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Abstract—Traffic speed prediction is among the key problems
in intelligent transportation system (ITS). Traffic patterns with
complex spatial dependency make accurate prediction on traffic
networks a challenging task. Recently, a deep learning ap-
proach named Spatio-Temporal Graph Convolutional Networks
(STGCN) has achieved state-of-the-art results in traffic speed
prediction by jointly exploiting the spatial and temporal features
of traffic data. Nonetheless, applying STGCN to large-scale urban
traffic network may develop degenerated results, which is due to
redundant spatial information engaging in graph convolution. In
this work, we propose a motif-based graph-clustering approach
to apply STGCN to large-scale traffic networks. By using graph-
clustering, we partition a large urban traffic network into smaller
clusters to prompt the learning effect of graph convolution. The
proposed approach is evaluated on two real-world datasets and
is compared with its variants and baseline methods. The results
show that graph-clustering approaches generally outperform the
other methods, and the proposed approach obtains the best
performance.

Index Terms—smart city, intelligent transportation system,
graph clustering, traffic speed prediction

I. INTRODUCTION

In the past decade, the development of Intelligent Trans-

portation System (ITS) has been increasing rapidly since it

can significantly solve many traffic issues in modern cities [1].

Among the various problems in ITS, Traffic Speed Prediction

(TSP) is among the fundamental ones, which plays a vital role

in supporting ITS services such as route guidance, navigation

and flow control [2].

Achieving accurate prediction has always been challenging

due to many obstacles, such as the large traffic network size,

the complex traffic conditions in the real world, and the

massive traffic data with noise. To overcome these problems,

researchers proposed various advanced models using advanced

deep learning techniques [3]. The graph-based deep learning

methods that process the traffic data on graphs have been seen

in the emerging trend due to their successful application on

TSP, which shed light on the traffic spatial feature exploit-

ing [4]. Graph Convolution Network (GCN) is an important
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development of graph-based deep learning, which general-

ize convolution operation to the graph domain [3]. In TSP

community, Spatio-Temporal Graph Convolutional Networks

(STGCN) is one of the most advanced extensions of GCN-

based models that have demonstrated outstanding performance

[5]. However, for large-scale traffic network, massive irrelevant

spatial information may be involved in graph convolution

calculations which degenerate the model performance [6], [7].

In this paper, to address this problem, we propose a graph-

clustering based approach to apply STGCN for large-scale

urban TSP. By using graph clustering, a traffic graph can be

partitioned into several subgraphs. Each subgraph is expected

to contain less redundant spatial information where the GCN

model can develop better performance.

The main contributions of this paper are as follows:

The remainder of this paper is organized as follows. Section

II presents the development of TSP models. In Section III, we

elaborate on the mechanism of the proposed graph-clustering

approach and the overall architecture. A series of case studies

are performed in Section IV to demonstrate the efficacy of

the proposed mechanism. Finally, this paper is concluded in

Section V with a discussion of potential future studies.

II. LITERATURE REVIEW

A significant amount of effort in traffic prediction domain

have been made. In this section, we briefly summarize the

literature related to this work.

With the rapid development of traffic data collection tech-

niques, a significant portion of popular traffic prediction

approaches are data-driven-based. Existing data-driven ap-

proaches can be generally divided into two main groups:

parametric and non-parametric approaches [3]. Parametric

approaches include Autoregressive Integrated Moving Average

(ARIMA), Kalman Filter and their extensions, which have

been widely applied in the time series community [8]. Com-

pared with parametric approaches, non-parametric approaches

are more flexible and sophisticated since their structures and

parameters are not fixed, where K-Nearest Neighbor (KNN),

Support Vector Regression (SVR) and Neural Networks (NN)

are among the most representative ones. Their applications

in traffic prediction have shown outstanding performance,

especially in handling non-linear traffic data [9], [10].



Deep Learning (DL) has been a popular technique for

traffic prediction in the past few years [11]. The “black box”

nature of DL models renders them more robust to data noise

and perturbations when compared with classical statistical

methods [12]. Long Short-Term Memory networks (LSTM)

and Gated Recurrent Unit (GRU) are two variants of Recurrent

Neural Networks (RNN). In traffic prediction field, they were

applied to learn temporal dependency in traffic data to improve

the model performance, especially on mid- and long-term

prediction [13]. Convolution Neural Networks (CNN) have

witnessed an overwhelming success in computer vision. Some

researchers adopt CNN to explore spatial correlation among

the traffic network [14]. Moreover, to jointly learn both spatial

and temporal features, a group of hybrid models that integrate

both CNN and RNN are introduced in the literature [15],

[16]. However, CNN is restricted to only process the regular

grid-like data such as images, while the traffic data sampled

in the road network (which is in the non-Euclidean space)

is irregular. In some of the current approaches, the traffic

data is sampled as grids to drive CNN, which may result

in loss of the spatial information [17]. To overcome this

problem, researchers start to adopt graph-based deep learning

approaches.

Graph Convolutional Network (GCN) is one of the most

prominent graph-based deep learning approaches [18], which

aims to generalize CNN to graphs. It has been introduced

in many graph-based applications, including urban traffic

prediction. Li et al. [19] proposed a hybrid GCN-based model,

Diffusion Convolutional Recurrent Neural Network (DCRNN),

that captures the spatial dependency with random walks on the

traffic network. Different from the spectral-based approaches

used in [19], Cui et al. [20] proposed a traffic flow prediction

model based on non-spectral GCN. Yu et al. [5] proposed a

Spatio-Temporal Graph Convolutional Network (STGCN) that

apply convolutional structures on both spatial and time axis,

which enables faster model training speed and convergences.

Moreover, STGCN employs fewer parameters to achieve better

scalability. These traits make STGCN grossly practical on

large-scale traffic network traffic prediction.

III. METHOD

A. Traffic Speed Prediction Problem on Road Graphs
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Fig. 1: Graph representation of road network

In this work, we represent the traffic networks as graphs

to focus on the spatial structure of traffic data. In particular,

different from the typical graph embeddings of traffic network,

which models the road segments as edges and their crossroads

as nodes, we regard the road segments as the graph nodes in

this representation. The traffic speed observation of each road

segment, xt, is not independent but correlating pairwise in the

graph. A directed edge is generated if there exists a connection

between any two road segments. Fig. 1 shows an example

of this graph representation, where eight road segments are

labelled from 1 to 8, and they are defined as the nodes of

the graph. For node 1 (i.e. road segment 1), there are three

nodes, i.e., 2, 4, 6, connecting to it directly. Therefore, there

are edges (1, 2), (1, 4), (1, 6), respectively. Furthermore, for

bidirectional roads, we define the two directions as two nodes

(e.g. nodes 2 and 3).

Therefore, we can represent the traffic network as a

weighted directed traffic graph Gt = (Vt, E,W ) at time step

t, where Vt is a finite set of nodes |Vt| = N , E is the set of

edges and W is the weighted adjacency matrix of the graph.

Xt =
{
x1t , . . . , x

N
t

}
denotes the graph signal including traffic

observations from the N road segments at time t. The traffic

speed prediction on it can be represented by

[Xt−T+1, ..., Xt;E ;Gt]
f(·)
−−→ [X̂t+1, ..., X̂t+H ], (1)

where f (·) is the prediction function that the model aims to

learn to predict the traffic speed.

B. Enhanced Motif-based Graph Clustering

In this subsection, we first introduce a basic motif-based

graph-clustering method. Subsequently, an enhanced method

based on this motif-based graph-clustering method is elabo-

rated.

1) Motif-based Graph Clustering: First, we construct a

motif-based hypergraph based on the original graph. Motif

is a high-order connectivity pattern of the graph. Given a

graph G = (V,E,W ), the motif-based hypergraph can be

represented by

GM = (V,EM ,WM ), (2)

where V is the node set which is the same as the original

graph, WM is the motif adjacency matrix (note that we choose

four-node motif [21] to follow the similar connection pattern

as shown in Fig. 1), EM is the edge set containing m weighted

edges which is generated by

EM = ((i, j, ω)k), (3)

where i, j ∈ V are two nodes connected by edge i (i ∈ R
m)

and ω is the weight of the edge i. Subsequently, we can iden-

tify a group of connected motif-like subsets of the hypergraph

as

Ψ = {ψ1, . . . , ψp} , (4)

where ψ is the motif-like subset and p is the number of the

subsets. Filtering out the isolated nodes in the hypergraph, we

obtain the top Q largest connected subsets ΨQ ⊆ Ψ where



Q < p (note that we set Q = 4 referring to [22] to obtain

the best results in our tests). Then, Metis [23] is used to

partition these subsets into different communities. Gathering

the partitioning results of all the top Q largest subsets, we

harvest a community set M = {M1, . . . ,Mpm
} where pm is

the number of communities.

2) Edge Enhancement for Traffic Data: The above motif-

based graph clustering approach can reveal only higher-order

community topology of the graph since only the top Q largest

connected subsets are considered in the graph partition. The

subsets or isolated nodes which are not connected to these

largest connected subsets are not taken into account.

Considering the compact connections among different nodes

(road segments) in real traffic networks, it is expected to com-

pletely involve all the nodes when processing corresponding

traffic graphs, which may encode more influential information

of the traffic data. Therefore, we introduced an edge enhance-

ment approach based on [22] to reconstruct the graph. First, we

intensify the connectivity among the nodes which have already

been clustered into the same cluster. For cluster Mi ∈M , an

edge is constructed pairwisely for all nodes in Mi. By this

procedure, a new group of edges Enew is generated. Now, the

nodes in each cluster are interconnected in a strong pattern

which is difficult to be fragmented by partitioning. Then, to

consider the isolated nodes, we rewire the graph by involving

both the new generated edge set Enew and the original edge

set E. In this way, a rewired graph can be obtained by

GM
rewired = (V,EM

rewired,W
M
rewired)), (5)

where EM
rewired = E∪EM

rewired is the edges set of the rewired

graph and WM
rewired is its adjacency matrix.

Subsequently, we use Metis method again to partition the

rewired graph GM
rewired. We define each of the new partitioned

communities as a subgraph. Finally, a set of subgraphs is ob-

tained as {G∗

1, ..., G
∗

S} where S is the number of subgraphs.

To summarize, the procedure of the proposed graph-

clustering approach is presented as below:

1) Convert the original graph G into a motif-based hyper-

graph GM .

2) Identify a group of motif-like subsets Ψ and obtain the

top Q largest subsets ΨQ.

3) Partition each subset ψ ∈ ΨQ by Metis and obtain a

community set M .

4) Interconnect each pair of nodes in Mi ∈M and rewiring

isolated nodes to Mi by following the original graph to

construct the new graph GM
rewired.

5) Partition GM
rewired into S clusters to obtain the final

subgraph set {G∗

1, ..., G
∗

S}.

C. Spatio-Temporal Graph Convolutional Network

In this work, we apply our graph-clustering approach

to Spatio-Temporal Graph Convolutional Network (STGCN)

model. STGCN model is composed of several spatial blocks

and temporal data processing blocks, which are used to exploit

spatial and temporal dependency, respectively.

The spatial block employs a graph convolution operation

which follows the spectral GCN method that convolves in the

spectral domains. To process the graph data in the spectral

domain, we first compute the normalized graph Laplacian

matrix given the adjacency matrix W as

L = IN −D−
1

2WD−
1

2 , (6)

where IN ∈ R
N∗N is the identity matrix and D =

diag (ΣjWij) ∈ R
N∗N is the diagonal degree matrix. Sub-

sequently, we decompose L and have L = UΛUT where

U ∈ R
N∗N is the matrix of eigenvectors of L and Λ ∈ R

N∗N

is the diagonal matrix of eigenvalues λ with Λ = diag (λ).
Then we can operate convolution in the spectral domain the

graph by introducing a graph convolution operator ∗ as

gθ∗X = gθ
(
UΛUT

)
X = Ugθ (Λ)U

TX, (7)

where gθ is the kernel with convolution parameter θ ∈ R
N . By

this filtering operation, an updated feature of the graph signal

X can be computed by the multiplication between gθ and

UTX . Moreover, to cut down the computational expense of the

decomposition process of the normalized Laplacian matrix in

(7), an approximation model is further constructed by utilizing

Chebyshev polynomials referring to [24]. Finally, the graph

convolution model can be formed as

X ′ = σ
(
D̃−

1

2 W̃ D̃−
1

2Xθ
)
, (8)

where X ′ is the updated graph signal, W̃ = W + IN
is the adjacency matrix with added self-connections, D̃ =

diag
(
ΣjW̃ij

)
is the diagonal degree matrix, θ is the shared

parameter, and σ (·) is the sigmoid function.

The temporal block incorporates a 1-D CNN and a Gated

Linear Units (GLU). A gated structure is adopted since it can

control the input of relevant dynamic variances, which may

contribute to the performance on long-term prediction. The

temporal gated convolution procedure can be formulated as

X ′

τ = (Θ (Xτ ) +Xτ )⊙ σ (Θ (Xτ )) , (9)

where Xτ and X ′

τ are the input and updated graph signals of

the temporal convolution layer, respectively; Θ(·) denotes the

convolution operation, and ⊙ denotes the Hadamard product.

D. Framework of EMGC-STGCN

In this paper, we leverage a graph-clustering method to

divide the traffic graph into multiple subgraphs. Thus, a large

task can be solved by solving several subtasks. We adopt a

multiple-model training strategy to handle the subtasks. For

example, if S subgraphs are obtained by graph-clustering, they

will be fed into S independent models, and each model will

be trained independently and parallelly. The framework of our

proposed approach is shown in Fig. 2.



Fig. 2: The framework of the proposed EMGC-STGCN

1) Objective Function: In each training process, the aim is

to minimize the error between the prediction value of the traffic

speed and the ground truth. We use Mean Squared Error (MSE

a.k.a. L2 loss) as the loss function of the training as follows:

minL
(
Ŷt; θ

)
=

∑

t

∥∥∥Ŷt − Yt

∥∥∥, (10)

where Yt and Ŷt are the ground truth and predictions, respec-

tively; θ denotes the involved learnable parameters.

IV. EXPERIMENTS

A. System Configuration

1) Dataset Description: In this work, two real-world

network-wide traffic speed datasets are utilized. The first

dataset Nav-BJ is from NavInfo 1, which contains data col-

lected from 1159 sensor stations deployed in the different

road segments of Beijing city. The period of this dataset is

from March 1st to March 31st of 2019. The second dataset is

PeMSD7(M) which is a public dataset collected from Caltrans

Performance Measurement System (PeMS) by 228 sensor

stations in District 7 of California. The data collection period

is from May 1st to June 30th of 2012 (without weekends). In

both of the datasets, we aggregate traffic speed observations

into 5-minute interval and apply Z-Score normalization to the

data. Additionally, we apply linear interpolation to recover

missing data points. The training, testing, and validation sets

are correspondingly generated, each of which contains 60%,

20%, and 20% of all data.

The adjacency matrices of the two datasets are constructed

in two different ways. In Nav-BJ, the topology of the road

graph follows the diagram as shown in Fig. 1, which is a

typical urban traffic pattern. Furthermore, the generated graph

is directed since each road segment has a attribute of origin-

destination. In PeMSD7(M), there is no topological connec-

tions in the original graph. Therefore, the adjacency matrix

1http://www.nitrafficindex.com

is generated based on the Euclidean space distances among

sensor stations using thresholded Gaussian kernel method [25].

This procedure can be represented by

wij =




1, if i 6= j and exp

(
−
dist(i, j)

σ2

)
> ε

0, otherwise.

, (11)

where wij represents the edge weight between node i and

node j, dist(i, j) denotes the Euclidean space distance from

node i to node j; ε and σ2 are user-controlled thresholds

that control the sparsity of the matrix, whose values are 10
and 0.5 in the tests.

2) Compared Methods: To verify the effectiveness of our

proposed approach, we compare our approach with the fol-

lowing baselines: (1) HA: Historical Average; (2) ARIMA:

Auto-Regressive Integrated Moving Average model; (3) GRU:

A GRU-based model [26]. Additionally, the variants of our

proposed approach are also introduced to verify the effi-

cacy of our proposed graph-clustering method, including (4)

STGCN: Our proposed approach without graph-clustering (i.e.

original STGCN model in [5]); (5) Random-STGCN: Our

proposed approach using a random graph-clustering method;

(6) Metis-STGCN: Our proposed approach using naive Metis

method. These methods are evaluated by three metrics, namely,

Mean Absolute Error (MAE), Mean Absolute Percentage Error

(MAPE) and Root Mean Squared Errors (RMSE).

3) Experiment Setting: All neural network-based ap-

proaches are developed using PyTorch and trained using Adam

optimizer for 50 epochs with a learning rate of 1e−4. We adopt

grid search strategy to locate the best hyperparameters on the

validation dataset. The past time window is an hour (i.e. 12

observed data points), and the covered historical data are used

to predict the traffic speed in the next 15, 30, and 45 minutes.

B. Experiment Results

Table I demonstrates the results of our proposed approach

and the aforementioned baselines on Nav-BJ. With simpler

frameworks compared to advanced deep learning models, it is

not surprising to see that HA, ARIMA and GRU have larger

prediction errors. ARIMA performs well on short-term predic-

tion (i.e. 15 minutes); however, poor on long-term prediction

(i.e. 45 minutes). Comparatively, GRU presents an excellent

performance on relatively long-term prediction due to its RNN

nature on temporal dependency learning. STGCN generally

has better performance compared to the other baselines, which

is explained by its spatial feature learning powered by GCN.

Three graph-clustering-based approaches considerably surpass

the methods above. Notably, our proposed approach EMGC-

STGCN obtains the best results, whose MAPE outperforms

STGCN by 1.61% (15 min), 1. 58% (30 min), and 1.62%

(45 min). It implies that graph-clustering methods, especially

our proposed enhanced motif-based graph-clustering approach,

are effective for STGCN to learn spatial dependency of

traffic graph to further improve its prediction capacity. For

reference of the audience, the results of the graph-clustering

are visualized as shown in Fig. 3, where we demonstrate four



TABLE I: Performance comparison of EMGC-STGCNN and baselines on Nav-BJ dataset.

Model
15 min 30 min 45 min

RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)

HA 7.54 4.19 12.28 7.54 4.19 12.28 7.54 4.19 12.28
ARIMA 8.03 4.39 10.88 12.21 5.91 12.66 19.07 8.85 18.56

GRU 7.34 4.02 13.56 7.61 4.23 14.32 7.56 4.32 14.67
STGCN 4.53 3.10 11.13 4.84 3.28 11.84 5.02 3.40 12.30

Random-STGCN 4.23 2.89 9.90 4.48 3.05 10.60 4.68 3.19 11.36
Metis-STGCN 4.20 2.84 9.72 4.41 3.02 10.38 4.56 3.14 10.97

EMGC-STGCN 4.11 2.81 9.52 4.33 2.99 10.26 4.46 3.08 10.68

TABLE II: Performance comparison of EMGC-STGCNN and baselines on PeMSD7(M) dataset.

Model
15 min 30 min 45 min

RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)

HA 7.20 4.01 10.61 7.20 4.01 10.61 7.20 4.01 10.61
ARIMA 9.00 5.55 12.92 9.13 5.86 13.94 9.38 6.27 15.20

GRU 4.15 2.35 7.25 5.36 3.04 9.12 6.19 3.52 10.14
STGCN 3.55 2.02 4.82 4.91 2.85 7.10 5.45 3.14 7.67

Random-STGCN 3.52 2.06 4.74 4.73 2.67 6.51 5.37 3.04 7.52
Metis-STGCN 3.49 1.99 4.67 4.59 2.58 6.19 5.34 3.03 7.45

EMGC-STGCN 3.47 1.98 4.56 4.62 2.58 6.20 5.40 3.03 7.42

subgraphs among all the eight subgraphs. The colored lines

denote the trajectories of all the road segments included in a

subgraph.

(a) Subgraph 1 (b) Subgraph 2

(c) Subgraph 3 (d) Subgraph 4

Fig. 3: The partitioned results of our graph-clustering approach

C. Approach Scalability

(a) Nav-BJ (b) PeMSD7(M)

Fig. 4: The diagram of the distribution of sensor stations

To verify the generalization ability of our proposed ap-

proach, we additionally test its performance on PeMSD7(M).

Table II presents the results on PeMSD7(M). Overall, we

can observe that the results demonstrate a similar pattern as

shown in Table I. However, the performance gap between

our proposed approach (i.e. EMGC-STGCN) and other graph-

clustering-based approaches is not significant as significant as

on Nav-BJ.

The aforementioned results may be credited to the following

factors. First, the number of nodes in PeMSD7(M) (228) is

much less than that of Nav-BJ (1159). Second, as shown

in Fig. 4, the distribution of sensor stations (a.k.a. nodes)

in the two datasets show different patterns. Recall the graph

representation we define in Fig. 1, one may notice that it is

more adapted to the dataset collected from some regular urban

traffic networks (e.g. Nav-BJ). To conclude, the similar results

imply that the performance improvement of graph-clustering

is related to the size and traffic pattern of the historical dataset.

A further study on their correlations will be conducted in the

future.

D. Sensitivity of the Number of Clusters

We test the performance of our approach with four different

numbers of clusters on dataset Nav-BJ. Specifically, these

values are set to 2, 4, 8 (default) and 16. Table III demonstrates

the result. We can observe that the best result is obtained using

the default setting (i.e. S = 8). The performance degeneration

exists but not significant. It can be concluded that EMGC-

STGCN is not quite sensitive to the number of cluster, yet

fine-tuning it can further improve the model performance.

V. CONCLUSION

In this paper, we propose an enhanced motif-based graph-

clustering approach for large-scale urban traffic speed predic-

tion. By adopting the proposed graph-clustering approach, we

partition the large urban traffic network into a group of small

networks and trained each of them on an independent STGCN

model. To evaluate the performance of the proposed approach,

we conduct several case studies on two real-world datasets.



TABLE III: Performance comparison of the number of clusters on Nav-BJ.

Sa
15 min 30 min 45 min

RMSE MAE MAPE (%) RMSE MAE MAPE (%) RMSE MAE MAPE (%)

2 4.21 2.83 9.65 4.48 3.04 10.60 4.66 3.16 11.39
4 4.16 2.81 9.58 4.48 3.03 10.55 4.59 3.13 11.12

8 (default) 4.11 2.81 9.52 4.33 2.99 10.26 4.46 3.08 10.68
16 4.22 2.84 9.55 4.40 3.00 10.35 4.54 3.09 10.78

a S denotes the number of clusters.

We first compare the prediction accuracy performance among

our proposed approach, its variants and baseline methods on

Nav-BJ dataset. The results show that our proposed approach

obtains the best performance. To verify the effectiveness of the

proposed approach, the PeMSD7(M) dataset is also employed,

whose result shows the merit of graph-clustering. Lastly, we

investigate the sensitivity of our proposed approach to the

number of clusters (subgraphs).

In the future, we plan to further investigate the relevance

of traffic patterns with our approach. Additionally, apart from

STGCN, more state-of-the-art GCN-based approaches will be

adopted to improve both short-term and long-term urban traffic

speed prediction performance.
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