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Abstract—Traffic lights control could be regarded as a multi-
agent coordinated problem. A model-free reinforcement learning
(RL) approach is a powerful framework for solving such co-
ordinated policy-making problems without prior environmental
knowledge. In order to approach a global policy, communication
among agents needs to be built. To enable dynamic and scalable
communication, we propose a new RL model, CommNet based
on Local Attention Mechanism (Attn-CommNet), which uses
local selection and attention mechanism between hidden layers to
facilitate cooperation. We evaluated the proposed method using
synthetic and real word traffic flows under multi-scale road
networks. The results demonstrate that the proposed method
can get better performance in multi-scale problems, especially
large-scale problems compared to the state-of-the-art methods.

Index Terms—reinforcement learning, multi-agent control, co-
ordinated traffic lights control

I. INTRODUCTION

Traffic congestion in urban areas has caused serious prob-

lems [1], [2], e.g., long waiting time, high fuel consumption,

and increased harmful emissions. One of the effective ap-

proaches to solve congestion is to control traffic lights more

intelligently. Due to the signal control strategies of intersec-

tions are highly interdependent, it is crucial to coordinately

control traffic signals in a large region [3].
Reinforcement learning (RL) techniques are effective for

coordinately controlling of traffic signals. In early approaches

[4]–[6], the intersection agents do not share information and

parameters but update their own networks independently.

These decentralized methods cause non-stationary for conflicts

among agents’ independent optimal policies. The centralized

RL [3], [7], where the joint states of multiple intersections

could be learnt, solves the issue of optimal policy con-

flicts. However, it cannot learn well due to the curse of

the dimensionality in the joint-state space. Another state-of-

the-art RL method, CoLight [8], employs local neighboring

information to the graph attentional network [9] to participate

in the decision-making of the target agent. This network

avoids the dimensionality issue, but the neighboring agents

for communication is pre-defined and fixed, i.e., cannot be

changed considering the traffic dynamics.

This work is supported by the Stable Support Plan Program of Shen-
zhen Natural Science Fund No. 20200925155105002 and by the General
Program of Guangdong Basic and Applied Basic Research Foundation No.
2019A1515011032. James J.Q. Yu is the corresponding author.

In order to improve the performance for coordinated traffic

lights control, we propose a novel RL model called Attn-

CommNet where communication among agents conducted

dynamically. The proposed model is also scalable for large

scale road networks. Our work makes the following major

efforts:

• We construct a locally connected CommNet to achieve a

dynamic and scalable communication scope.

• Attention mechanism is introduced to assign weights for

hidden layer states of neighboring agents, where the

weights are related to the influence degree of neighboring

agents on the target agent.

• We conduct experiments on synthetic and real world

datasets to verify the effectiveness and scalability of the

proposed method.

The remainder of this paper is organized as follows. Sec-

tion II reviews the related work on coordinated traffic light

control. Section III gives the problem formulation modeling

the coordinated traffic light control problem as a Markov

decision process. Section IV presents the details about the

proposed CommNet based on local attention mechanism. Sec-

tion V discusses the experiments results. Concluding remarks

are described in Section VI.

II. RELATED WORK

The fixed-time traffic lights control [10] is not suitable

enough for congestion avoidance under dynamic traffic flows.

Recently, RL has been adopted by transforming the coordinate

traffic lights control problem as a Markov decision process

(MDP). The mainly RL based approaches in coordinated traffic

lights control can be divided into two categories: centralized

and decentralized methods.

Prashanth et al. [7] trained a centralized model to decide

the joint-actions for all intersections. Chen et al. [3] tackled

the problem of multi-intersection traffic signal control for

large-scale networks using centralized RL techniques and

pressure-based coordination. Kuyer et al. [11] estimated the

optimal joint action by sending locally optimized messages

among connected agents. The centralized RL could obtain

global joint-actions meanwhile, but it suffers the curse of

dimensionality in large scale road network.
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Fig. 1. Basic CommNet Model

Decentralized RL is proposed for coordinated traffic lights

control under partial observability. The states of neighboring

intersections are commonly used as observations to make

policies for one target agent. Nishi et al. [12] developed an RL-

based traffic signal control method that employs a graph con-

volutional neural network (GCNN) to extract features among

multiple roads. Wei et al. [8] proposed a CoLight model, which

used graph attention networks to facilitate communication.

However, in these methods, the pre-defined and fixed number

of neighboring agents might lead to the local optimal.

To address the shortcomings of previous methods, in this

paper, we modify the CommNet [13] to realize a dynamic

and scalable communication scope for every agent. The basic

CommNet structure, as shown in the Fig. 1, is composed of

full-connected layers and mean aggregation modules, which

generate the communication vectors. Each f j
i takes the hidden

state hj
i and the communication vector cji as input and outputs

hj+1
i . Although CommNet is centralized, the corresponding

coefficient matrices Hj and Cj are the same in each module

f j
i , preventing the curse of dimensionality. According to the

Kinenmatic-wave theory [14] that the upstream intersections

have larger influence than downstream intersections, we re-

place the mean communication mechanism in CommNet by

the attention mechanism to assign different weights to multiple

neighboring agents. We also apply the local connections to

replace the full connections in the hidden layers. When every

target agent communicates with its neighboring agents in the

hidden layers, it also communicates with the non-neighbors

indirectly by attention mechanism among different layers.

Therefore, our proposed network will not only guarantee the

overall communication ability of CommNet, but also can

reduce the number of training parameters effectively.

III. PROBLEM FORMULATION

In the coordinated traffic lights control problem, the traffic

flow is stochastic and can not be modeled accurately, which

can be regarded as a random process. Meanwhile, the condi-

tional probability distribution of the future state only depends

on the current state. Therefore, we model the coordinated

traffic lights control problem as an MDP which is defined by

five components 〈S,A,P,R, γ〉, where S is the state space, A
is the finite action space of all feasible actions, P is the state

transition probability, R is the reward, and γ is the discount

Fig. 2. The illustration of an intersection with four phases. (a) West Straight
and East Straight; (b) North Straight and South Straight; (c) West Left and
East Left; (d) North Left and South Left.

factor decaying rewards over time. The details are presented

as follows:

• State space: We define the state space as St =
[st1, s

t
2, ..., s

t
N ], where N is the number of intersections

and sti is the state of i-th intersection at time step t. The

intersection state consists of the current signal phase and

the number of vehicles on each lane connected with this

intersection. Fig. 2 shows a city intersection with four

phases.

• Action space: The action space contains all candidate

actions. In this paper, the action space of coordinated

traffic lights control problem is a full set of all can-

didate phases, which can be represented as At =
{phase1, phase2, ..., phasem}. m is the total number of

phases. At each time step, every agent will choose a phase

from action space as its action, indicating the next phase

of the traffic signal. The action of agent i at time step t
is defined as ati ∈ At.

• Reward space: We aim at minimizing the travel time for

all vehicles in specific region, which is hard to be opti-

mized directly [8]. Hence, we leverage the queue average

length on each lane of the i-th intersection as its reward

ri. The reward space is defined as Rt = {rt1, rt2, ..., rtN}.
The parameterized strategy function is defined as follows:

πθ(S,A) = p(A|S, θ), (1)

where p is an action distribution conditioned on state S and

parameters θ. The quality of policy πθ is accessed by the

expected reward, which is defined as follows:

Q(St, At;πθ) = Eπθ
[
∑T

k=t γ
k−tR(Sk, Ak)], (2)

where T is the total time steps in an episode. In an MDP

with an unknown model, the state transition probability

p(St+1|St, At) is unknown. Hence, we cannot obtain the

optimal solution of MDP by Bellman equation directly. There-

fore, in order to address this issue, we adopt two model-

free Q-networks, Qω and Qω̂ , to obtain the optimal policy

by interacting with the environment. According to Bellman

equation, the target action-value Qω̂ is defined as:

Qω̂(S
t, At) = Rt + γmaxQω̂(S

t+1, At+1). (3)
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Fig. 3. An overview of our Attn-CommNet Model. (a) full model; (b) module
f for agent i; (c) communication module for agent i.

The loss function is to minimize the mean squared error

between the target action-value and the predicted action-value,

which is defined as follows:

Lω = E[(Qω̂(S
t, At)−Qω(S

t, At))2], (4)

where the weight ω̂ is updated with weight ω to increase the

learning stability by decorrelating predicted and target action-

values.

IV. PROPOSED METHOD

In this section, we first introduce the proposed Attn-

CommNet for coordinated traffic lights control. Then, the

advantages of the proposed model are analyzed.

A. Attn-CommNet

Fig. 3(a) illustrates the overall structure of Attn-CommNet.

The first layer of the model is an encoder layer. This layer

takes state si as the input, and feature vector h0
i will be the

output. The form of the encoder is problem dependent [13],

in our work it is a single layer neural network with sigmoid
activation function. The initial communication c0i is set to

zero. During the forward propagation, each agent sends its

feature vector hj
i and communication vector cji to f j

i module.

In our work, the module f j
i is a single linear network with

a non-linear activation function tanh, which is depicted in

Fig. 3(b). In order to achieve a more effective communication,

we introduced a new module to calculate communication

vector cji in the hidden layers. As shown in Fig. 3(c), first,

the local selection module is used to select neighboring states

{hk} , k ∈ Ni for each agent i from the concatenated vectors

[h1, h2, ..., hN ] of all agents. Ni is the neighboring scope of

agent i which is determined by the geographic distance. After

local selection, the attention module takes the concatenated

vectors of neighbors as input. In order to obtain the impact

degree of neighboring intersection on determining the policy

for target intersection, in the attention module, we first embed

the hidden-layer states of the target agent i and neighboring

agents k by parameters WT and WN respectively. Then, the

Fig. 4. Non-neighboring communication (Black dotted line) between A and
C

impact degree of agent k on determining the policy for agent

i could be calculated, of which equation is given by:

e<i,k> = (hiWT )(hkWN )T . (5)

After that, softmax is used to normalize the importance index:

a<i,k> = softmax(e<i,k>) =
exp(e<i,k>/τ)∑

k∈Ni
exp(e<i,k>/τ)

, (6)

where τ is the temperature factor. The communication vector

c is obtained as follows:

cji =
∑

kεNi
aj<i,k>h

j
k. (7)

Based on the local attention module mentioned above, the

module f j
i can be formulated as follows:

hj+1
i = f j

i (h
j
i , c

j
i ) = tanh(Hjhj

i + Cjcji ), (8)

where Hj and Cj are the corresponding coefficient matrices.

In the final layer of the model, a decoder layer with softmax
as the activation function is used to output an action-value

distribution over the action space.

B. Advantages

Learning in multi-agents environment is complex because

all agents may interact with each other potentially. If the agents

learn independently, the interactions among multiple agents

will reshape the environment and the changes in the policy of

one agent will affect the optimal policy of other agents. Thus

it will lead to non-stationary [15]. Attn-CommNet improves

the non-stationary issue by centralized learning. In addition,

Attn-CommNet is suitable for large-scale problems. As shown

in the Fig. 4, red and green areas are neighboring scopes for

attention module of agents A and B, respectively. The solid

line denotes direct-connections and the dashed line denotes

indirect-connection. Fig. 4 indicates that the proposed local

attention mechanism can construct indirect communication

between the target agent A and its non-neighboring agent C

by agent B. This dynamical and scalable neighboring scope

promotes the scalability of our model.

V. EXPERIMENTS

In this section, we first introduced the experimental settings.

Then, we gave the details about traffic flow datasets, which

contains two synthetic datasets and three real-world datasets

of New York, Hangzhou and Jinan1. The compared methods

and evaluation metrics are also presented. Finally, we conduct

simulations on multi-scale datasets for coordinated traffic

lights control performance evaluation and comparison.

1https://traffic-signal-control.github.io/
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TABLE I
TRAFFIC FLOW DETAILS

Datasets Intersections
Arrival Rate (vehicles/300s)

Mean Std Max Min

New York 196 1256 264 1441 476
Jinan 12 524 98 672 256

Hangzhou 16 248 40 333 212

Fig. 5. Road networks for real-world datasets. Red polygons are the selected
area and blue dots are intersections we control. (a) 28 × 7 New York road
net; (b) 4× 4 Hangzhou road net; (c) 4× 3 Jinan road net.

A. Settings

We conduct experiments on CityFlow [16], which is an

open source traffic simulator and is friendly to reinforcement

learning. The simulator distributes the movement of traffic

flow according to given traffic data including road network

data, traffic flow data, etc. The simulator can feedback current

state to the signal control method and generated traffic lights

actions.

B. Datasets

1) Synthetic Data: We conduct experiments on two dif-

ferent synthetic data sets as described in [8], which are

uni-directional and bi-directional traffic flow. The road net-

work is a 6 × 6 grid network. Each intersection in the

road network has four directions (West→East, East→West,

South→North, North→South) and has 3 lanes (300 me-

ters in length and 3 meters in width) on each direction.

In bi-directional traffic flow, traffic flow is allowed on

two bi-directions (West�East,North�South) with 300 ve-

hicles/lane/hour and 90 vehicles/lane/hour, respectively. In

the uni-directional traffic flow, traffic flow is only allowed

on two uni-directions (West→East, North→South). In the

experiments, uni-directional and bi-directional traffic flow are

denoted as “6×6-uni” and “6×6-bi”, respectively.

2) Real-world Data: The real data was collected in sub-

area of three cities: New York, Hangzhou, and Jinan. These

data sets are collected through different sources.

• New York traffic flow data are generated by the open-

source taxi trip data2. Since this taxi trip dataset only

gives the origin and destination geo-locations of taxi, the

path of each vehicle is established by the shortest path.

2http://www.nyc.gov/html/tlc/html/about/trip record data. shtml

TABLE II
PERFORMANCE COMPARISON

Datasets
Average Travel Time (s)/Area Throughout

Fixed Time CoLight CommNet Attn-CommNet

6x6-uni 277.6/2160 210.7/2169 212.9/2165 209.3/2172
6x6-bi 277.6/4326 216.1/4332 212.7/4341 210.5/4340

New York 1713.9/7617 1523.9/7973 1427.1/7852 1367.6/8083
Jinan 860.5/3788 344.1/5758 349.7/5667 334.3/5765

Hangzhou 756.9/2005 389.2/2726 392.0/2729 384.0/2754

• Traffic flow data in Hangzhou and Jinan are collected

from the roadside surveillance cameras. By analyzing the

camera data, identifier, duration time, as well as driving

route of vehicles entering and leaving each intersection

can be obtained.

The details of traffic flow datasets are shown in the Table I.

The road networks are obtained from OpenStreetMap3 as

shown in Fig. 5.

C. Compared Methods

We compare our method to a baseline transportation method

and two RL methods:

• Fixed Time [10]: The method gives a fixed cycle length

with a predefined green ratio split among all the phases.

It is one of the mainstream methods which is applied in

practice at present.

• CoLight [8]: This method is an advanced decentralized

reinforcement learning method with fixed neighbors for

communication. This method is among the state-of-the-

art RL methods for traffic lights control.

• CommNet [13]: A basic CommNet is used to compare

the performance with the proposed Attn-CommNet in this

paper.

D. Evaluation Metric

We use the following two representative measures to eval-

uate different methods [3]:

• Average travel time: It is commonly used to evaluate

traffic lights control methods by calculating the average

travel time of from entering to leaving the area.

• Area throughput: It is defined as the number of vehicles

that completely pass the area during the simulation time.

E. Results

In this section, we investigate the performance of Attn-

CommNet comparing to the baseline methods.

1) Performance Comparison: Table II shows the perfor-

mance of Attn-CommNet and other compared methods with

both synthetic and real-world datasets. Better performance is

expected to be observed from a lower average travel time and

higher area throughout. From the experimental results, we have

the following observations:

• Attn-CommNet outperforms Fixed Time and CoLight in

the five datasets, leading to both the best average travel

time and the maximum area throughout.

3https://www.openstreetmap.org/
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Fig. 6. Convergence performance of Attn-CommNet (red continuous curves)
and CoLight (green dashed curves) during training. Curves are smoothed by
moving average of five points.

• The advantage of our model is especially significant

in large-scale road networks, such as New York with

more intersections. Dynamic and scalable communication

shows its advantages over fixed neighboring communica-

tion under large-scale problems.

• Compared to CoLight, the performance improvement of

Attn-CommNet in Hangzhou and Jinan is not as obvious

as in New York. This is because there are less number of

intersections in Hangzhou and Jinan, incurring a limited

scale of dynamic-neighboring communication.

• Compared to basic CommNet with mean aggregation for

communicating, the performance are similar in synthetic

datasets. The advantage of Attn-CommNet is more ev-

ident in real-world datasets, where road structures are

more complex and traffic flows are more dynamic and

uneven.

2) Model Convergence: In Fig. 6, we compare the per-

formance convergence with respect to the episodes of Attn-

CommNet and CoLight. Evaluated with four datasets, Attn-

CommNet shows more stable convergence with smaller fluctu-

ations compared to CoLight. In the CoLight with decentralized

learning, the changes in the policy of one agent can affect

the optimal policy of other agents, causing the non-stationary

issue. Different from Colight, Attn-CommNet can improve

convergence stability by centralized learning and scalable

communication.

VI. CONCLUSION

In this paper, we proposed a new reinforcement learning

model based on CommNet for coordinated traffic lights con-

trol. Specifically, our method achieved dynamic and scalable

communication among agents. The proposed model also has

a more stable convergence and avoids the curse of dimen-

sionality in joint action space through parameter sharing. We

conduct experiments to demonstrate the outstanding perfor-

mance of our proposed method over state-of-the-art methods

under synthetic and real-world datasets. Our proposed method

has shown its superior performance especially in large-scale

problem.

Future work will focus on enhancing the applicability of our

model. One possible direction is to select the neighborhood

scope considering more realistic factors besides geographic

distance. We will also evaluate the practicality of the pro-

posed model in other new ITS scenarios, such as coordinated

charging of electric vehicles, etc.
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[9] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph attention networks,” arXiv preprint arXiv:1710.10903, 2017.

[10] P. Koonce and L. Rodegerdts, “Traffic signal timing manual.” United
States. Federal Highway Administration, Tech. Rep., 2008.

[11] L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis, “Multiagent rein-
forcement learning for urban traffic control using coordination graphs,”
in Proceedings of Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, Antwerp, 2008, pp. 656–671.

[12] T. Nishi, K. Otaki, K. Hayakawa, and T. Yoshimura, “Traffic signal
control based on reinforcement learning with graph convolutional neural
nets,” in Proceedings of the 21st International Conference on Intelligent
Transportation Systems (ITSC), Hawaii, 2018, pp. 877–883.

[13] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent commu-
nication with backpropagation,” arXiv preprint arXiv:1605.07736, 2016.

[14] W. D. Hayes, “Kinematic wave theory,” Proceedings of the Royal Society
of London. A. Mathematical and Physical Sciences, vol. 320, no. 1541,
pp. 209–226, 1970.

[15] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,” IEEE Transactions on Cybernetics, vol. 50, no. 9, pp.
3826–3839, 2020.

[16] H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang,
Y. Yu, H. Jin, and Z. Li, “Cityflow: A multi-agent reinforcement learning
environment for large scale city traffic scenario,” in Proceedings of the
World Wide Web Conference, San Francisco, 2019, pp. 3620–3624.

293


