð11Þ
where Pprev

i is the previous power output of the ith power unit, PDR

and PUR are the ramp down and ramp up limits, respectively.
Sometimes the entire operating range may not be completely
feasible to the power unit due to physical operation limitations.
Such power units have one or multiple power output ranges that
are forbidden to the units. Therefore, additional constraints are

introduced for the power units with POZ:

PiA ½Pmin
i ; Pl;1

i � [ ½Pu;1
i ; Pl;2

i � [ ⋯ [ ½Pu;z
i ; Pmax

i �; ð12Þ
where Pl;r

i and Pu;r
i are the rth POZ of the ith power unit, and z is

the total number of POZs.

4. Proposed approach based on social spider algorithm

SSA was recently proposed by Yu and Li [12] to solve global
numerical optimization problems. It is a general-purpose swarm
intelligence algorithm utilizing the foraging behavior of the social
spiders to perform optimization tasks. SSA was initially designed to
solve continuous unconstrained problems, and we made several
essential modifications to adapt the algorithm to solve ELD efficiently.

4.1. Spider

Spiders are the basic operating agents of SSA. In SSA, the
solution space of an optimization problem is formulated as a
hyper-dimensional spider web S on which the spiders can move
freely. Each position on the web corresponds to a feasible solution
to the optimization problem. The spider web also serves as a
transmission media for the vibrations generated by the spiders.

Each spider, say the ith spider in the population, in SSA is
characterized by two properties, namely, its position PiðtÞAS and
fitness value f ðPiðtÞÞ, where t is the current iteration index and f(x)
is the objective function. In addition, each spider holds several
attributes which are utilized to guide its random walk process
when searching the solution space. The searching pattern will be
introduced later and these attributes are

� The target vibration Vtar
i .

� The inactive degree dini .� The movement in the previous iteration jPiðtÞ�Piðt�1Þj .
� The dimension mask1 Mi.

4.2. Vibration

The vibrations represent a key design of SSA. It distinguishes
SSA from other swarm intelligence algorithms and incorporates
the lossy information idea into meta-heuristic algorithm design.

According to observations, the spiders are extremely sensitive to
the vibrations propagated over the spider web. They are able to
distinguish different vibrations from all directions and tell their
intensities [14]. In SSA design, a vibration will be generated
whenever a spider performs an arbitrary movement. The vibration
carries the optimization information of the corresponding spider,
and is propagated to and received by others in the same population.
In such a way, the population of spiders share their personal
experience and form a communal knowledge of the solution space.

The vibrations in SSA are characterized by two properties,
namely, its source location LiAS and the intensity at its source
TiA ½0; þ1Þ. In iteration t, whenever a spider moves to a new
position Pi(t), it generates a vibration at this position Li ¼ PiðtÞ with
an intensity calculated based on the fitness value of the position2:

Ti ¼ log
1

f ðPiðtÞÞ�C
þ1

� �
; ð13Þ

where C is a confidently small constant. The introduction of C is to

1 A 0-1 binary vector of length equals to the dimension of the optimization
problem.

2 We only study minimization problems in this paper. In such cases, smaller
objective values are translated into larger intensity values using (13).

J.J.Q. Yu, V.O.K. Li / Neurocomputing 171 (2016) 955–965 957



guarantee the feasibility of the log term in (13). The values of C
will be elaborated later.

A vibration, after being generated, will attenuate when propagated
over the spider web. Thus upon receipt, the spiders can only get
partial information of the vibration's source location and its attenu-
ated intensity. The vibration attenuation process is defined as follows:

TD
i ¼ Ti � exp � D

σ � ra

� �
; ð14Þ

where TD
i is the attenuated intensity after being propagated over a

distance D, σ is the mean of the standard deviation of the popula-
tion's positions over all dimensions, and raAð0; þ1Þ is the attenua-
tion rate, which is a user-controlled parameter.

4.3. Iteration

The complete optimization process of SSA is divided into three
phases: initialization, iteration, and final phase, where the most
notable one is the iteration phase. This phase is constituted of
several steps, namely, fitness evaluation, vibration processing,
mask changing, random walk, and constraint handling.

Each iteration starts with the fitness evaluation step, where the
fitness value of each spider in the population is evaluated and
stored. It is worth mentioning that the fitness evaluation process is
conducted once and only once per iteration.

After all fitness values are evaluated, each spider will generate a
vibration at its current position using (13). The vibrations are then
propagated over the spider web using (14), and received by all
other spiders. Upon receipt of all vibrations, each spider will select
the one with the largest attenuated intensity, denoted by Vrcv

i , and
compare it with Vtar

i . If Vrcv
i is larger, it is stored as the new Vtar

i . In
such cases the inactive degree dini is reset to zero. Otherwise Vtar

i
remains unchanged and dini is incremented by one.

In SSA, the movements of spiders are guided by both Vtar
i andMi.

Mi is manipulated after Vtar
i is determined. In this mask-changing

step two user-controlled parameters, pc and pm, are introduced and
used to modify Mi. At the beginning of this step, each spider will
decide whether its Mi shall be changed, and the probability of
changing is 1�pd

in
i

c . IfMi is determined to be modified, each bit ofMi

has a probability pm to be assigned with a one, and 1�pm to be a
zero. If all bits are set to zero, a random bit is changed to one in
order to avoid getting stuck in local optima [12].

When all dimension masks are determined, each spider will
perform a random walk, and then employ the constraint-handling
scheme to repair the possible infeasible solutions generated in the
previous step. These two steps are substantially modified to solve
ELD, as elaborated below.

4.4. Random walk with chaotic sequence based memory factor

When an iteration of SSA proceeds to the random walk step,
each spider shall hold updated Vtar

i , Mi, and a collection of received
vibrations. These pieces of information are utilized to construct a
target position Ptar

i as follows:

ðPtar
i Þj ¼

ðVtar
i Þj if ðMiÞj ¼ 0

ðVrand
i Þj if ðMiÞj ¼ 1

;

8<
: ð15Þ

where ðPtar
i Þj is the jth element of Ptar

i , ðVtar
i Þj is the jth element of

the source location of Vtar
i , Vrand

i is a random vibration received by
the spider, and ðMiÞj is the jth bit of Mi.

With the generated Ptar
i , here we introduce a chaotic sequence

based memory factor into the random walk process. Chaotic
sequences has been employed in controlling the optimization
process of many swarm intelligence algorithms [10,38]. In our
proposed algorithm, we employ a logistic map iterator to emulate

the dynamic system with chaotic behavior [39]:

γt ¼ μγt�1ð1�γt�1Þ; ð16Þ
where μ is a control parameter and is set to four in this paper. γt is
the chaotic parameter at iteration t, randomly generated in
ð0:75;1Þ in this paper.

In addition, we introduce a new memory factor to control the
impact of past behavior on the spider's random walk. In previous
work [12,40], the random walk formula is defined as follows:

Piðtþ1Þ ¼ PiðtÞþðPiðtÞ�Piðt�1ÞÞ � δþðPtar
i �PiðtÞÞ � R; ð17Þ

where δ is randomly generated in ð0;1Þ, R�Uð0;1Þ is a vector of
random numbers, and � is the element-wise multiplication
operation. In our formulation, δ is considered as the memory
factor, and defined as follows:

δðtÞ ¼ γt ωmax�ωmax�ωmin

itermax � t
� �

; ð18Þ

where ωmax and ωmin are the maximum and minimum memory
strengths, respectively. itermax is the maximum allowed iteration
count, which is a stopping criteria. The design ofω terms is similar
to the descending inertia weight approach used in PSO [10].

4.5. Power schedule repairing scheme

After the random walk step, the spiders in the population are
assigned with new positions. However, as their positions are not
checked against the constraints of ELD, namely, Eqs. (8)–(12), an
additional constraint-handling scheme shall be incorporated to
repair the infeasible solutions.

We first consider the power generation constraints, i.e., Eqs. (10)–
(12). In these constraints, several power levels are designed to limit
the available power outputs: Pmin

i , Pmax
i , Pprev

i �PDR, Pprev
i þPUR, Pl;r

i , and
Pu;r
i . If an element pi in the checked power schedule (spider position)

P is infeasible for Eqs. (10)–(12), pi is set to the power level which is
closest to the original pi. Thus a boundary absorbing technique [41] is
employed to address Eqs. (10)–(12).

After all power outputs satisfy the boundary constraints, the
active power balance constraint (8) is checked. The deficit energy
is calculated as follows:

Pdfc ¼ PdemandþPloss�
Xn
i ¼ 1

Pi: ð19Þ

Then a repairing operation is repeated until Pdfc ¼ 0. The scheme
first randomly selects the gth power unit and then calculates its
remaining capacity:

Pcap
g ¼

Pmax
g n�pg Pdfc40

Pmin
g n�pg Pdfco0

;

8<
: ð20Þ

where Pmax
g n and Pmin

g n are the maximum and minimum power
outputs in the current allowed operating zone. For the test
instances without POZ, Pmax

g n¼ Pmax
g and Pmin

g n¼ Pmin
g . Otherwise

Pmax
g n¼min fPmax

g ; Pl;q
g g, where Pl;q

g is the closest lower limit of all
POZs. Pmin

g n¼max fPmin
g ; Pu;q

g g, where Pu;q
g is the closest upper limit

of all POZs. After Pcap
g is calculated, pg and Pdfc are manipulated

according to the following:

Pch ¼
min fPcap

g � r; Pdfcg Pdfc40

max fPcap
g � r; Pdfcg Pdfco0

;

8<
: ð21Þ

pg’pgþPch; ð22Þ

Pdfc’Pdfc�Pch: ð23Þ
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This repairing scheme will work for test instances without POZ.
However, for some rare cases with POZ, it is possible thatPn

g ¼ 1 P
cap
g is not sufficient to cover Pdfc due to the limitation of

POZ. In such a case, the power output of a random unit is set to the
closest upper limit of all POZs, i.e., pg ¼min fPu;q

g jPu;q
g 4pgg, and

the repairing scheme is conducted again until constraint (8) is
satisfied. A pseudocode of the modified SSA with the proposed
ELD-specific schemes is presented in Algorithm 1.

Algorithm 1. Modified social spider algorithm for economic load
dispatch problem.

1: Assign values to the parameters of SSA.
2: Create the population of spiders pop and assign memory for

them.
3: Initialize Vtar

i for each spider.

4: while stopping criteria not met do

Table 1
Simulation results for 13-unit test system with VPE.

Unit SSA QPSO HGA IPSO-TVAC SHDE FAPSO-VDE HCRO-DE DSD

1 628.31788 538.56 628.3185 628.3185 628.3172 628.3185 628.3185 628.31853
2 149.57315 224.70 222.7491 149.5996 149.5986 222.7490 149.5930 149.59965
3 224.38835 150.09 149.5996 222.7489 222.7987 149.5990 222.7559 222.74907
4 109.86655 109.87 109.8665 109.8666 109.8673 109.8665 109.8665 109.86655
5 109.86652 109.87 109.8665 109.8666 109.8418 109.8665 109.8665 109.86655
6 109.86592 109.87 109.8665 109.8666 109.8641 109.8665 109.8665 109.86655
7 109.86439 109.87 109.8665 109.8666 109.8547 109.8665 109.8665 109.86655
8 109.86644 159.75 109.8665 109.8666 109.8576 109.8665 109.8665 109.86655
9 60.00000 109.87 60.0000 60.0000 60.0000 60.0000 60.0000 60.00000
10 40.00000 77.41 40.0000 40.0000 40.0000 40.0000 40.0000 40.00000
11 40.00000 40.00 40.0000 40.0000 40.0000 40.0000 40.0000 40.00000
12 55.00000 55.01 55.0000 55.0000 55.0000 55.0000 55.0001 55.00000
13 55.00000 55.01 55.0000 55.0000 55.0000 55.0000 55.0000 55.00000
Cost 17,963.766 18,398.848 17,963.829 17,963.833 17,963.891 17,963.829 17,963.831 17,963.829

Table 2
Simulation results for 40-unit test system with VPE.

Unit SSA QPSO HGA IPSO-TVAC FAPSO-VDE HCRO-DE DSD CCPSO

1 110.80000 111.20 111.3793 110.80 110.8018 110.8015 110.79983 110.7998
2 110.80000 111.70 110.9278 110.80 110.8000 110.7998 110.79983 110.7999
3 97.50000 97.40 97.4104 97.40 97.3999 97.3999 97.39991 97.3999
4 179.69999 179.73 179.7331 179.73 179.7331 179.7331 179.73310 179.7331
5 87.79992 90.14 89.2188 87.80 87.7998 87.7999 87.79990 87.7999
6 140.00000 140.00 140.0000 140.00 140.0000 140.0000 140.00000 140.0000
7 259.59973 259.60 259.6198 259.60 259.5997 259.5997 259.59965 259.5997
8 284.59980 284.80 284.6570 284.60 284.5997 284.5997 284.59965 284.5997
9 284.59957 284.84 284.6588 284.60 284.5997 284.5997 284.59965 284.5997
10 130.00000 130.00 130.0000 130.00 130.0000 130.0000 130.00000 130.0000
11 94.00000 168.80 168.8214 94.00 94.0000 94.0000 94.00000 94.0000
12 94.00000 168.80 168.8496 94.00 94.0000 94.0000 94.00000 94.0000
13 214.75979 214.76 214.7524 214.76 214.7598 214.7598 214.75979 214.7598
14 394.27937 304.53 394.2848 394.28 394.2794 394.2794 394.27937 394.2794
15 394.27937 394.28 304.5361 394.28 394.2794 394.2794 394.27937 394.2794
16 394.27937 394.28 394.2987 394.28 394.2794 394.2794 394.27937 394.2794
17 489.27937 489.28 489.2877 489.28 489.2794 489.2794 489.27937 489.2794
18 489.27937 489.28 489.2869 489.28 489.2794 489.2794 489.27937 489.2794
19 511.27937 511.28 511.2752 511.28 511.2794 511.2794 511.27937 511.2794
20 511.27937 511.28 511.2857 511.28 511.2794 511.2794 511.27937 511.2794
21 523.27937 523.28 523.2961 523.28 523.2794 523.2794 523.27937 523.2794
22 523.27937 523.28 523.3202 523.28 523.2807 523.2794 523.27937 523.2794
23 523.27937 523.29 523.2916 523.28 523.0000 523.2794 523.27937 523.2794
24 523.27937 523.28 523.3014 523.28 523.0000 523.2794 523.27937 523.2794
25 523.27937 523.29 523.2675 523.28 523.0000 523.2794 523.27937 523.2794
26 523.27937 523.28 523.2787 523.28 523.0000 523.2790 523.27937 523.2794
27 10.00000 10.01 10.0000 10.00 10.0000 10.0000 10.00000 10.0000
28 10.00000 10.01 10.0000 10.00 10.0000 10.0000 10.00000 10.0000
29 10.00000 10.00 10.0000 10.00 10.0000 10.0000 10.00000 10.0000
30 87.80000 88.47 88.6376 87.80 87.7999 87.7999 87.79990 87.8000
31 190.00000 190.00 190.0000 190.00 190.0000 190.0000 190.00000 190.0000
32 190.00000 190.00 190.0000 190.00 190.0000 190.0000 190.00000 190.0000
33 190.00000 190.00 190.0000 190.00 190.0000 190.0000 190.00000 190.0000
34 164.68395 164.91 164.9795 164.80 164.8015 164.7998 164.79983 164.7998
35 194.44082 165.36 165.9970 194.40 194.3928 194.3956 194.39778 194.3976
36 200.00000 167.19 165.0464 200.00 200.0000 200.0000 200.00000 200.0000
37 110.00000 110.00 110.0000 110.00 110.0000 110.0000 110.00000 110.0000
38 110.00000 107.01 110.0000 110.00 110.0000 110.0000 110.00000 110.0000
39 110.00000 110.00 110.0000 110.00 110.0000 110.0000 110.00000 110.0000
40 511.28462 511.36 511.3005 511.28 511.2794 511.2794 511.27937 511.2794
Cost 121,412.55 121,448.21 121,418.27 121,412.54 121,412.56 121,412.55 121;412:53 121,412.54
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5: for each spider in pop
6: Evaluate the fitness value.
7: Generate a vibration at the spider's position.
8: end for
9: for each spider in pop do
10: Calculate the intensity of the generated vibrations.
11: Select the strongest vibration Vrcv

i .
12: if The intensity of Vrcv

i is larger than Vtar
i then

13: Store Vrcv
i as Vtar

i .
14: end if
15: Update di

in.
16: Generate a random number r from [0,1).

17: if r4pd
in
i

c then
18: Update the dimension mask Mi.
19: end if

20: Update the logistic map iterator γt.
21: Update the memory factor δðtÞ with γt.
22: Perform a random walk with δðtÞ.
23: Address violated constraints in the power schedule

using proposed repairing scheme.
24: end for
25: end while
26: Output the best solution found.

5. Simulation results and comparisons

In order to benchmark the performance of our proposed SSA-
based approach in solving variants of ELD, we conduct a series of
simulations on test systems with different combinations of VPE, MFO,

Table 3
Simulation results for 10-unit test system with VPE and MFO.

Unit SSA QPSO PSO_LRS NPSO_LRS CBPSO-RVM IGA_MU HCRO-DE DSD

1 219.16264 224.7063 219.0155 223.3352 219.2073 219.1261 213.4589 218.59400
2 211.65928 212.3882 213.8901 212.1957 210.2203 211.1645 209.7300 211.71174
3 280.68427 283.4405 283.7616 276.2167 278.5456 280.6572 332.0143 280.65706
4 239.95493 239.9530 237.2687 239.4187 239.3704 238.4770 237.7581 239.63943
5 276.38750 283.8190 286.0163 274.6470 276.4120 276.4179 269.1476 279.93452
6 239.79532 241.0024 239.3987 239.7974 240.5797 240.4672 238.9677 239.63943
7 290.07417 287.8671 291.1767 285.5388 292.3267 287.7399 280.6141 287.72749
8 239.82117 240.6245 241.4398 240.6323 237.7557 240.7614 238.9677 239.63943
9 426.37501 407.9870 416.9721 429.2637 429.4008 429.3370 413.6294 426.58829
10 276.08571 278.2120 271.0623 278.9541 276.1815 275.8518 266.3841 275.86861
Cost 623:6433 624.1505 624.0297 623.9258 624.3911 623.6526 628.9605 623.8265

Table 4
Simulation results for 6-unit test system with POZ and line loss.

Unit SSA QPSO NPSO_LRS IPSO-TVAC BFO IPSO EGA HCRO-DE

1 448.39165 447.5823 446.9600 447.5840 449.4600 447.4970 474.8066 447.4021
2 169.30115 172.8387 173.3944 173.2010 172.8800 173.3221 178.6363 173.2407
3 256.19797 261.3300 262.3436 263.3310 263.4100 263.4745 262.2089 263.3812
4 139.74938 138.6812 139.5120 138.8520 143.4900 139.0594 134.2826 138.9774
5 170.27317 169.6781 164.7089 165.3280 164.9100 165.4761 151.9039 165.3897
6 89.72839 74.8963 89.0162 87.1500 81.2520 87.1280 74.1812 87.0538
Loss 10:6421 13.0066 12.9351 12.4460 12.4020 12.9584 13.0217 12.4449
Cost 15;419:803 15,450.140 15,450.000 15,443.063 15,443.8497 15,449.882 15,459.239 15,443.075

Table 5
Simulation results for 15-unit test system with POZ and line loss.

Unit SSA IPSO EGA SPSO PC-PSO SOH-PSO FA CCPSO

1 455.0000 439.1162 415.3108 455.00 455.00 455.00 455.0000 455.0000
2 380.0000 407.9727 359.7206 380.00 380.00 380.00 380.0000 380.0000
3 130.0000 119.6324 104.4250 130.00 130.00 130.00 130.0000 130.0000
4 130.0000 129.9925 74.9853 129.28 127.15 130.00 130.0000 130.0000
5 169.9721 151.0681 380.2844 164.77 169.91 170.00 170.0000 170.0000
6 460.0000 459.9978 426.7902 460.00 460.00 459.96 460.0000 460.0000
7 430.0000 425.5601 341.3164 424.52 430.00 430.00 430.0000 430.0000
8 125.6909 98.5699 124.7867 60.00 108.38 117.53 71.7450 71.7526
9 32.5629 113.4936 133.1445 25.00 77.41 77.90 58.9164 58.9090
10 128.1047 101.1142 89.2567 160.00 97.76 119.54 160.0000 160.0000
11 80.0000 33.9116 60.0572 80.00 67.61 54.50 80.0000 80.0000
12 80.0000 79.9583 49.9998 72.62 73.26 80.00 80.0000 80.0000
13 25.0000 25.0042 38.7713 25.00 25.57 25.00 25.0000 25.0000
14 15.0000 41.4140 41.9425 44.38 19.57 17.86 15.0000 15.0000
15 15.0000 35.6140 22.6445 49.42 38.93 15.00 15.0000 15.0000
Loss 26:3306 32.4196 33.4359 29.9930 30.5500 32.2900 30.6614 30.6616
Cost 32;662:51 32,857.54 33,063.54 32,798.69 32,775.36 32,751.39 32,704.45 32,704.45
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Table 6
Parameter analysis simulation results.

ra Best Mean S.D. pc Best Mean S.D. pm Best Mean S.D.

0.1 17 964.267 17,964.669 0.3258 0.01 17,964.136 17,964.359 0.1312 0.01 17,963.886 17,963.946 0.0254
0.2 17,964.187 17,964.374 0.1059 0.1 17,964.168 17,964.388 0.1530 0.1 17,963.864 17,963.893 0.0142
0.5 17,964.077 17,964.229 0.1026 0.2 17,964.119 17,964.209 0.0580 0.2 17,963.944 17,964.030 0.0341
1.0 17,964.063 17,964.137 0.0433 0.3 17,964.097 17,964.166 0.0460 0.3 17,964.047 17,964.168 0.0646
2.0 17,964.055 17,964.136 0.0431 0.4 17,964.110 17,964.183 0.0453 0.4 17,964.077 17,964.288 0.1102
3.0 17,964.056 17,964.109 0.0421 0.5 17,964.030 17,964.127 0.0525 0.5 17,964.233 17,964.434 0.1376
5.0 17,963.950 17,964.050 0.0534 0.6 17,964.074 17,964.133 0.0338 0.6 17,964.459 17,964.694 0.1577
7.0 17,963.999 17,964.055 0.0308 0.7 17,963.952 17,964.049 0.0351 0.7 17,964.349 17,964.738 0.3273
10 17;963:854 17;963:895 0:0172 0.8 17,963.946 17,964.011 0.0347 0.8 17,964.344 17,964.811 0.2679
15 17,964.041 17,964.113 0.0515 0.9 17;963:804 17;963:880 0:0185 0.9 17,964.901 17965.647 0.6320
20 17,964.030 17,964.329 0.0875 0.99 17,963.869 17,963.907 0.0227 0.99 17,964.928 17,965.826 0.5852
Params 13/ra/0.7/0.1 Params 13/10/pc/0.1 Params 13/10/0.9/pm
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criteria for all simulations is 100,000 function evaluations, and each
test system is repeated for 25 runs.

The algorithm is implemented in Cþþ . All simulations of SSA
are conducted on a personal computer with an Intel Core i7 CPU at
3.40 GHz. For other algorithms, the best power schedules are
obtained from the corresponding publications and the fuel costs
are evaluated using these obtained solutions.

5.1. ELD with VPE

For this variant of ELD, two test systems are adopted for
evaluation, namely, the 13-unit system [24] and the 40-unit system
[24]. Load demand for these systems are 1800 MWand 10,500 MW.
The system coefficients are presented in Tables 7 and 8.

The performance of SSA is compared with the state-of-the-art
algorithms in solving these two test systems, namely, Quantum PSO
(QPSO) [31], hybrid GA (HGA) [23], iteration PSO with time varying
acceleration coefficients (IPSO-TVAC) [32], self-tuning hybrid DE (SHDE)
[26], fuzzy adaptive PSO with variable DE (FAPSO-VDE) [42], hybrid CRO
with DE (HCRO-DE) [37], Dimensional Steepest Decline Method (DSD)
[11], and PSO with chaotic sequences and crossover operation (CCPSO)
[10]. It should be noted that the total cost obtained can be different from
the publication due to calculation precision issues [11].

Simulation results and best power schedules are listed in
Tables 1 and 2. From the tables we can see that all constraints are

satisfied with the power schedule found, and the obtained solutions of
the best performing algorithms (SSA, DSD, HGA, and FAPSO-VDE for
13-unit system; SSA, IPSO-TVAC, DSD, and CCSPO for 40-unit system)
are quite similar. SSA outperforms others in 13-unit comparison and
achieves a satisfactory performance in 40-unit system compared with
other state-of-the-art algorithms. These results demonstrates the
superiority of SSA in exploiting the local optimum spaces.

The average computation times for SSA are 0.474 and 0.569 s for the
13 and 40-unit systems, respectively. As a reference, the corresponding
simulation times for FAPSO-VDEwere 4.1 and 22 swith an Intel Pentium
IV CPU at 3.0 GHz [42], which can be roughly translated into approxi-
mately 2 and 12 s on our simulation platform, respectively. Typically ELD
is usually considered with the Unit Commitment Problem, which makes
power generation schedules on a per-hour basis. In such cases a
computational time of several seconds is not as significant when
compared with the optimization time frame. However, with the
introduction of fast-changing renewable energy sources to the conven-
tional grid, in the future, a smaller response time for such generation
optimization problems will be required and it will be necessary to
achieve a faster computational speed.

5.2. ELD with VPE and MFO

For ELD with VPE and MFO, we employ a 10-unit system [22]
for comparison. Load demand for this system is 2700 MW. The
system coefficients are presented in Table 9.

The performance of SSA is compared with the state-of-the-art
algorithms in solving this test system, namely, QPSO, PSO with
local random search (PSO-LRS) [28], new PSO with local random
search (NPSO-LRS) [28], PSO with the constriction factor and
inertia weight with a real-valued mutation (CBPSO-RVM) [43],
improved GA with multiplier updating (IGA-MU) [22], HCRO-DE,
and DSD. The simulation results and comparison are presented in
Table 3. The average computation time is 0.510 s.

From the simulation results it is clear that SSA again outper-
forms all compared algorithms in solving this ELD with VPE and
MFO problem. In this comparison, the best power schedules found
by the compared algorithms have some differences in terms of the
outputs of the power units. A preliminary guess of the reason to this
condition is that the solution space for ELD problems considering
MFO is more complex than that with only VPE. This may potentially
result in algorithms getting stuck in the local optima.

Table 7
System coefficients for 13-unit test system with VPE.

Unit ðiÞ Pmin
i

Pmax
i ai bi ci ei f i

1 0 680 550 8.1 0.00028 300 0.035
2 0 360 309 8.1 0.00056 200 0.042
3 0 360 307 8.1 0.00056 200 0.042
4 60 180 240 7.74 0.00324 150 0.063
5 60 180 240 7.74 0.00324 150 0.063
6 60 180 240 7.74 0.00324 150 0.063
7 60 180 240 7.74 0.00324 150 0.063
8 60 180 240 7.74 0.00324 150 0.063
9 60 180 240 7.74 0.00324 150 0.063
10 40 120 126 8.6 0.00284 100 0.084
11 40 120 126 8.6 0.00284 100 0.084
12 55 120 126 8.6 0.00284 100 0.084
13 55 120 126 8.6 0.00284 100 0.084

Table 8
System coefficients for 40-unit test system with VPE.

Unit ðiÞ Pmin
i

Pmax
i ai bi ci ei f i Unit ðiÞ Pmin

i
Pmax
i ai bi ci ei f i

1 36 114 94.705 6.73 0.0069 100 0.084 21 254 550 785.96 6.63 0.00298 300 0.035
2 36 114 94.705 6.73 0.0069 100 0.084 22 254 550 785.96 6.63 0.00298 300 0.035
3 60 120 309.54 7.07 0.02028 100 0.084 23 254 550 794.53 6.66 0.00284 300 0.035
4 80 190 369.03 8.18 0.00942 150 0.063 24 254 550 794.53 6.66 0.00284 300 0.035
5 47 97 148.89 5.35 0.01140 120 0.077 25 254 550 801.32 7.10 0.00277 300 0.035
6 68 140 222.33 8.05 0.01142 100 0.084 26 254 550 801.32 7.10 0.00277 300 0.035
7 110 300 287.71 8.03 0.00357 200 0.042 27 10 150 1055.1 3.33 0.52124 120 0.077
8 135 300 391.98 6.99 0.00492 200 0.042 28 10 150 1055.1 3.33 0.52124 120 0.077
9 135 300 455.76 6.6 0.00573 200 0.042 29 10 150 1055.1 3.33 0.52124 120 0.077
10 130 300 722.82 12.9 0.00605 200 0.042 30 47 94 148.89 5.35 0.01140 120 0.077
11 94 375 635.20 12.9 0.00515 200 0.042 31 60 190 222.92 6.43 0.00160 150 0.063
12 94 375 654.69 12.8 0.00569 200 0.042 32 60 190 222.92 6.43 0.00160 150 0.063
13 125 500 913.40 12.5 0.00421 300 0.035 33 60 190 222.92 6.43 0.00160 150 0.063
14 125 500 1760.4 8.84 0.00752 300 0.035 34 90 200 107.87 8.95 0.00010 200 0.042
15 125 500 1728.3 9.15 0.00708 300 0.035 35 90 200 116.58 8.62 0.00010 200 0.042
16 125 500 1728.3 9.15 0.00708 300 0.035 36 90 200 116.58 8.62 0.00010 200 0.042
17 220 500 647.85 7.97 0.00313 300 0.035 37 25 110 307.45 5.88 0.01610 80 0.098
18 220 500 649.69 7.95 0.00313 300 0.035 38 25 110 307.45 5.88 0.01610 80 0.098
19 242 550 647.83 7.97 0.00313 300 0.035 39 25 110 307.45 5.88 0.01610 80 0.098
20 242 550 647.81 7.97 0.00313 300 0.035 40 242 550 647.83 7.97 0.00313 300 0.035
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5.3. ELD with POZ and line loss

For ELD with POZ and line loss characteristics, we employ two
test systems for comparison, namely, a 6-unit system [9] and a 15-
unit system [9]. Load demand for these systems are 1263 MW and

2630 MW, respectively. The system coefficients are presented in
Tables 10 and 11, and line loss coefficients are listed in [9].

The performance of SSA is compared with the state-of-the-art
algorithms in solving these two test systems, namely, QPSO, NPSO-
LRS, IPSO-TVAC, bacterial foraging optimization (BFO) [44],

Table 9
System coefficients for 10-unit test system with VPE and MFO.

Unit ðiÞ Fuel ðgÞ Pmin
i

Pmax
i ai bi ci ei f i

1 1 100 250 26.97 �0.3975 0.002176 0.02697 �3.9750
1 2 100 250 21.13 �0.3059 0.001861 0.02113 �3.0590
2 1 50 230 118.4 �1.2690 0.004194 0.11840 �12.690
2 2 50 230 1.865 �0.0399 0.001138 0.00187 �0.3988
2 3 50 230 13.65 -0.1980 0.001620 0.01365 �1.9800
3 1 200 500 39.79 �0.3116 0.001457 0.03979 �3.1160
3 2 200 500 �59.14 0.4864 0.00001176 �0.05914 4.8640
3 3 200 500 �2.876 0.0339 0.0008035 �0.00288 0.3389
4 1 99 265 1.983 �0.0311 0.001049 0.00198 �0.3114
4 2 99 265 52.85 �0.6348 0.002758 0.05285 �6.3480
4 3 99 265 266.8 �2.3380 0.005935 0.26680 �23.380
5 1 190 490 13.92 �0.0873 0.001066 0.01392 �0.8733
5 2 190 490 99.76 �0.5206 0.001597 0.09976 �5.2060
5 3 190 490 �53.99 0.4462 0.0001498 �0.05399 4.4620
6 1 85 265 52.15 �0.6348 0.002758 0.05285 �6.3480
6 2 85 265 1.983 �0.0311 0.001049 0.00198 �0.3114
6 3 85 265 266.6 �2.3380 0.005935 0.26680 �23.380
7 1 200 500 18.93 �0.1325 0.001107 0.01893 �1.3250
7 2 200 500 43.77 �0.2267 0.001165 0.04377 �2.2670
7 3 200 500 43.35 0.3559 0.0002454 �0.04335 3.5590
8 1 99 265 1.983 �0.0311 0.001049 0.00198 �0.3114
8 2 99 265 52.85 �0.6348 0.002758 0.05285 �6.3480
8 3 99 265 266.8 �2.3380 0.005935 0.26680 �23.380
9 1 130 440 88.53 �0.5675 0.001554 0.08853 �5.6750
9 2 130 440 15.32 �0.0451 0.007033 0.01423 �0.1817
9 3 130 440 14.23 �0.0182 0.0006121 0.01423 �0.1817
10 1 200 490 13.97 �0.0994 0.001102 0.01397 �0.9938
10 2 200 490 �61.13 0.5084 0.00004164 �0.06113 5.0840
10 3 200 490 46.71 �0.2024 0.001137 0.04671 �2.0240

Table 10
System coefficients for 6-unit test system with POZ and line loss.

Unit ðiÞ Pmin
i

Pmax
i ai bi ci PUR PDR Pprev

i
POZs

1 100 500 240 7.0 0.0070 80 120 440 [210,240], [350,380]
2 50 200 200 10.0 0.0095 50 90 170 [90,110], [140,160]
3 80 300 220 8.5 0.0090 65 100 200 [150,170], [210,240]
4 50 150 200 11.0 0.0090 50 90 150 [80,90], [110,120]
5 50 200 220 10.5 0.0080 50 90 190 [90,110], [140,150]
6 50 120 190 12.0 0.0075 50 90 110 [75,85], [100,105]

Table 11
System coefficients for 15-unit test system with POZ and line loss.

Unit ðiÞ Pmin
i

Pmax
i ai bi ci PUR PDR Pprev

i
POZs

1 150 455 671 10.1 0.000299 80 120 400
2 150 455 574 10.2 0.000183 80 120 300 [185,225], [305,335], [420,450]
3 20 130 374 8.80 0.001126 130 130 105
4 20 130 374 8.80 0.001126 130 130 100
5 150 470 461 10.4 0.000205 80 120 90 [180,200], [305,335], [390,420]
6 135 460 630 10.1 0.000301 80 120 400 [230,255], [365,395], [430,455]
7 135 465 548 9.80 0.000364 80 120 350
8 60 300 227 11.2 0.000338 65 100 95
9 25 162 173 11.2 0.000807 60 100 105
10 25 160 175 10.7 0.001203 60 100 110
11 20 80 186 10.2 0.003586 80 80 60
12 20 80 230 9.90 0.005513 80 80 40 [30,40], [55,65]
13 25 85 225 13.1 0.000371 80 80 30
14 15 55 309 12.1 0.001929 55 55 20
15 15 55 323 12.4 0.004447 55 55 20
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improved PSO (IPSO) [9], elitist GA (EGA) [9], HCRO-DE, simple
PSO (SPSO) [30], passive congregation-based PSO (PC-PSO) [30],
self-organizing hierarchical PSO (SOH-PSO) [30], firefly algorithm
[45], and CCPSO. The simulation results and comparison are
presented in Tables 4 and 5. The average computation times are
0.338 and 0.574 s, respectively.

From the simulation results we can see SSA generates the best
performing power schedule among all the compared algorithms.
Further investigation of the generated schedules shows that
although all algorithms can successfully locate the same best
performing operating zones, other algorithms are not able to
further exploit the optimum sub-space.

It is worth noting that there are several published results on the
15-unit system with better fuel cost performance, i.e., smaller than
$32 662.51 obtained by SSA. However, after a careful investigation it
can be observed that these results violate the ramp rate constraints.
For example, the power output of the second unit in the best recorded
result of [9] is 407.9727, which exceeds the maximum allowed power
output limited by the ramp rate, which is 380. This situation may be
caused by the different test instance configurations, and these
infeasible solutions are not included in the comparison (except for
[9], in which the test case was proposed).

5.4. Parameter selection

Parameter selection is critical to the optimization performance
of SSA [40]. Although there is already related work on bench-
marking the parameter sensitivity of SSA, it is still interesting to
investigate and search for the optimal combination of parameters
to solve ELD-like optimization problems. In order to test the
impact of changing parameters on the fuel cost performance, we
employ the 13-unit test system introduced in Section 5.1 and
perform a parameter sweep test on the four parameters of SSA,
namely, population size ðjpopj Þ, ra;pc; and pm.

The simulation is conducted as follows. We first start from the
previous recommended parameter setting given in [40], i.e.,
jpopj=ra=pc=pm is 30/1.0/0.7/0.1. Then one parameter is tested
against a wide range of possible values to figure out which one
performs the best. This process is repeated until all four para-
meters are adjusted. Note that although this testing method
neglects the correlations among multiple parameters, it can still
generate a sub-optimal parameter combination while alleviating
the effort in the parameter-tuning process to the maximum extent.

The simulation results are presented in Table 6. The best, the
mean and the standard deviation (S.D.)of the results are presented.
The simulation results indicate that the best parameter combina-
tion is jpopj /13/10/0.9/0.1. In addition, it can be concluded that the
correlation among the tested parameters for solving ELD is not
significant due to the observation that the worst results for each
test is comparable.

To better illustrate the convergence performance with respect
to different parameter settings, the convergence results of each
parameter test are plotted in Figs. 1–3, where the median ones
among the 25 runs are presented. The x-axis is the function
evaluation counts, and the y-axis is the best-so-far fuel cost. From
the results it can be observed that the best performing parameters
generally also have the fastest convergence speed.

6. Conclusion

In this paper we propose a new approach based on the social
spider algorithm to solve the economic dispatch problem in power
grid operation and control. Although the conventional ELD pro-
blem is convex and can be easily solved by mathematical pro-
gramming methods, the power unit model it employs is not as

precise as those considering more practical constraints, e.g., VPE,
MFO, and POZ. These characteristics of power units make the
optimization problem non-convex, non-differentiable, and non-
continuous.

In order to efficiently solve the modern ELD problem, we
propose a variant of SSA with new controlling schemes. A chaotic
sequence based memory factor is introduced to control the
searching pattern, where the previous movement of a spider in
SSA is assigned with different degrees of importance with the
process of optimization. In addition, we introduce a problem-
specific power schedule repairing scheme to fix the infeasible
solution generated in the random walk step. This repair scheme
takes the power supper/demand and POZ constraints into account,
while all other boundary constraints are handled by a boundary
absorbing technique.

To evaluate the performance of our proposed SSA-based ELD
solver, the approach is applied to solve five different test power
systems with various numbers of power units and constraint
configurations. The simulation results are compared with a wide
range of the state-of-the-art algorithms in solving ELD within
the employed test systems. SSA is able to find new best fuel cost
solution in four out of the five systems, and can achieve the same
solution quality in the remaining one. This result indicates the
superiority of SSA in solving ELD with different configurations. In
addition, we performed a parameter sensitivity test to develop a
best performing combination of SSA parameters. The conver-
gence performance of different parameter values are also pre-
sented for comparison. From all simulation results, it can be
concluded that our proposed SSA-based approach outperforms
the existing state-of-the-art algorithms in solving non-convex
ELD problems.

Appendix A

The system coefficients and configurations are presented in
Tables 7–11.

References

[1] A.J. Wood, B.F. Wollenberg, Power Generation, Operation and Control, John
Wiley & Sons Inc, New York, NY, USA, 1984.

[2] J. Dodu, P. Martin, A. Merlin, J. Pouget, An optimal formulation and solution of
short-range operating problems for a power system with flow constraints,
Proc. IEEE 60 (1) (1972) 54–63.

[3] C.-L. Chen, S. Wang, Branch-and-bound scheduling for thermal generating
units, IEEE Trans. Energy Convers. 8 (2) (1993) 184–189.

[4] J.-Y. Fan, L. Zhang, Real-time economic dispatch with line flow and emission
constraints using quadratic programming, IEEE Trans. Power Syst. 13 (2)
(1998) 320–325.

[5] J.J.Q. Yu, V.O.K. Li, A.Y.S. Lam, Optimal V2G scheduling of electric vehicles and
unit commitment using chemical reaction optimization, in: Proceedings of
IEEE Congress on Evolutionary Computation (CEC), Cancun, Mexico, 2013,
pp. 392–399.

[6] R.-M. Jan, N. Chen, Application of the fast Newton–Raphson economic dispatch
and reactive power/voltage dispatch by sensitivity factors to optimal power
flow, IEEE Trans. Energy Convers. 10 (2) (1995) 293–301.

[7] W.-M. Lin, F.-S. Cheng, M.-T. Tsay, An improved Tabu search for economic
dispatch with multiple minima, IEEE Trans. Power Syst. 17 (1) (2002) 108–112.

[8] D. Liu, Y. Cai, Taguchi method for solving the economic dispatch problem with
nonsmooth cost functions, IEEE Trans. Power Syst. 20 (4) (2005) 2006–2014.

[9] Z.-L. Gaing, Particle swarm optimization to solving the economic dispatch
considering the generator constraints, IEEE Trans. Power Syst. 18 (3) (2003)
1187–1195.

[10] J.-B. Park, Y.-W. Jeong, J.-R. Shin, K.Y. Lee, An improved particle swarm
optimization for nonconvex economic dispatch problems, IEEE Trans. Power
Syst. 25 (1) (2010) 156–166.

[11] J. Zhan, Q.H. Wu, C. Guo, X. Zhou, Economic dispatch with non-smooth
objectives–Part II: dimensional steepest decline method, IEEE Trans. Power
Syst. 30 (2) (2015) 722–733.

[12] J.J.Q. Yu, V.O.K. Li, A social spider algorithm for global optimization, Appl. Soft
Comput. 30 (2015) 614–627.

[13] C.W. Clark, M. Mangel, Foraging and flocking strategies: information in an
uncertain environment, Am. Nat. 123 (5) (1984) 626–641.

J.J.Q. Yu, V.O.K. Li / Neurocomputing 171 (2016) 955–965964

http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref3
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref3
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref4
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref4
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref4
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref6
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref6
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref6
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref7
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref7
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref8
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref8
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref9
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref9
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref9
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref10
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref10
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref10
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref11
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref11
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref11
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref12
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref12
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref13
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref13


[14] G. Uetz, Foraging strategies of spiders, Trends Ecol. Evol. 7 (5) (1992) 155–159.
[15] J.J.Q. Yu, V.O.K. Li, Base station switching problem for green cellular networks

with social spider algorithm, in: Proceedings of IEEE Congress on Evolutionary
Computation (CEC), Beijing, China, 2014, pp. 1–7.

[16] C. Lin, G. Viviani, Hierarchical economic dispatch for piecewise quadratic cost
functions, IEEE Trans. Power Appar. Syst. 103 (6) (1984) 1170–1175.

[17] J. Park, Y. Kim, I. Eom, K. Lee, Economic load dispatch for piecewise quadratic
cost function using hopfield neural network, IEEE Trans. Power Syst. 8 (3)
(1993) 1030–1038.

[18] K. Lee, A. Sode-Yome, J.H. Park, Adaptive hopfield neural networks for
economic load dispatch, IEEE Trans. Power Syst. 13 (2) (1998) 519–526.

[19] F. Lee, A. Breipohl, Reserve constrained economic dispatch with prohibited
operating zones, IEEE Trans. Power Syst. 8 (1) (1993) 246–254.

[20] G. Binetti, A. Davoudi, D. Naso, B. Turchiano, F. Lewis, A distributed auction-
based algorithm for the nonconvex economic dispatch problem, IEEE Trans.
Ind. Inform. 10 (2) (2014) 1124–1132.

[21] S. Orero, M. Irving, Economic dispatch of generators with prohibited operating
zones: a genetic algorithm approach, IEE Proc. Gener. Transm. Distrib. 143 (6)
(1996) 1350–1260.

[22] C.-L. Chiang, Improved genetic algorithm for power economic dispatch of
units with valve-point effects and multiple fuels, IEEE Trans. Power Syst. 20
(4) (2005) 1690–1699.

[23] D. He, F. Wang, Z. Mao, A hybrid genetic algorithm approach based on
differential evolution for economic dispatch with valve-point effect, Int. J.
Electr. Power Energy Syst. 30 (1) (2008) 31–38.

[24] N. Sinha, R. Chakrabarti, P. Chattopadhyay, Evolutionary programming tech-
niques for economic load dispatch, IEEE Trans. Evol. Comput. 7 (1) (2003)
83–94.

[25] A. Pereira-Neto, C. Unsihuay, O. Saavedra, Efficient evolutionary strategy
optimisation procedure to solve the nonconvex economic dispatch problem
with generator constraints, IEE Proc. Gener. Transm. Distrib. 152 (5) (2005)
653–660.

[26] S.-K. Wang, J.-P. Chiou, C. Liu, Non-smooth/non-convex economic dispatch by
a novel hybrid differential evolution algorithm, IET Gener. Transm. Distrib. 1
(5) (2007) 793–803.

[27] N. Nomana, H. Iba, Differential evolution for economic load dispatch problems,
Electr. Power Syst. Res. 78 (8) (2008) 1322–1331.

[28] A. Selvakumar, K. Thanushkodi, A new particle swarm optimization solution to
nonconvex economic dispatch problems, IEEE Trans. Power Syst. 22 (1) (2007)
42–51.

[29] A.I. Selvakumara, K. Thanushkodi, Anti-predatory particle swarm optimiza-
tion: solution to nonconvex economic dispatch problems, Electr. Power Syst.
Res. 78 (1) (2008) 2–10.

[30] K.T. Chaturvedi, M. Pandit, L. Srivastava, Self-organizing hierarchical particle
swarm optimization for nonconvex economic dispatch, IEEE Trans. Power Syst.
23 (3) (2008) 1079–1087.

[31] K. Meng, H.G. Wang, Z. Dong, K.P. Wong, Quantum-inspired particle swarm
optimization for valve-point economic load dispatch, IEEE Trans. Power Syst.
25 (1) (2010) 215–222.

[32] A. Safaria, H. Shayeghi, Iteration particle swarm optimization procedure for
economic load dispatch with generator constraints, Expert Syst. Appl. 38 (5)
(2011) 6043–6048.

[33] R. Kumara, A. Sadua, R. Kumara, S. Panda, A novel multi-objective directed bee
colony optimization algorithm for multi-objective emission constrained eco-
nomic power dispatch, Int. J. Electr. Power Energy Syst. 43 (1) (2012) 1241–
1250.

[34] A. Bhattacharya, P. Chattopadhyay, Biogeography-based optimization for
different economic load dispatch problems, IEEE Trans. Power Syst. 25 (2)
(2010) 1064–1077.

[35] J. Cai, Q. Li, L. Li, H. Peng, Y. Yang, A fuzzy adaptive chaotic ant swarm
optimization for economic dispatch, Int. J. Electr. Power Energy Syst. 34 (1)
(2012) 156–160.

[36] L. dos Santos Coelho, V.C. Mariani, An improved harmony search algorithm for
power economic load dispatch, Energy Convers. Manag. 50 (10) (2009)
2522–2526.

[37] P.K. Roy, S. Bhui, C. Paul, Solution of economic load dispatch using hybrid
chemical reaction optimization approach, Appl. Soft Comput. 24 (2014)
109–125.

[38] E. Araujo, L. dos, S. Coelho, Particle swarm approaches using lozi map chaotic
sequences to fuzzy modelling of an experimental thermal-vacuum system,
Appl. Soft Comput. 8 (4) (2008) 1354–1364.

[39] R. Caponetto, L. Fortuna, S. Fazzino, M. Xibilia, Chaotic sequences to improve
the performance of evolutionary algorithms, IEEE Trans. Evol. Comput. 7 (3)
(2003) 289–304.

[40] J.J.Q. Yu, V.O.K. Li, Parameter sensitivity analysis of social spider algorithm, in:
Proc. IEEE Congr. Evol. Comput. (CEC), Sendai, Japan, 2015.

[41] W. Chu, X. Gao, S. Sorooshian, Handling boundary constraints for particle
swarm optimization in high-dimensional search space, Inf. Sci. 181 (20) (2011)
4569–4581.

[42] T. Niknam, H.D. Mojarrad, H.Z. Meymand, A novel hybrid particle swarm
optimization for economic dispatch with valve-point loading effects, Energy
Convers. Manag. 52 (4) (2011) 1800–1809.

[43] H. Lu, P. Sriyanyong, Y.H. Song, T. Dillon, Experimental study of a new hybrid
pso with mutation for economic dispatch with non-smooth cost function, Int.
J. Electr. Power Energy Syst. 32 (9) (2010) 921–935.

[44] B. Panigrahi, V.R. Pandi, Bacterial foraging optimisation: Nelder–̈Mead hybrid
algorithm for economic load dispatch, IET Gener. Transm. Distrib. 2 (4) (2008)
556–565.

[45] X.-S. Yang, S.S.S. Hosseini, A.H. Gandomi, Firefly algorithm for solving non-
convex economic dispatch problems with valve loading effect, Appl. Soft
Comput. 12 (3) (2012) 1180–1186.

James J.Q. Yu received the B.Eng. degree in Electrical
and Electronic Engineering from the University of Hong
Kong, Pokfulam, Hong Kong, in 2011. He is now a Ph.D.
candidate at the Department of Electrical and Electro-
nic Engineering of the University of Hong Kong. His
current research interests include optimization algo-
rithm design and analysis, evolutionary computation,
smart grid applications, energy optimization, and wire-
less communications.

Victor O.K. Li received SB, SM, EE and ScD degrees in
Electrical Engineering and Computer Science from MIT
in 1977, 1979, 1980, and 1981, respectively. He is Chair
Professor of Information Engineering and Head of the
Department of Electrical and Electronic Engineering at
the University of Hong Kong (HKU). He also served as
Associate Dean of Engineering, and Managing Director
of Versitech Ltd., the technology transfer and commer-
cial arm of HKU, and on the board of China.com Ltd. He
is now serving on the boards of Sunevision Holdings
Ltd. and Anxin-China Holdings Ltd., listed on the Hong
Kong Stock Exchange. Previously, he was Professor of
Electrical Engineering at the University of Southern

California (USC), Los Angeles, California, USA, and Director of the USC Communica-
tion Sciences Institute. Sought by government, industry, and academic organiza-
tions, he has lectured and consulted extensively around the world. He has received
numerous awards, including the PRC Ministry of Education Changjiang Chair
Professorship at Tsinghua University, the UK Royal Academy of Engineering Senior
Visiting Fellowship in Communications, the Croucher Foundation Senior Research
Fellowship, and the Order of the Bronze Bauhinia Star, Government of the Hong
Kong Special Administrative Region, China. He is a Registered Professional Engineer
and a Fellow of the IAE, and the HKIE.

J.J.Q. Yu, V.O.K. Li / Neurocomputing 171 (2016) 955–965 965

http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref14
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref16
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref16
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref17
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref17
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref17
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref18
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref18
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref19
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref19
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref20
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref20
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref20
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref22
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref22
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref22
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref23
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref23
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref23
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref24
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref24
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref24
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref26
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref26
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref26
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref27
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref27
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref28
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref28
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref28
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref29
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref29
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref29
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref31
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref31
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref31
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref32
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref32
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref32
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref34
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref34
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref34
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref35
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref35
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref35
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref36
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref36
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref36
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref37
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref37
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref37
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref38
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref38
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref38
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref39
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref39
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref39
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref41
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref41
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref41
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref42
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref42
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref42
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref43
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref43
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref43
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref44
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref44
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref44
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref45
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref45
http://refhub.elsevier.com/S0925-2312(15)01018-8/sbref45

	A social spider algorithm for solving the non-convex economic load dispatch problem
	Introduction
	Related work
	Economic load dispatch problem
	Objective function
	Valve-point effect
	Multi-fuel options

	Constraints
	Active power balance
	Power generation constraint


	Proposed approach based on social spider algorithm
	Spider
	Vibration
	Iteration
	Random walk with chaotic sequence based memory factor
	Power schedule repairing scheme

	Simulation results and comparisons
	ELD with VPE
	ELD with VPE and MFO
	ELD with POZ and line loss
	Parameter selection

	Conclusion
	References




