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Abstract. Although recent advancements in end-to-end learning-based
link prediction (LP) methods have shown remarkable capabilities, the
significance of traditional similarity-based LP methods persists in un-
supervised scenarios where there are no known link labels. However,
the selection of node features for similarity computation in similarity-
based LP can be challenging. Less informative node features can result
in suboptimal LP performance. To address these challenges, we integrate
self-supervised graph learning techniques into similarity-based LP and
propose a novel method: Self-Supervised Similarity-based LP (3SLP).
3SLP is suitable for the unsupervised condition of similarity-based LP
without the assistance of known link labels. Specifically, 3SLP intro-
duces a dual-view contrastive node representation learning (DCNRL)
with crafted data augmentation and node representation learning. DC-
NRL is dedicated to developing more informative node representations,
replacing the node attributes as inputs in the similarity-based LP back-
bone. Extensive experiments over benchmark datasets demonstrate the
salient improvement of 3SLP, outperforming the baseline of traditional
similarity-based LP by up to 21.2% (AUC).

Keywords: Link prediction · Graph neural networks · Self-supervised
learning.

1 Introduction

Link prediction (LP) is one of the most intriguing and enduring challenges in the
field of graph mining, contributing to a myriad of real-world applications such as
friend recommendation in social networks, drug-drug interaction prediction, and
knowledge graph completion [28]. LP methods can be broadly classified into two
categories: similarity-based LP and learning-based LP. While learning-based LP
has shown strong capabilities, there remains a significant role for similarity-based
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LP methods. On the one hand, they heavily rely on known link information as
labels to supervise the learning process [30,33]. However, in some realistic appli-
cations, link information can be absent, where we only have an edgeless graph.
For example, in the “cold start” phase of the drug-drug interaction, where link
labels may not be readily available [11]. Similarity-based LP assists in hypothe-
sis generation by suggesting potential interactions derived from the attributes of
drugs, where this label information can be further utilized in unsupervised learn-
ing on the data. On the other hand, the “black box” nature of widely adopted
end-to-end neural network-based LP methods makes it difficult to gain insights
into what inclusive modules or specific data features are pivotal in determining
LP. Comparatively, similarity-based is a transparent and intuitive method that
is more conducive to the analysis of results.

Research Gap. However, similarity-based LP methods are heuristic due to
their predefined similarity measures [15]. Consequently, the quality of input node
features can significantly impact the final LP performance. This study reexam-
ines similarity-based LP and explores further advancement within the existing
framework. We believe that the similarity-based LP methods can be enhanced by
improving the representation of the original node attributes. Following this vein,
a further hypothesis is that node-level features enriched with topological infor-
mation can enhance prediction accuracy, considering that link existence depends
on both individual node features and their relative positions and neighborhood
structures. Nevertheless, as previously mentioned, similarity-based LP nowadays
is often used in contexts when there are no or limited known links to label in-
formation. This condition impedes the utilization of topological information.

Motivation. The effectiveness of similarity-based link prediction (LP) meth-
ods largely depends on the quality of node features, particularly those enriched
with topological information, as link existence is influenced by individual node
attributes and their positions and neighborhood structures in the graph. Tradi-
tional LP methods rely on original or reduced-dimensional node attributes, which
capture only individual information and are thus suboptimal [15]. Graph repre-
sentation learning (GRL) offers a way to encode complex topological information
into node features [12], but the lack of link-label information in similarity-based
LP often limits its applicability. Self-supervised learning (SSL) has emerged as
an effective approach for learning expressive representations from unlabeled data
by employing data augmentation and pretext tasks [4,9]. Recent advancements
in SSL have enhanced GRL techniques to capture latent topological informa-
tion and improve node representations [24,20]. Thus, leveraging SSL offers a
promising avenue to enrich node features for similarity-based LP.

While advanced end-to-end learning-based LP methods dominate the field
[19,34,6], our study focuses on enhancing classic similarity-based LP methods due
to their practicality in certain scenarios. Our approach is orthogonal to end-to-
end methods and can complement them, for instance, by generating pseudo labels
during cold-start phases. Rather than improving similarity metrics or algorithms
(e.g., clustering), we aim to enhance input node features. The backbone used in
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Fig. 1: Schematic of 3SLP.
our study, detailed in Section 2.3, builds on widely evaluated similarity-based
LP methods [15,10,2].
Contribution. In this paper, we propose a novel approach to enhance similarity-
based LP: Self-Supervised Similarity-Based LP (3SLP). Leveraging self-supervised
learning (SSL) techniques for unsupervised graph representation learning [20,24],
3SLP integrates SSL into node representation learning, using the learned repre-
sentations for similarity-based LP. We adopt a widely used pairwise similarity-
based clustering (PSC) backbone [10,31] as the testbed. This unsupervised back-
bone requires only node features as inputs, providing a practical scheme for
similarity-based LP. To improve performance, we design dual-view contrastive
node representation learning (DCNRL), which replaces original node attributes
with informative representations. DCNRL addresses the lack of structural infor-
mation by initializing a graph structure and employs graph diffusion to generate
two augmented views during data augmentation. Inspired by [23,8], we apply
cross-scale contrasting on node-level and graph-level representations to enhance
node features. Experimental results show that 3SLP outperforms the baseline
by up to 21.2%. Code is available at https://anonymous.4open.science/r/
3LSP-main-86BC/README.md.

2 Our Method

2.1 Usage Scenario of Similarity-Based LP

The link prediction (LP) task determines whether a given pair of nodes are linked
(i.e., an edge exists) [15]. Let G = (V, E ,X) be an attributed graph, where V is
the node set, E is the edge set, and X = xi ∈ R|V|×d is the node attribute matrix
with d as the attribute dimension. The adjacency matrix A = aij ∈ R|V|×|V|
has aij = 1 if (i, j) ∈ E and aij = 0 otherwise. Let Ek and Er denote the
known and real edge sets, respectively. To replicate scenarios where only node
attributes are accessible (e.g., early-stage drug-drug interactions), we consider
edgeless attributed graphs, defined as G∅ = (V, Ek,X|Ek = ∅). The objective of
similarity-based LP in this context is X→ Er. This setup presents a challenging
test for LP methods, requiring them to extract subtle attribute differences for
accurate predictions.

2.2 Method Overview

In this section, we introduce our proposed 3SLP. The core architecture of 3SLP
is two-fold: (1) pairwise similarity-based clustering backbone (PSC) (empirical

https://anonymous.4open.science/r/3LSP-main-86BC/README.md
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backbone) and (2) dual-view contrastive node representation learning (DCNRL)
(our design) . Specifically, 3SLP first leverages DCNRL to develop informative
node representations from the edgeless attributed graph. Then, the PSC back-
bone takes these node representations as input to predict the target links. A
schematic view of 3SLP is given in Figure 1.

2.3 Pairwise Similarity-Based Clustering Backbone

We first introduce pairwise similarity-based clustering (PSC) based on the pre-
vious construction in the literature [10,31]. PSC forms a concise yet effective
unsupervised clustering method, serving as the backbone of our method that
implements similarity-based LP. The PSC backbone mainly incorporates two
steps. The first step is node similarity measuring between pairwise input node
features. For any two nodes u and v, and their respective features iu and iv, the
node similarity measuring can be formulated as:

suv = Υ (iu, iv), (1)

where Υ represents the adopted similarity measurer. In this work, we involve five
commonly-used symmetric similarity metrics: (1) cosine similarity; (2) cosine
distance; (3) Euclidean distance; (4) Manhattan distance; and (5) correlation
distance. By node similarity measuring, we can obtain |V| × |V| pairs of node
representation similarity score, denoted as S. Next, PSC applies an unsupervised
clustering algorithm to perform binary classification on the computed similarity
scores. Specifically, we adopt the K-Means algorithm. The number of clusters
is set to 2, corresponding to positive (link) and negative (no link) node pairs.
Treating it as a ranking problem here, PSC calculates the average similarity
score for each cluster—based on the adopted metrics, the cluster whose node
pairs with a lower (higher) average score is considered linked (not linked)5. The
clustering process can be written as:

S∗
1 ,S∗

2 ← KMeans({suv ∈ S}){
âuv ∈ S∗

1 = 1, âuv ∈ S∗
2 = 0 if AVG(S∗

1 ) > AVG(S∗
2 )

âuv ∈ S∗
1 = 0, âuv ∈ S∗

2 = 1 else.
(2)

Given that the PSC is primarily used as the testbed for our new designs, fur-
ther refinement, such as balancing positive and negative samples (class imbalance
issue), falls outside the scope of this study. Building upon the PSC backbone,
we can utilize the informative node feature to prompt LP. A naive approach
directly takes the original node attribute information x as input (PSC-NA). In
this work, we treat PSC-NA as the major baseline.

5 An exception is when cosine similarity metric is adopted where we consider the
cluster with higher value the linked one.
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2.4 Dual-View Contrast Node Representation Learning (DCNRL)

Here, we propose DCNRL to generate informative node features for the PSC
backbone using a dual-view contrastive learning framework. To address the spe-
cific needs of edgeless attributed graphs and similarity-based LP, DCNRL incor-
porates tailored data augmentation and contrastive learning modules. Details of
these components are elaborated in the following sections.

Within the edgeless attributed graph, no graph structural (i.e., links) infor-
mation is known. We cannot use any known graph structural information for data
augmentation and further node representation learning. Therefore, we propose
first to initialize a graph structure. Particularly, we adopt the cosine similarity
metric to obtain the similarity between a node and all other nodes and select
the nodes with top-k nearest nodes to connect with. This method resembles the
creation of weak labels based on the attribute homophily [29]. Denote a graph
initializer as I, this step can be formulated as:

A◦ = I(X) (3)

where A◦ represents the adjacency matrix for the initialized graph structure.
However, the initialized graph structure may deviate significantly from the

real graph structures, resulting in a noisy and insufficient configuration that may
prove ineffectual for further GNN encoding. It has been shown that diffusion
processes can enhance GNN performance on such noisy graph structures [14].
Therefore, we employ edge diffusion as a data augmentation strategy on the
initialized graph structure. This approach can imitate higher-order proximities
among nodes, thus empowering GNN encoders to capture more intricate graph
properties within the SSL framework. Specifically, we employ the Personalized
PageRank (PPR) method for edge diffusion. [1,16] have demonstrated PPR can
smooth out the neighborhood over a noisy graph and restore more pertinent
connections. Given the adjacency matrix of the initialized graph A◦ and diffuser
Ψ , we can develop edge diffused graph structures using a closed-form expression
for PPR derived from [14], that is:

Ã◦ = Ψ(A◦) := α
(
I− (1− α)D−1/2A◦D−1/2

)−1

, (4)

where D is the diagnonal degree matrix of A◦ and α is the teleportation proba-
bility. Moreover, we apply two different teleportation probabilities α1 and α2 to
the diffuser to create two distinct views:

VIEW1 : Ã◦
1 = Ψα1(A

◦)

VIEW2 : Ã◦
2 = Ψα2(A

◦)
(5)

These two views, characterized by varying diffusion levels, furnish a progressive
topological transition from a high-order perspective. Consequently, the subse-
quent learning process is able to encode more comprehensive topological infor-
mation within the node-level representation.

For the LP purpose, we aim to develop node-level representations infused with
topological information; however, these representations may fall short of being
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highly indicative due to the inherent limitations of the local aggregation func-
tion within a GNN encoder. Drawing inspiration from [8], we propose to apply a
cross-scale strategy during the contrasting phase. By juxtaposing features at dif-
ferent scales, we can extract pattern and structural information across multiple
dimensions [26]. This allows our GNN encoder to capture how the representation
varies from different scales and thus learn a more robust representation. Specifi-
cally, we first employ two respective GNN encoders for two views. While sharing
the same architecture, the two encoders do not share parameters (with θ1 and
θ2, respectively). Then, we use the GNN encoder to develop two scales for each
view progressively, namely, node-level representation (by Fnlθ ) and graph-level
representation (by Fgl), respectively:

VIEW1 :

{
Hv,1 = ALN

(
Fnlθ1

(
X, Ã◦

1

))
Hg,1 = ALN

(
Fgl (Hv,1)

)
VIEW2 :

{
Hv,2 = ALN

(
Fnlθ2 (X, Ã

◦
2)
)

Hg,2 = ALN
(
Fgl (Hv,2)

)
,

(6)

where ALN represents the dimension alignment process to make each developed
representation in the same dimension H ∈ R|V|×h. The corresponding negative
samples for each view are generated by our corruption function by randomly
shuffling the node attributes C : X→ X̃ and we use Ȟv = ALN

(
Fnlθ

(
X̃, Ã◦1

))
to denote the representation developed by X̃. Note that we do not choose to gen-
erate negative samples by corrupting the structural input Ã◦, as their included
augmented edges are not the actual instances and thus may not render effective
contrasting.

To better maximize the concordance between two positive views while mini-
mizing that between positive and negative views, we compute the mutual infor-
mation between their corresponding node-level and graph-level representations.
Inspired by [23], we adopt neural network-based mutual information estimation,
making this step more tractable. In this way, the final contrastive learning ob-
jective can be expressed as:

min
θ1,θ2,φ

BIφ(Hg,1,Hv,2︸ ︷︷ ︸
positive

; Ȟg,1, Ȟv,2︸ ︷︷ ︸
negative

) + BIφ(Hg,2,Hv,1︸ ︷︷ ︸
positive

; Ȟg,2, Ȟv,1︸ ︷︷ ︸
negative

), (7)

where BIφ represents a bilinear scoring function with shared parameters between
the two views. The promise of the design is that we can obtain globally relevant
node-level representations, capturing information across the entire graph. Such
node representations are designed to preserve similarity for all node pairs, even
for those that are distant [5,23]. Subsequently, to obtain the final node represen-
tation that will be used as input to the PSC backbone, we compute the average
of the learned node representations derived from the two encoders, which can be
expressed as:

{h∗
v, ∀v ∈ V } =

1

2
(Fnlθ∗1

(
X, Ã◦

1

)
+ Fnlθ∗2

(
X, Ã◦

2

)
). (8)
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Method Aux. Kn. Metric
Cora Citeseer PubMed

AUC (%) AP (%) ∆ AUC (%) AP (%) ∆ AUC (%) AP (%) ∆

PSC-NA -
Cos sim. 61.3± 0.1 61.3± 0.1 - 64.6± 0.1 64.7± 0.1 - 79.7± 0.1 75.6± 0.1 -

(Major baseline)

Cos dis. 61.3± 0.1 61.3± 0.1 - 64.6± 0.1 64.6± 0.1 - 79.7± 0.1 75.4± 0.1 -
Eucl. 57.3± 3.6 56.5± 4.4 - 63.7± 0.1 63.6± 0.1 - 61.7± 7.5 61.2± 3.2 -
Corr. 61.3± 0.1 61.3± 0.1 - 64.5± 0.1 64.5± 0.1 - 79.5± 0.2 76.0± 0.1 -

PSC-Repr X

Cos sim. 63.3± 1.1 66.5± 2.4 - 64.7± 3.8 58.7± 2.7 - 50.2± 0.1 50.0± 0.1 -

(Zhang et al. [32])

Cos dis. 66.3± 5.2 67.9± 1.4 - 60.0± 1.0 55.5± 0.7 - 50.2± 0.1 50.0± 0.1 -
Eucl. 64.2± 1.2 60.2± 0.6 - 65.7± 0.9 59.4± 0.9 - 34.5± 0.7 43.8± 0.1 -
Corr. 74.3± 2.8 67.8± 2.3 - 65.8± 2.5 59.4± 1.8 - 50.2± 0.1 50.1± 0.1 -

PSC-Pos X

Cos sim. 74.6± 2.6 66.5± 2.4 - 70.8± 1.5 63.1± 1.2 - 50.2± 0.1 50.1± 0.1 -

(He et al. [10])

Cos dis. 76.2± 1.5 67.9± 1.4 - 71.6± 1.3 63.8± 1.0 - 50.2± 0.1 50.1± 0.1 -
Eucl. 66.6± 0.4 60.2± 0.5 - 66.7± 0.2 60.1± 0.1 - 34.0± 0.5 43.8± 1.6 -
Corr. 76.0± 2.5 67.8± 2.3 - 72.1± 2.8 64.1± 2.4 - 50.2± 0.1 50.1± 0.1 -

3SLP -
Cos sim. 77.1± 1.2 70.9± 1.7 17.0 ↑ 84.0± 1.6 76.4± 1.7 19.4 ↑ 79.4± 1.5 73.3± 1.1 0.3 ↓

(ours)

Cos dis. 78.7± 0.2 71.3± 0.1 17.4 ↑ 85.8± 0.9 81.7± 1.2 21.2 ↑ 80.5± 2.0 76.3± 2.5 0.8 ↑
Eucl. 76.7± 0.3 70.0± 0.2 19.4 ↑ 82.3± 1.1 75.8± 1.9 18.6 ↑ 76.2± 0.1 70.4± 0.5 14.5 ↑
Corr. 78.6± 0.6 71.0± 0.4 17.3 ↑ 84.6± 0.8 77.3± 1.1 20.1 ↑ 79.6± 2.3 76.3± 2.5 0.1 ↑

Table 1: Performance comparison. The best results are highlighted in bold.
“Aux. Kn.” is short for “auxiliary knowledge”. ∆ represents the performance
improvements (AUC) from PSC-NA by 3SLP.

GNN Encoder Cora ∆ Citeseer ∆

GCN (default) 73.9± 2.6 12.6 ↑ 85.8± 0.9 21.2 ↑
GIN 71.3± 1.4 10.0 ↑ 82.6± 1.2 18.0 ↑
SGC 74.1± 0.5 12.8 ↑ 74.4± 5.7 9.8 ↑
GraphSAGE 67.0± 4.9 5.7 ↑ 63.4± 8.0 1.2 ↓

Table 3: Comparison of LP performance (AUC (%)) among 3SLP configuring
different GNN encoders.∆ represents the improvements measured from the base-
line.

3 Evaluation

3.1 Experimental Setup

Datasets:We include four real-world and widely-adopted graph datasets, namely,
Cora [21], Citeseer [21], PubMed [17], and Reddit [7] in our experiments.
Model and Parameter Settings. We adopt single-layer GCN [13] as the
default GNN encoder, and the hidden size is set to 512. We use Adam as the
optimizer for the SSL where we have the number of training epoch T = 200 and
the learning rate η = 0.001. In the graph initialization, we set k = 5 for the top-k
nearest algorithm. The teleportation probabilities for the two diffusers are set
to α1 = 0.2 and α1 = 0.4. We consider cosine distance as the default similarity
metric for PSC backbone. The optimal values for some of these hyperparameters
are discussed later. Experiments for each setting are run repeatedly five times
to eliminate randomness.
Metrics. We adopt area under the ROC curve (AUC), and average precision
(AP) as our metrics, which is widely adopted to measure the performance of
binary classification in a range of thresholds [3,32]. We primarily refer to AUC
as did in [30,10]. Additionally, we introduce two metrics, Attribute Assortativity
Coefficient (AAC) and Degree Assortativity Coefficient (DAC) [18], for the graph
homophily analysis.
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LP AUC (%) Target
Cora Citeseer PubMed

So
ur
ce Cora 89.7± 0.9 51.0± 1.5 58.1± 6.0

Citeseer 53.8± 6.5 88.0± 2.6 62.9± 4.4
PubMed 57.0± 4.2 50.5± 6.3 93.2± 2.4

Trans. Avg. 55.4± 5.4 50.8± 3.9 60.5± 5.2
3SLP 73.9± 2.6 85.8± 0.9 80.5± 2.0

Table 2: LP Performance comparison with
the dataset knowledge transfer-based GAE.
The diagonal (in shadow) shows the non-
transfer results of GAE.
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3.2 Results

Comparison with Baselines. We first compare the LP performance of the
proposed method 3SLP with the baselines. As aforementioned, we consider pair-
wise node attribute similarity-based clustering (PSC-NA) the major baseline.
From the results shown in Table 1, we can observe that 3SLP pronouncedly
surpasses the baseline in most cases. For example, within the same PSC metric,
3SLP can exceed PSC-NA by 10.2% (AUC) on the Cora dataset and 21.2% on
the Citeseer dataset. Through self-supervision, 3SLP can develop node features
that are more contributive than original node attributes with respect to the LP
within the PSC backbone. However, we also notice that the performance im-
provement by our method on the PubMed dataset is not as pronounced as the
other two datasets. We recognize that this pertains to graph homophily, which
will be discussed later.

Additionally, we compare our method with the method involving auxiliary
knowledge within the PSC backbone: (1) node representations (PSC-Repr) [32]:
the node representations developed from the trained GNN on node classification
tasks in a supervised manner; (2) node posteriors (PSC-Pos) [10]: the node
prediction posteriors in node classification tasks developed from the trained GNN
in a supervised manner. As shown in Table 1, 3SLP markedly outperforms these
methods, implying the contribution of its developed node representations.
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Comparison with Knowledge Transfer-Based Methods. Given knowledge
transfer is a useful technique for handling unsupervised tasks, we compare 3SLP
with a parameter-sharing knowledge transfer method [22] using a Graph Au-
toEncoder (GAE) as the carrier. Each dataset serves as both source and target,
yielding 9 combinations. When the source and target datasets are the same, it
reduces to regular supervised learning (see Table 2, diagonal). Results in Table
2 show that 3SLP outperforms other methods on all three datasets, exceeding
transferred GAE by an average of 19.1% on Cora and 28.6% on Citeseer. 3SLP
even matches or surpasses non-transferred GAE in some cases. While transferred
GAE’s effectiveness depends on the source dataset’s quality, sometimes leading
to negative transfer, 3SLP leverages self-supervision to avoid performance degra-
dation, ensuring robust learning.
Utility of Predicted Links in Cold-Start Tasks We explore whether the
predicted links offer utility for further graph analysis, particularly in cold-start
scenarios with limited information. Specifically, we evaluate if these links can
train an accurate GNN classifier for node classification tasks. To do so, we train
a GCN classifier using predicted links and node labels in a supervised manner
and assess its performance on a test set, comparing it with other knowledge-based
methods. As shown in Figure 2, our method achieves satisfactory results, par-
ticularly in cold-start scenarios. The classification accuracy derived from 3SLP’s
predicted links consistently outperforms other methods. Notably, on Citeseer,
the accuracy using the predicted graph structure surpasses that of the original
graph structure, highlighting 3SLP’s ability to construct informative links for
diverse applications, including cold-start assistance.

3.3 Analysis on Graph Homophily

When handling LP tasks, it is imperative to circumvent the homophilous as-
sumption. Thereby, we investigate the influence of graph homophily on 3SLP’s
performance. We introduce the AAC and the DAC, which measure the attribute
homophily and topology homophily of the graph, respectively [18]. We include
the relatively heterophilic dataset, Reddit, in this test to facilitate a more pro-
nounced comparison. Figure 3 depicts a noticeable positive correlation between
the LP performance of 3SLP and AAC: the higher the AAC, the better the LP
performance of 3SLP; however, it does not show a similar trend between the
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LP performance of 3SLP and DAC. We further compare 3SLP’s learning perfor-
mance between the relatively homophilous dataset Citeseer and the heterophilic
dataset Reddit (see Figure 4). We find that 3SLP fails to learn informative infor-
mation for the LP task in the heterophilic dataset. These results imply a highly
possible correlation between 3SLP’s effectiveness and attribute homophily as-
sumption, which we will further explore in future work.

3.4 Hyperparameter and Ablation Study

Influence of Structural Initialization Methods. We evaluate the perfor-
mance of 3SLP using four initialization methods for data augmentation, as shown
in Figure 5(a). Similarity wiring outperforms others, as it initializes semantically
meaningful graph structures based on node attributes. Next, we investigate the
hyperparameter k in similarity wiring, setting k ∈ 1, 5, 10, 20, 50, 100, 1000 to
assess LP performance. Note that k = 0 and k = |V| correspond to no wiring
and fully wiring, respectively. As shown in Figure 5(b), the best performance
occurs at k = 5, with a decreasing trend as k increases. These results highlight
the importance of the initialization method and hyperparameter selection.
Influence of Edge Diffusion Levels. We evaluate the sensitivity of the pro-
posed method to different edge diffusion levels by comparing the LP performance
with different teleportation probabilities of PPR α1, α2 ∈ {0.01, 0.05, 0.1, 0.2, 0.4}.
The results are shown in Figure 5(c) and (d). We can observe that the proposed
method performs better when the difference between α1 and α2 is larger. This
result suggests that when contrasting the two views, a more distinguished diffu-
sion difference between the two views makes richer topological information can
be captured, improving the quality of learned node representations.
Influence of GNN Encoders. Our design enables 3SLP to be model-agnostic
regarding the GNN encoder. Beyond the default GCN, we extend our evaluation
of 3SLP’s performance to three additional GNN encoders: SGC [25], GIN [27],
and GraphSAGE [7]. As shown in Table 3, 3SLP exhibits consistently satisfying
performance across different GNN encoders, demonstrating its compatibility.
However, we notice that the performance with GraphSAGE is somewhat subpar,
potentially due to the limitations inherent in its adopted neighborhood sampling
strategy.
Influence of Similarity Metrics in PSC. Similarity metrics are pivotal in the
PSC backbone, influencing the ultimate LP outcomes. In Table 1, we showcase
the performance across all five introduced metrics for a comprehensive compari-
son. The results show that the best metric varies from dataset, except the Man-
hattan distance, which consistently underperforms compared to others. Further-
more, our repetitive tests also suggest that the cosine distance metric achieves
more consistently good performance, making it our preferable configuration.

4 Conclusion

In this paper, we propose 3SLP to rejuvenate the similarity-based LP methods.
We integrate self-supervised graph representation learning techniques into 3SLP
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to enable it to handle the realistic use case of similarity-based LP. Without the
supervision of edge labels, 3SLP can develop informative node representations
as inputs instead of original node attributes to the pairwise similarity-based
clustering backbone to prompt LP performance on attributed homophilic graphs.
We empirically demonstrate the superiority of 3SLP compared to the baselines.
Our extensive analysis highlights the crucial impact of graph homophily on the
efficacy of 3SLP. In future research endeavors, we aim to explore the applicability
of the proposed method to heterophilic graphs.
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