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Abstract— Autonomous vehicle (AV) integration poses a
significant challenge for intelligent transportation systems (ITSs).
The ability to automatically coordinate complex AV operations
at scale is crucial for advancing the quality of core trans-
portation services, such as ride-sharing and parcel delivery.
However, existing studies have only considered either of these
two services independently from the other, disregarding the
potential benefits of their combined optimization. To address
this open problem, we design an autonomous vehicle intelligent
system (AVIS) providing joint ride-sharing and parcel delivery
services under realistic ride and route constraints. We formulate
the joint optimization problem through the scope of mixed-
integer linear programming and solve it using the Lagrangian
dual decomposition method to ensure scalability. We conduct
extensive case studies to evaluate the performance of the proposed
AVIS and its constituting components. Our experimental results
demonstrate that AVIS can effectively provide both ride-sharing
and parcel delivery services while satisfying service requests
in transportation networks of various scales. In addition, the
distributed method is shown to generate near-optimal solutions
in reduced computation time.

Index Terms— Autonomous vehicles, Lagrangian dual decom-
position, intelligent transportation systems, parcel delivery,
ride-sharing.

I. INTRODUCTION

HE SMART city paradigm has emerged as a promis-
ing avenue towards enhancing the quality of life in
urban areas. Powered by recent advances in data sensing,
communication, and processing, smart cities are bound to
transform a wide range of core transportation operations and
services. Intelligent Transportation Systems (ITSs) aim to
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provide users with reliable and efficient transportation services
while making optimal use of the underlying infrastructure [1].
Upgrading traditional transportation systems to ITSs requires
the convergence of several technologies, key among which are
autonomous vehicles (AVs) [2]-[4]. Combined with vehicle-
to-everything (V2X) technology, smart sensors installed on
AVs enable the exchange of individually sensed information in
real-time [5], [6], thereby improving the vehicles’ collective
awareness of the surrounding environment. In addition, the
centralized ITS control center can leverage such information
to determine and remotely broadcast individual routing instruc-
tions so that AVs can achieve the desired ITS objectives [7],
[8]. In this manner, the utilization of AVs will contribute not
only to safer and more efficient transportation with reduced
traffic congestion, but also to improving critical services
such as ride-sharing and parcel delivery. The provision of
these services contribute to the real application of multi-
mode transportation systems in smart cities, which refer to
the combination of at least two or more various vehicular
modes. The use of multi-modal planning, which considers
various modes and connections among modes, can effectively
response many different demands rather than the conventional
mode in ITS [9].

Ride-sharing refers to the provision of a single transporta-
tion service to multiple passengers with overlapping travel
plans. Typically offered via smartphone applications of ride-
hailing services such as Uber and Lyft [10], ride-sharing
provides users with on-demand, convenient, and cost-effective
transportation [11], [12]. By maximizing vehicle occupancy
such that fewer vehicles are ultimately deployed, ride-sharing
results in considerable energy savings while also encourag-
ing social interactions [13]. Existing studies [14]-[20] have
focused on path-planning for ride-sharing services, with
methods such as genetic algorithms and deep reinforce-
ment learning attaining promising results. However, these
studies have not explored the use of AVs in logistics
services.

AVs can also help optimize supply chain management
by offering logistics services such as parcel delivery [21],
[22]. With the ever-growing demand for parcel delivery, AVs
have become a promising candidate due to their capacity
for dynamic, cost-effective routing, in addition to their rel-
atively large storage capacity. Several works have demon-
strated the effectiveness of AV-supported logistics services
in ITSs [23]-[26]. Although these studies have evaluated the
feasibility of AV-provided parcel delivery, they have similarly
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neglected to investigate the additional provision of ride-sharing
services.

To bridge the research gaps related to the current
ride-sharing and parcel delivery schemes, we develop an
autonomous vehicle intelligent system (AVIS) to jointly pro-
vide ride-sharing and parcel delivery services in an integrated
manner. In particular, we focus on how to schedule both ride-
sharing and parcel delivery services to satisfy service requests
under well-defined constraints and in a cost-effective manner.
The main contributions of this work can be summarized as
follows:

o« We design a generic AVIS to provide joint ride-sharing
and parcel delivery services using AVs, which also guar-
antees the efficient path-planning operations. This model
is more general and practical than the existing studies
since the cost-effective approach is developed within the
feasible regions.

« We formulate the joint provision of the above services
via mixed-integer linear programming (MILP) in AVIS.
This helps to understand how the system operator and
AVs interact so as to achieve better system performance.

o We derive a distributed method based on Lagrangian dual
decomposition to solve the formulated joint problem in a
scalable manner. This presents the devised algorithm can
achieve near-optimal performance.

o« We evaluate the performance of the proposed AVIS
through a comprehensive series of case studies. Through
the proposed AVIS, the economical benefit and effective-
ness of the entire system can be achieved.

The rest of this paper is organized as follows. Section II
examines closely related studies and identifies the challenges
that motivate this work. Section III then develops AVIS,
a model encompassing transportation networks, AVs, and
system operations. Section IV formulates the joint problem of
ride-sharing and parcel delivery, while Section V derives the
distributed method proposed to solve the target optimization
problem in a scalable manner. Next, Section VI details the
case studies conducted to evaluate AVIS, with Section VII
concluding this work.

II. RELATED WORK

AVs will play a crucial part in the success of future
ITSs. But before their full potential can be realized, AVs
must tackle fundamental issues such as real-time motion
planning and safe interaction with human-driven vehicles [27].
In this direction, [28] introduced an online routing framework
based on deep reinforcement learning to minimize travel time,
while [29] modeled vehicle behaviors as stochastic Markov
decision processes and similarly leveraged deep reinforcement
learning to obtain optimal driving actions. In addition, [30]
introduced several observation-based control strategies for path
tracking, with [31] proposing a motion planning framework for
autonomous driving that incorporates target motion prediction.
Hence, these existing studies clearly presented the effective-
ness of using AVs in ITS.

With the gradual trends of AV adoptions in urban areas,
ride-sharing services are expected to significantly benefit from
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these vehicles [32], [33]. In this direction, [14] proposed an
autonomous on-demand ride-pooling system that was shown
to effectively reduce traffic on major roads. Reference [15]
modeled an autonomous taxi system as two bipartite optimiza-
tion problems with vehicle-to-user and relocation assignments.
To tackle the problem of electric vehicle fleet dispatch, [16]
introduced a framework leveraging decentralized deep rein-
forcement learning and centralized decision making via linear
assignment. In addition, after formulating the routing problem
as a Markov decision process, [17] sampled service requests
according to historical data and applied deep reinforcement
learning to determine the best route. By following a mixed
integer linear formulation, [18] tackled admission control via
bi-level optimization with scheduling constraints and solved
it using a genetic algorithm. Besides, [19] developed a public
vehicle system providing online ride-sharing services under
limited AVs and operation costs, using a greedy algorithm
for path-planning. Furthermore, [20] proposed an autonomous
taxi dispatching system with support for dynamic trip and
adjustment of AV capacity. All these works recommend that
AVs with the provision of ride-sharing services can benefit the
modern transportation system operation.

The integration of AVs in smart cities is also expected to
improve the quality of logistics services. For instance, several
works have studied AV-provided parcel delivery [23]-[26].
Aiming to improve service quality with fewer required vehi-
cles, [23] developed a parcel delivery planning and control
system in order to handle the increasing demands on transport
logistics. Moreover, [24] proposed an algorithm for AVs to
safely navigate and efficiently deliver parcels in large-scale
urban areas. Aiming to minimize the total service duration
under routing constraints, [25] proposed a dynamic AV routing
model based on Markov decision processes and approximate
dynamic programming. Besides, [26] simulated the use of
private AVs for both passenger transport and parcel delivery
at city-scale, with findings suggesting that such practice can
considerably minimize operator costs. Nonetheless, the above
studies have not addressed AV-provided ride-sharing services.

Considering the provision of ride-sharing services, [34]
built a last-mile parcel delivery system to assign delivery
tasks based on a landmark graph that estimates road-segment-
level travel times and fuel consumption by means of private
cars. [35] devised a dynamic planning scheme to handle online
trip requests for electric taxis under charging constraints.
In addition, [36] proposed sharing models to handle both pas-
sengers and parcels in an integrated way by means of the taxi
network. However, these works only involve short-distance
delivery and trip services of private cars or electric taxis;
as such, they have not considered the utilization of general
AVs towards improving system performance. In this work,
we tackle the random assignments for providing the joint
services by means of general AVs. Finally, recent work [37]
proposed a distributed deep reinforcement learning method
to jointly serve passengers and goods workloads via learning
optimal dispatch policies. Despite being a promising step in
the right direction, this work neglects the constraints related to
urgent goods delivery and the cost-effectiveness of the system.
In this work, we explicitly consider the implementation of all



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: AVIS: JOINT RIDE-SHARING AND PARCEL DELIVERY STRATEGY

types of parcels with different deadlines, in order to bridge
this research gap.

Beyond the aforementioned studies, [38] proposed an
autonomous vehicle logistic system (AVLS) leveraging AVs
for joint routing and charging. AVLS provides logistic services
for smart cities while also determining optimal routes and
charging schedules. Even though AVLS can effectively use
AVs to provide joint routing and charging services, it cannot
readily provide ride-sharing. In addition, the deadlines for ride
and logistic service requests are unique, while the proposed
riding scheme neither varies the number of passengers nor
considers the capacities of general AVs. Thus, how to provide
ride-sharing in AVLS remains an open problem. In this paper,
inspired by AVLS, we design a generic AVIS that integrates
the provision of ride-sharing and parcel delivery services for
general AVs in smart cities.

III. AVIS ARCHITECTURE

This section presents the architecture of the proposed
AVIS, which models transportation networks, AVs, and system
operations.

A. Transportation Network

We model the transportation network to represent the phys-
ical distance from one location to another within a particular
area. For simplicity of representation, the transportation net-
work is modeled as a directed graph G(V, £), where the set of
nodes V denotes road segment intersection points connected
by edges in the set £. We further define d;;, as the travel
distance of AV n from location i to location j for every road
segment (i, j) € £. Note that d;; , may not always equal d; ,
due to possible asymmetries between routes.

B. Autonomous Vehicles

We denote the set of participating genereal AVs as A/ and
consider both public and private AVs in our design. The public
AVs refer to the vehicles for serving transportation systems,
e.g. public buses. These vehicles mainly serve the city public
services with pre-determined schedules. For private AVs, they
are defined as the fleet of AVs owned by citizens. These
vehicles have the randomness characteristics on travel behav-
iors since the travel plans of such vehicles are determined by
personal preferences. The utilization of general AVs in the
AVIS can include the case of using both public and private
AVs for tackling random service requests. AVs complete their
assigned ride-sharing or parcel delivery objectives by traveling
between any two locations (i, j), where i, j € V. AVs are
able to provide both ride-sharing and delivery services for
a predetermined time period. Finally, each service request is
assigned to the n-th AV and must be completed within service
deadline 794!,

Besides, for logistic services provided by AVs, we denote
the index set of parcels as WW. Then, we define the index set of
passengers as Z for ride-sharing services. For multiple service
requests, we denote the index set of joint service requests as
R, where R, U Ry = R are the sets of parcel delivery and
ride-sharing service requests, respectively.

Control Center

()

Autonomous Vehicle

eoute Optimization

Ride-Sharing

Parcel Delivery Y,

Fig. 1. Architecture of the proposed AVIS for joint ride-sharing and parcel
delivery of autonomous vehicles.

C. System Operations

Following the public transportation system architecture
in [18], our proposed AVIS incorporates a system control
center to coordinate the optimal routing of AVs in the trans-
portation network. An overview of the system architecture
of AVIS is shown in Fig. 1. Note that routing is subject to
ride-sharing and parcel delivery requirements, as described
in Section III-A. Instead of the fixed assignment, we place
the locations of all passengers and parcels into different areas
using randomization for the random assignment. After process-
ing traffic flow information from road sensors, AVs, as well as
the transportation network, the control center performs route
optimization for ride-sharing and parcel delivery.

The complete service process can be divided into two
stages: planning and implementation. First, the control center
determines the optimal route for each AV when receiving
the city traffic and vehicular information. In the meantime,
AVs are assumed to remain near the depot that has parcels
in need for delivery. Next, the control center gathers the
information of the transportation network, the current status
of AVs, and existing logistic requests. At this time, the control
center coordinates the ride-sharing services through the current
capacity of AVs and the number of passengers within the
participation time period. Then, it determines the routing,
ride-sharing and parcel delivery plans for the AVs with the
considerations of the logistic and ride-sharing requests. The
real-time parameters are indeed utilized in the AV plans so
as to tackle the stochastic traffic conditions. Finally, AVs
proceed with the service plan for implementation. For the
implementation stage, it is possible that traffic conditions
may need to be updated in real-time. In such cases, the
control center can re-assign AV service plans based on the
new information. Once the congested traffic road segment
(i, j) € &€ occurs, the AV travel plans may be affected due
to the constraints of service deadline.

A simplified example of joint ride-sharing and parcel deliv-
ery is depicted in Fig. 2. First, AV n departs from the initial
location and approaches location 1 to load the parcels to
be delivered. For the nodes serving on logistic services, the
method for loading parcels follows [39]. Specifically, in [39],
a decision support model is formulated as a mixed integer
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Fig. 2. A simplified process of joint ride-sharing and parcel delivery.
TABLE 1

programming to achieve the total operational and logistics
costs, which is used for assigning products and determining
the paths of products flowing through the retail network. For
ride-sharing service, AV n will reach location 2 and provide
the ride-sharing service for the passengers 1 and 2 based on its
available capacity. Next, these passengers will be taken to their
predetermined destinations, i.e., locations 3 and 4. Finally, the
AV reaches its final destination to complete the parcel delivery
service before the service deadline. Please note that Fig. 2
presents a simplified way of providing the joint ride-sharing
and parcel delivery service. In practice, it is possible that AV
n will have to pick up more passengers and provide delivery
services for a larger quantity of parcels during each request.
Furthermore, in this work, we assume that the capacity for
loading parcels of each AV is less than the capacity of the
installed truck.

The control center in AVIS periodically requests infor-
mation from each AV, the size of which depends on the
scale of the modeled system. This is facilitated by com-
munication technologies such as vehicular ad-hoc networks
(VANETS), which enable wireless communication such that an
internet of vehicles can ultimately be established [40], [41].
VANETSs can facilitate both vehicle-to-roadside base station
and inter-vehicle communications [38], requiring occasional
connectivity to share positioning (and other) information.
As previously mentioned, the planning and implementation
stages consist of information gathering and execution of the
provided routing plans by each AV, respectively. With the
formation of VANETS, the time for data collection and service
request assignment can be reduced to seconds.

IV. PROBLEM FORMULATION

As discussed in Section III, the purpose of AVIS is to
address the open problem of joint ride-sharing and parcel
delivery for all participating AVs in a smart city. This section
details our formulation of the above problem. All related
parameters are disambiguated in Table I.

A. Operational Constraints

Let binary variable x;; , denote whether AV n € N traverses
the road segment (i, j) as follows:

if AV n traverses road segment (i, j) € &,

1
R 1
Kijn [0 otherwise. M

TABLE OF PARAMETERS FOR THE PROPOSED AVIS

Parameters
% Index set of nodes
Ny Total number of nodes
& Index set of road paths
Ng Total number of road paths
N Index set of AVs
Navy Total number of AVs
w Index set of parcels
Z Index set of passengers
£ Set of delivery location of AV n
Ly Departure point (source) of AV n
e Destination point of AV n
Tin Stay time for AV n at location j
T Service deadline of AV n
Hy™ Maximum loading capacity for AV n
Tijn Travel time of AV n on road (¢, j)
0;; Delay factor for stochastic traffic over road (i, )
T, Minimum service time for AV n at request r
T Maximum service time for AV n at request r
Qin Changing number of passengers of AV n at node j
Qij Maximum volume of vehicles for road (3, 5)
o8 Unit routing cost of AV n
Bn Unit transportation service cost of AV n
Optimization variables
Zij,n  Binary variable of whether AV n traverses road (3, j)
djn Staying duration of AV n at node j
tin Time of arrival of AV n at node j
hjn Loading capacity for AV n at node j
Cjn Capacity of AV n at node j

In practice, AVs can visit the same node multiple times
in the course of different trips. To simplify our problem
formulation, we assume that each AV n € N can visit each
node of the transportation network at most once. We further
define the status of AV n at node j € V. In particular,
we denote t;, > 0 as the time when AV n arrives at node
J. In addition, we define d;, > 0 as the duration of AV n
staying at node ;.

The proposed AVIS encompasses three main operations: AV
routing, parcel delivery, and ride-sharing. Ensuring real-world
applicability demands that all AV operations be performed
while satisfying a set of specified constraints. The latter are
presented in the sequel.

1) Route Constraints: In AVIS, the n-th AV shall reach
its final destination after receiving a request assignment for
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a certain operation, i.e., ride-sharing or parcel delivery. This
implies that the AV will have to traverse at least one road
segment to reach the final destination. This can be ensured
by:

inj,n >1, VnelN,je(Ld,
ey

2

where £V denotes the set of delivery location of AV n.

We model the AV network flow model based on the city’s
road network. We define >,y xij, and > .y, xji, as the
incoming and outgoing flows, respectively. The connectivity
of multiple consecutive road segments for AV n € N can be
guaranteed by:

s rdst dst

i j =LY, Ly© # LY,
D i = D= =1 i = L Ly LY,
ieV ieV 0  otherwise,

3)

where L)' and Lfft represent the departure and destination
points of the corresponding routes of AV n. In (3), the first
two cases ensure that if AV n approaches node j, there shall be
an incoming flow and outgoing flow between the departure and
destination points, respectively. For example, considering all
road interactions other than those involving the departure and
destination points, if AV n approaches node j, an incoming
flow will lead to an outgoing one. Otherwise, the number
of incoming and outgoing flows for AVs will be the same.
Thus, (3) guarantees the connectivity of vehicular routes.
In practice, it is possible to consider the utilization of different
types of vehicles in smart cities. Hence, when considering
the utilization of the public vehicles, e.g. city buses, the
constraints (1) - (3) shall be neglected, since the routes have
already been determined by the public transportation system.

In practice, access to some roads may be restricted for cer-
tain vehicles. For instance, private cars are often not allowed to
travel on road segments for authorized vehicles. To take such
realistic scenarios into consideration, we can model additional
constraints. We first define (V’, £’), where the set of nodes
V' C V denotes road segment intersection points connected
by edges in the set & C &£ in the restricted zone. Suppose
that access to road (i, j) is restricted for AV n. The related
constraint can be modeled as x;; , = 0, Vi € V', j € £, which
means that there is AV #n is not allowed to travel between node
i and node j since it is within a restricted zone.

2) Parcel Delivery Constraints: Parcel delivery needs to
consider the quality of the provided services. In this context,
we measure quality of service as the time required for delivery.
When the n-th AV n loads or unloads parcels at node j, the
minimum duration of stay is denoted by:

djpn>Tin, YneN,jeV,r e Ry, 4)

where T, is the stay time for loading or unloading parcels
for the n-th AV.

In addition, recall that ¢; ,, represents the time when the n-th
AV arrives at node j. For accuracy of estimation, we also need
to account for the time of AV n traversing the involved the
nodes and road segments of the traffic network, which refers

to the time access windows in [42]. Note that, ¢; , is updated
when AV n complete all requests in the set of R,,. When AV
n travels through (i, j) € E\{€'}, 1j, will be no less than
the time required for traveling plus the time for loading the
parcels, which is defined by:

tin =tin+din+Tijn, Yxijn=1neN,i,jeV, (5

where T;; , denotes the travel time from node i to node j for
the n-th AV. Since the stochastic traffic conditions may vary
this parameter, we define the time-varying delay parameter
0;; to indicate whether the sudden traffic congestion occurred
over the road segment (i, j) or not, which can incur the
degradation performance on Tj; ,. Specifically, it follows that

real _ .. .. real ; . :
Tl.L v = Tijn + 0ij, where Tij,n is the real-time travel time

of AV n over the road (i, j) and it affects the quality of
the provision of parcel delivery service due to the change in
constraint (5). Moreover, 0;; is updated in a real-time manner,
since it is related to the real-time traffic condition over the road
(i, j) € £. Then, its parcels will be delivered to the destination
point according to:

T <tjn <T™, VneN,jeV,reR,,

(6)

where anf‘,i“ and 7,7 are the expected minimum and maxi-
mum times at the logistic service request r. Finally, the service
deadline is the time required to complete the service at node
Lg“, which follows:

tna T, Vne N, jeV,

)

where T34 denotes the service deadline for the n-th AV.

Besides time constraints, the loading capacity of parcel w €
W is defined to take into account during logistic services.
We define £, as the loading capacity of AV n at node j,
and it is updated when AV n complete each request r € R .
Then, it follows:

Bjw < H™ Vxj,=1lneN,ijeV, (8)

where H"™ denotes the maximum loading capacity of AV n.

Considering the presence of restricted roads, we set the
visiting time of AV n to zero. This means that AV n cannot
visit node i based on (5). For the case of AV n being only
allowed to travel at node j in a specific time period, we include
the operational limits as (6).

3) Ride-Sharing Constraints: Our ride-sharing scheme
accounts for the riding time of each passenger and the capacity
of each AV. For each ride-sharing service request, the pas-
sengers should arrive at their destinations within the expected
earliest and latest pickup or drop-off times, which is described
by:

T <tjn < T, Vne N,jeV,reRy.

©)

Apart from time constraints, the capacity of AV n is defined
to take into account the number of passengers it can hold
during ride-sharing. We define C; , as the capacity of AV n
at node j. When AV n provides ride-sharing services through
(i, j) € &, the residual capacity at node j shall be greater than
the capacity at node i. This can be ensured by:

Cin=Cin+qin, Vxijp=1neN,i,jeV, (10)
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where ¢g; , denotes the loading number of passengers at node
i for a ride involving the n-th AV. Moreover, C; , is updated
when AV n complete the request r € Rj.

To encourage the provision of the ride-sharing service,
the number of AVs in every road segment is bounded by a
maximum capacity. This can be expressed as:

inj,n < Qij, Vn EN,i,j e,
neN
where Q;; represents the maximum number of vehicles for
road segment (i, j) € £.

Before the problem formulation of the proposed joint model,
we assume that for both ride-sharing and parcel delivery
services, the pickup/drop-off or loading/unloading nodes are
set within the access zones so that we do not consider the
services provided in the restricted zones. The related studies
have adopted the assumption frequently, see [28], [38] as
examples.

(1)

B. Objective Functions

AVIS delivers joint ride-sharing and parcel delivery taking
into consideration two main system operation costs: total
distance and delivery time.

The AV routing scheme is closely related to the total travel
distance of each AV for every service request [38]. The
operation cost related to the travel distance is described by:

>

neN,(@i,j)e€

Frove = andij nXijn, (12)

where a, denotes the unit routing cost for AV n and d;; , is
the travel distance of AV n from location i to location j for
every road segment (i, j) € £.

On the other hand, the proposed scheme involves the
operation cost for the service of delivering parcels. This
service ensures that parcels are delivered as early as possible.
Moreover, ride-sharing must guarantee customer satisfaction.
Based on these aspects, the resulting cost function is:

Fservice — Z ,BntLgst’n,
neN
where £, is the unit transportation service cost of AV n.
The control objective of AVIS is to minimize the total
system operation costs related to AV routing and the service
schemes described above. Hence, the joint ride-sharing and
parcel delivery problem can be formulated as follows:

13)

minimize F'@l = proute 4 pservice

subject to (2) — (11).

(14a)
(14b)

C. Linear Transformation

Based on the previously formulated problem, it is evident
that the objective function and most constraints are affine.
Hence, these optimization problems can be handled with rela-
tive ease. However, constraints (5), (8), and (10) are modeled
under the condition x;;, = 1. Without prior information
on x;j ., these two constraints cannot be modeled directly.
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To tackle this issue, we aim to transform (5) and (10) to
their equivalent linear forms. Before doing so, we consider
the following two cases:

e Case 1: If x;;, = 0, AV n will not visit node j starting
from node i through (i, j) € £. Hence, there is no relation
between f;, and t;, because f;, is confined within
a feasible region. Similarly, there is no direct relation
between C;,, and Cj ;.

o Case 2: If x;j,, = 1, t; , and C;, must be greater than
the right hand side of constraints (5) and (10).

We then transform constraints (5) and (10) into their linear

forms as follows:

tin = tin+din+Tijn—M(A—xij,), VneN,i,jeV,
(15)
Cin=>=Cin+gin—MA—xijn), VneN,i,jeV,
(16)

where M is a sufficiently large number to ensure the feasibility
of the constraints. In addition, since Tlrei‘ll affects constraint
(15), the objective function shall be influenced due to the
change of variable ; ,.

In the meantime, we follow the same way to transform (8)
into its linear form as:

hjn < HM™ — M1 —xij0), YneN,i,jeV, (17)

With the above simplifications, the proposed joint ride-
sharing and parcel delivery can be re-formulated as:

Ftotal, ( 1 83)

(18b)

minimize

subject to (2) — (4), (6), (7), (11), (15), (16), (17).

V. DISTRIBUTED AVIS OPTIMIZATION

The joint problem formulation in (18) is a mixed-integer
linear programming (MILP) problem. As the number of AVs
in the system increases, the computation time of this problem
would grow dramatically since it would be solved in a central-
ized manner. Hence, a scalable method to solve this problem
is required for real-world applications. By following [43],
the formulated problem in (18) can be decomposed into the
sub-problem of each AV, which make the problem easier be
solved. Therefore, we devise a distributed algorithm via the
Lagrangian dual decomposition method.

Based on (18), we introduce a Lagrangian multiplier 4; ; >
0. It is evident that all constraints are separable with n € N,
except for (11). To relax this constraint, the partial Lagrangian
is developed as follows:

E andij,nxij,n+ E ,BntLgSl,n

neN,(@i,j)e€ neN
+ D iy (xijn — Qi)
neN
= Z ( z (andijnXij,n) + i, jXij.n
neN (i, j)e€

+/3nngst,n) — 2i,j Qij- (19)
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AVIS System Operator

AV 1

Fig. 3. Structure of distributed solution.

Given the above derivations, the dual function can be
defined as:

g = > inf{

neN

Z (@ndijnXijn) + Ai,jXijn
i,))e€
+ ﬁntLgst,n] = 4i,j Qij» (20)
where A is the set of Lagrangian multipliers and inf{-} repre-
sents the infinite of the enclosed function.

It is important to establish that the dual function in (20)
is convex. According to [44], the infimum of affine functions
of A is convex. Therefore, the dual function in (20) is also
convex.

We can then formulate the sub-problem for the n-th AV in
the system by decoupling the main problem as follows:

minimize G, (X) = Z (and,-j,nx,-j,,,) + /li,jx,-j,n

(i,j)e&
“r‘ﬁntLgstjn, (21a)
subject to (2) — —(4), (6), (7), (15), (16), (17). (21b)
In turn, we formalize the dual problem as:
minimize G: ()s,) — ii,j Qij . (2221)
subject to A > 0, (22b)

where G} (L) represents the optimal solution of (21).

The optimal solutions for (22) can be utilized to recover
the solution in primary problem (18). To solve (22) in an
efficient manner, we leverage the projected gradient decent
method to approximate the sub-optimal solutions instead [45].
This process is illustrated in Fig. 3. First, the AVIS operator
broadcasts initial information to all participating AVs, such as
city traffic networks and service requests. In each iteration,
each AV then solves its own sub-problem following (21).
When given G} by solving (21), (22) can be effectively
solved with the projected gradient descent method, which is
an iterative method to effectively solve the dual problem. This
method can minimize the objective function by moving a
candidate solution in the gradient direction of the function

@, shown as:
A,

g(x
/’{l‘,j

=D Xijn— (23)
neN

Next, the sub-optimal solutions are transmitted to the AVIS
operator who updates the Lagrangian multiplier accordingly.
The update rules for Lagrangian multiplier can be written as

follows:

Qij.

ogi(A
Aijjm+ 1) = [A;;(m) — i ; (—i( .)]+
ij
= LA (m) — Vi,j(z X — Qiply,  (24)
ieN

where [-]y refers to the max(0,-) operator and y; ; is the
projected gradient descent step size. If we have > ;s xl.*j,n >
Qij, it will violate (11). (24) can ensure that 4; j(m + 1) is
greater than 4; ;(m), leading to small values of x}. (m 4+ 1)

. . ij,n
for the next iteration.

Algorithm 1 Joint Ride-Sharing and Parcel Delivery

1: Initialize A; ;
2: form =1: Ny do
3: for each AV n € N do
Solve (21) to obtain xj;n (m)
if 5 < 10~* then
Return the optimal solution as x
else
m=m+ 1
Update 4; ; using (24)
10: end if
11:  end for
12: end for

ES
ij,n

R AN

We devise Algorithm 1 to solve each sub-problem in a dis-
tributed fashion. Using the projected gradient descent method,
we obtain the sequence {/4; j(m),Vm =1,..., Ny }. In the first
step of the m-th iteration, the AVIS system operator broadcasts
i, j(m) to all participating AVs. In the second step, the n-th
AV solves each sub-problem (21) to obtain x;‘;n (m). Each AV
then returns the optimal solution to the AVIS system operator
in the third step. Finally, the system operator determines the
optimal decision by evaluating the stopping criterion, which
determines the convergence of this algorithm:

|zneNg(m +1) — Zne/\/g(m)l
|Zne/\fg(m+1)|

where § = 1074,

The primal solution of the original problem (18) can be
recovered from the solutions to the sub-problems of AVs in
a collective manner. The simple combination of the solutions
from all sub-problems may have a solution that violates (11).
Hence, we need to identify all combination of g € G that
violate the constraint (11). For each assignment, all vehicles
operate at g are sorted by their service assignments. Then,
since x;j, is the binary variable to indicate whether AV n
traverses the road segment (i, j) or not, we ensure the value
of x;; » such that the sufficient number of AVs are participating

<9, (25)
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the provision of joint ride-sharing and parcel delivery service.
This process repeats until (11) is satisfied, i.e. Zie/\/ x;kj,n <
Qij. A feasible primal solution can then be constructed as the
final solution to (18).

We note that the proposed distributed method only incurs
minimal information exchange between the control center
and the participating AVs. Rather than report all decision
variables, the n-th AV only transmits the value of xl.*j,n to
the control center on every iteration of Algorithm 1. This
design choice aims to avoid the transmission of a large amount
of redundant traffic information and vehicular data, given
the sufficient number of participating AVs in the system.
In addition, the proposed distributed approach can significantly
minimize computation time significantly, as will be presented
in Section VL.

VI. CASE STUDIES

In this section, we assess the performance of the proposed
AVIS. After detailing our experimental setup, we simulate
three characteristic scenarios and evaluate the proposed sys-
tem’s quality of service within real-world transportation sys-
tems. Next, we investigate the impact of different AV fleet
sizes and their effect on our evaluation metrics under realistic
traffic network states. Finally, we examine the convergence of
the distributed method.

A. Simulation Setup

To demonstrate the real-world applicability of the proposed
AVIS, we evaluate its performance in real-world transportation
systems. Specifically, our simulations are mainly conducted on
the town of Carolina, Alabama; the corresponding traffic map
is obtained from a public source. ! In the captured area, there
are a total of 26 nodes and 56 edges with different lengths. The
minimum and maximum edge lengths are 18 meters (59 feet)
and 725 meters (2379 feet), respectively. The number of AVs
in Carolina is set to 50. To determine the average speed of
the transportation network, we employ the vehicular mobility
traces provided in [46]. Each AV is therefore set to travel
with a constant speed of 112 kilometers (70 miles) per hour.
According to [47], the transport costs a, and S, are set to
$1.73 per mile and $83.68 per hour, respectively. We assume
that there is no traffic congestion occurred on the traffic
networks. For every service request, the final destinations of
both ride-sharing and parcel delivery are randomly selected
such that they are different from their departure positions.

Our parameter settings for the ride-sharing and parcel deliv-
ery services are as follows. For the former service, the number
of passengers is set to 10, while the number of parcels for the
latter service is set to 5. In addition, the maximum number
of AVs for each edge is set to 4 in order to encourage the
provision of ride-sharing services. For each AV, the deadline
of arriving at the final destination to complete the joint service
is set to 200 minutes. Regarding the parcel delivery service,
the service time for loading and unloading parcels follows
U[5, 30] minutes, while the deadline for all service requests

1 https://dataverse.harvard.edu/dataset.xhtml?persistentld=doi: 10.7910/DVN/
CUWWYJ
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TABLE 11
COMPARISON OF DIFFERENT SCENARIOS IN CAROLINA

Scenarios S1 S2 S3 S1-C

Average unit cost (US$) 2593.1 2597.5 2608.4 34453

Average service time (min) 73.2 714 71.6 98.7
TABLE III

COMPARISON OF DIFFERENT SCENARIOS IN DODGE CITY

Scenarios S1 S2 S3 S1-C

Average unit cost (US$) 5821.2 63719 6442.1 8916.6

Average service time (min) 70.0 68.9 69.7 96.5
TABLE IV

COMPARISON OF DIFFERENT SCENARIOS IN GARDEN CITY

Scenarios S1 S2 S3 S1-C
Average unit cost (US$) 11872.0 104184 10639.9  14706.0
Average service time (min) 80.0 70.2 71.7 99.1

are varied between 30 to 200 minutes. For the ride-sharing
service, the minimum and maximum pickup/drop-off times for
each passenger are varied between 30 and 90 minutes. The step
size y; ; of the distributed method is set to 0.01. According to
the average latency of practical cellular systems [38], the one-
way communication delay is assumed to be 100 milliseconds.
Our simulations are conducted using MATLAB Release 2017a
with the mosek optimization solver found in the yalmip
toolbox.

As a final remark, we consider the priority of service
requests to be linked with the associated service deadlines.
In real-world systems, it is often the case that some service
requests have higher priority than others. Thus, the distributed
optimization method determines service order according to the
condition of the associated transportation system.

B. Quality of Joint Service

This simulation mainly studies the practicality of the pro-
posed AVIS on the real traffic network of Carolina. The
relevant directed graph is generated based on the dataset
employed. To measure the efficacy of the joint service pro-
vided by AVIS, we simulate the following three scenarios:
joint ride-sharing and parcel delivery (S1), ride-sharing only
(S2), and parcel delivery only (S3). For S2, it only deals with
the ride-sharing operations with the related constraints, while
S3 only tackles the problem related to the provision of logistic
services in urban areas.

Based on the configuration in Section VI-A, we first study
the social welfare of the system under these three different
scenarios, especially the unit operation cost per AV. Here,
we use the metric of average unit cost to represent the mean
expense across the joint service for each AV n. Table II shows
that S1 obtains the lowest average unit operation cost and S2
obtain the lowest average service time. By providing multiple
services simultaneously, the average unit operation cost of S1
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TABLE V
IMPACT OF DIFFERENT FLEET SIZE OF AVS

Number of AVs 10 20 50 100 200 300
Optimality gap (%) 0.83 0.75 0.68 0.64 0.48 0.34
Centralized time (min) 5.98 17.95 89.73 478.43 2152.93 6458.80
Distributed time (min) 0.65 1.31 3.26 6.52 13.04 19.57
Speedup ratio 9.17 13.76 27.51 73.36 165.06 330.12
Total cost (US$) 2.57 x10* 543 x10*  1.30 x10°  2.59 x10° 5.16 x10°  7.78 x10°
Average service time (min) 70.7 74.6 71.2 71.1 70.8 73.1
TABLE VI complex network topologies than Carolina. Our experimental
OPTIMALITY AND COMPUTATION TIMES FOR DIFFERENT results, shown in Tables III and IV, indicate higher average
NUMBERS OF NODES WITH 50 AV'S unit operational costs with the increase of the network size
through S1. This can be attributed to the increased complexity
Node number Ny =26 Ny =66 Ny =106 . . . .
— . of the corresponding transportation networks, which raises the
Obj: minimize the cost on travel distance. cost of scheduling AVs for services. Regarding average service
Optimality gap (%) 0.40 0.49 0.35 time, we also produce 50 random cases with N4y = 50. Even
Centralized time (min) 196.76 4094.70 8127.10 th h providing the ioint service in S1 r i mewhat
Distributed time (min) 5.49 25.66 64.23 lough providing the jomnt service equires somewha
——— — higher average unit operational costs, we observe relatively
Obj: minimize the cost on service time. . . .
low time consumption. Furthermore, by observing the results
Optimality gap (%) 0.73 0.69 0.47 : : :
Centralized time (min) 203.33 3906.40 745270 %n Tables 1II, IIL.and 1V, the increment of the network s%ze
Distributed time (min) 4.63 19.53 177.57 increases the unit cost but may reduce the average service

Obj: minimize the cost on travel distance and service time.

Optimality gap (%) 0.68 0.63 0.50

Centralized time (min) 89.73 2172.30 4105.20

Distributed time (min) 3.26 53.09 573.95
TABLE VII

IMPACT OF VARYING TRANSPORTATION NETWORK SIZES WITH 50 AVS
UNDER MULTIPLE SERVICE REQUESTS

City Carolina  Dodge City  Garden City
(Nv,NEg) (26, 56) (66, 133) (106, 268)
Optimality gap (%) 0.68 0.63 0.50
Centralized time (min) 89.73 2172.33 41052.41
Distributed time (min) 3.26 53.09 573.95
Speedup ratio 27.51 41.27 71.53

is lower than the summation expenses of S2 and S3. For
the average service time, we generate 50 random problem
cases for the requests by crossing over %N . In Table II, the
time consumed for providing joint service under each request
for S1 is much less than the total service time of S2 and
S3. This indicates that S1 results in effective joint service
provision by considering both ride-sharing and parcel delivery.
Furthermore, we study the service quality under different
traffic conditions. Here we denote S1-C as the one with traffic
congestion conditions. Meanwhile, we set the delay parameter
0;j to %Ti j,n to indicate that the real-time travel time of AV n
is increased due to the occurrence of traffic congestion over
the road segment (i, j). According to Table II, we can observe
that both the average unit cost and service time increase due to
the AV routing operations over the congested traffic networks.

Next, we investigate the benefits of deploying the joint
service in two other cities in Alabama: Dodge City (Ny =
66, Np = 133) and Garden City (Ny = 106, Np = 268).
These two cities were selected because they have more

time. The reason is that the system operation is more flexible
when increasing the network size. Therefore, S1 is capable
of efficient joint ride-sharing and parcel delivery for different
cities. Last but not least, we investigate the service quality
under different traffic conditions in these two cities. According
to Tables III and IV, we can observe that the AV routing
operations over the congested traffic networks of these two
cities indeed increase both the unit cost and service time
in a sharp manner. The reason is that the system operation
requires more cost and time when considering the congested
road networks.

C. Impact of Fleet Size

Here we investigate the effect of fleet size on the perfor-
mance of AVIS. We consider six different cases with 10,
20, 50, 100, 200, and 300 AVs, respectively. There are four
performance metrics being tested, shown in Table V. Since
the centralized method generates the best solution due to the
existence of global optimal solution by solving (18) via the
solver, we report the optimality gap of the distributed method

Frdist
7)< 100%,
where FJit and FE are the (sub-)optimal and optimal

solutions for these two methods, respectively. According to
our results in Table V, small gaps between the centralized and
distributed solutions indicates that the optimality of the dis-
tributed solution exceeds 99%. Moreover, increasing fleet sizes
improve the optimality of the distributed solution. The main
reason is related to the system flexibility granted by higher
numbers of participating AVs, which can further contribute to
a better solution.

In addition, we study the computational complexity of the
distributed method under the six different cases. By focusing
on the computation time, Table V shows that the distrib-
uted method achieves much lower computation time than the

relative to that of the centralized method as (1 —
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TABLE VIII
IMPACT OF VARYING TRANSPORTATION NETWORK S1ZES WITH 50 AVS UNDER MULTIPLE SERVICE REQUESTS IN DIFFERENT CITIES

Service Requests

Carolina

1 2 3 4 5
Centralized time (min) 89.73 111.25 131.67 155.25 185.42
Distributed time (min) 3.26 3.75 4.07 437 4.88
Speedup ratio 27.51 29.63 32.35 35.53 37.99
Dodge City Service Requests

1 2 3 4 5
Centralized time (min)  2172.33 2690.60 3015.39 3415.23 3706.57
Distributed time (min) 53.09 62.41 76.36 85.20 93.52
Speedup ratio 41.27 43.11 39.48 40.08 39.63

. Service Requests

Garden City

1 2 3 4 5
Centralized time (min) 41052.41 47804.10 5477639 58202.41 65209.62
Distributed time (min) 573.95 607.64 630.68 672.75 710.74
Speedup ratio 71.53 78.67 86.85 86.51 91.75

centralized method. The reason is that the utilization of the
centralized method increases the computational complexity
of the joint problem since the problem size is in proportion
to the number of AVs. This indicates that more AVs in the
system lead to more operational constraints to the optimization
problem. In addition, for the distributed method, the problem
size is unrelated to the fleet size, which leads to steady com-
putational time. By observing the speedup ratio, the efficiency
of the proposed distributed method in AVIS is presented when
increasing the fleet sizes of AVs. Even though the distributed
time increases in a relatively small scale, the complex problem
with 300 AVs can be solved in an effective manner. Last but
not least, by observing the last two rows of this table, the
total system operational cost raises with the number of AVs
increases. Nevertheless, when the number of AVs reaches 300,
the average service time is relatively low. It clearly reflects
the effectiveness of the proposed AVIS under different fleet
of AVs.

D. Impact of Network Size

Apart from the fleet size, we further study the effect of
network size on the proposed AVIS framework. Except for
Carolina (Ny 26, Ng 56), we further investigate
the performance of AVIS in Dodge city and Garden city.
We utilize similar evaluation metrics as those in Section VI-C
for this investigation. Our results are presented in Table VII.
The optimality gap of the distributed solution is less than
1% with fairly high relative optimality for all three cities.
It appears that, when traffic network sizes increase, so do
computational complexity and computation time. This is not
surprising, as more complex transportation networks are bound
to result in more constraints to the formulated problem.
Similarly, the distributed method reduces the complexity of
the problem in all three evaluated cities, as reflected by the
attained speedup ratio.

Next, we investigate the effectiveness of our objective
function on the three traffic networks, measured by the

minimization of either travel distance, service time, or both.
Our results are presented in Table VI. We observe that there
is no significant relationship between the objective function
and the traffic network size. This can be attributed to the
fact that the same physical driving distance between two
locations in different cities does not affect the optimality of
the devised algorithm. We note that the optimality of the
distributed algorithm fluctuates due to the randomness of the
different traffic networks. Meanwhile, computation time for all
the three cases increases with more nodes considered in the
traffic networks. The reason is that more traffic nodes introduce
more operational constraints to the formulated problem, which
further increase the computational complexity of the problem.

E. Investigation of Multiple Service Requests

In Table VIII, we evaluate the effect of every single service
request offered in the proposed system under different city
scales. In practice, there may be multiple service requests for
each AV operating from the starting point to the destination
point. Hence, in this part, we consider the different number
of joint service requests for each AV in these three cities.
Based on the objective function formulated in (18), the optimal
value follows the trend as the change of the number of
participating AVs. The computational time increases linearly
with the number of service requests. Besides, the optimality
of the distributed solution is not affected by the number of
service requests. This is because increasing service requests
do not influence the number of sub-problems created and thus
the solution space does not change.

Furthermore, we investigate the change of the average unit
cost due to different ratio of logistic and ride-sharing requests
in the city of Carolina. Here we set the number of participated
AVs to 50, and report the ratio as the number of logistic
requests over the number of ride-sharing requests. Here we
set the number of ride-sharing requests to one or two. Then,
we consider the four different cases with one, two, four, and
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TABLE IX
IMPACT OF DIFFERENT RATIO OF SERVICE REQUESTS WITH 50 AVs

Carolina
Ratio 1 2 4
Average unit cost (US$) 22932 2438.8 3094.0
Dodge City
Ratio 1 2 4
Average unit cost (US$) 5821.2 7392.0 7761.6
Garden City
Ratio 1 2 4
Average unit cost (US$)  10981.6  12168.8  13723.6

Optimality Gap (%)
B
o

15

|
5 10
Number of Iterations

25

Fig. 4. Convergence of projected gradient decent.

eight logistic requests. The result is presented in Table IX.
Apparently, when the number of logistic requests increases,
the average unit cost increases, which reflects that the system
incurs more operational cost on the provision of the joint
service.

F. Convergence of Distributed Solution

It is important to assess the convergence of the devised dis-
tributed method, shown in Algorithm 1. To this end, we study
the city of Carolina with 300 participating AVs. In addition,
we consider the corresponding duality gaps that are computed
via projected gradient decent for every iteration. The duality
gap is related to the difference of primal and dual objective
values.

The result is shown in Fig. 4. One may observe that con-
vergence occurs after approximately 14 iterations. Meanwhile,
the duality gap value reaches the tolerance threshold of the
stopping criterion in Algorithm 1. This confirms that the
devised distributed algorithm is effective in solving the joint
problem.

VII. CONCLUSION

In this paper, we proposed a generic AVIS framework for
the joint provision of ride-sharing and parcel delivery services.
As most AVs are capable of offering effective ride-sharing ser-
vices, they can simultaneously help supply chain management
to further improve the efficiency of ITS with the consideration
of city logistics needs. In this paper, we developed a ride-
sharing scheme for AVs and designed a parcel delivery strategy
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such that AV routing constraints were satisfied. The joint
optimization of both services was then formulated as a mixed-
integer linear programming problem and solved by deriving
a distributed method based on Lagrangian dual decompo-
sition. A series of comprehensive simulations demonstrate
the effectiveness of the proposed AVIS in three real-world
cities, measured in terms of cost and average service time.
In addition, the distributed method was shown to successfully
reduce the complexity of the problem at hand while generating
near-optimal solutions.

In future work, we will investigate how to transform AVIS
into a stochastic system to model the uncertainties involved in
each service request. We will also explore how to incorporate
different types of AVs into AVIS, such as electric public buses
and trucks.
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