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Abstract—This paper presents an implementation of the Chem-
ical Reaction Optimization (CRO) algorithm to solve the optimal
power flow (OPF) problem in power systems with the objective
of minimizing generation costs. Multiple constraints, such as the
balance of the power, bus voltage magnitude limits, transmission
line flow limits, transformer tap settings, etc., are considered. We
adapt the CRO framework to the OPF problem by redesigning
the elementary reaction operators. We perform simulations on
the standard IEEE-14, -30, and -57 bus benchmark systems. We
compare the perform of CRO with other reported evolutionary
algorithms in the IEEE-30 test case. Simulation results show that
CRO can obtain a solution with the lowest cost, when compared
with other algorithms. To be more complete, we also give the
average result for the IEEE-30 case, and the best and average
results for the IEEE-14 and -57 test cases. The results given in
this paper suggest that CRO is a better alternative for solving
the OPF problem, as well as its variants for the future smart
grid.

Index Terms—Chemical reaction optimization, metaheuristic,
optimal power flow, power grid, smart grid.

I. INTRODUCTION

Since it was first defined in 1968 by Dommel and Tinney
[1], the optimal power flow (OPF) problem has been received
much great attention in the research and industrial com-
munities. Due to increasing environmental concerns such as
global warming, the increasing demand for electricity, and the
expansion of the power system, allocating power generation
with minimum cost without violating the system and security
constraints is becoming more important. Therefore the OPF
problem has been widely applied in real-world power systems
[2]. It also plays a significant role in electricity pricing and
congestion management [3]. Moreover, the smart grid [4]
makes OPF even more important.

In general, the OPF problem is a non-convex, and strictly
constrained static optimization problem with both continuous
and discrete variables. The nonlinear AC power flow equality
constraints, also defined as the power flow (PF) problem,
largely constitute the non-convexity of the problem.

Early approaches handling the OPF problem are mostly
mathematical convex programming techniques, such as non-
linear programming [1] [5] [6], linear programming [7],
[8][9][10], quadratic programming [11][12], Newton-based al-
gorithm [13], and interior point methods [14]. Generally, most
of these optimization algorithms adopt sensitivity analysis and

gradient-based searching around an operating point along the
objective function in the solution space confined by the system
constraints. However, it should be noted that the OPF problem
is not only non-convex, but is also a multimodal problem. In
other words, it contains many local minimums and local search
techniques generally fail to obtain the optimal solution [15].
Additionally, the conventional algorithms for OPF suffer from
some specific drawbacks, such as complexity and insecure
convergence, i.e., the possibility of failure in converging to the
global optimal solution. For example, the Newton-based algo-
rithms are very sensitive to the initial conditions which result
in failure in convergence due to improper start points [16].
For the interior point methods, if the step size is not selected
properly, it may lead to a solution that violates the original
nonlinear domain in sublinear problems [17]. Although these
drawbacks limit the performance and the effectiveness when
dealing with complex objective functions, high dimensions
and complicated constraints, they are still widely adopted in
solving the OPF problem in practice.

With the recent advancements in computational technology,
many revolutionary optimization methods have been proposed
to solve the OPF problem. For example, Genetic Algorithm
(GA) [17] [18], Differential Evolution (DE) [19], Particle
Swarm Optimization (PSO) [20], and Biogeography-Based
Optimization (BBO) [21]. They provide feasible simulation
results and can generally overcome the drawbacks of the
traditional methods.

Inspired by natural selection and genetics, GA has be-
come popular since the 1970s and has been applied to solve
many complex problems. GA is based on string structures
(chromosomes), typically a concatenated list of binary digits
representing the coding of the control parameters (phenotype)
of a given problem. The chromosomes are composed of genes.
GA consists of parent selection, crossover and mutation.In
[18], GA is regarded to have the most important advantage
of robustness in solving OPF.

DE is also based on natural evolution. Similar to GA, it
is also composed of mutation, crossover, and selection to
determine the optimal result. The difference is that DE creates
new offsprings by generating a noisy replica of each individual
of the population [19]. No coding is required to convert the
variables into a binary form.



PSO is another evolutionary-based approach, which is mo-
tivated by natural behavior of organisms such as bird flocking.
It combines the social psychology principles in cognition
among human beings (socio-cognition human agents) and
evolutionary computations [20]. Particles represent candidates
of solution. In a PSO system, particles change their positions
by flying around in a multi-dimensional search space until a
relatively unchanging position has been encountered, or until
computational limitations are exceeded.

BBO mimics the migration of species from one island
to another, the raising, and the extinction of species. There
are two basic mechanisms in BBO, migration and mutation.
Geographical areas that are well suited for residences for
biological species are said to have a high habitat suitability
index and the variables that characterize habitability are called
suitability index variables [21]. BBO improves its performance
by replacing the worse results with the better ones. in order
to improve the quality during the computation, which can be
considered as a promotion for faster convergence.

Recently, a new general-purpose optimization method in-
spired from the molecular behaviors in chemical reactions,
called Chemical Reaction Optimization (CRO), has been pro-
posed [22]. CRO follows the natural tendency of a chemical
reaction to settle in the state with the minimized free energy,
i.e., the most stable state. It is not difficult to see the similarity
between optimization and chemical reactions. A molecule
corresponds to a solution of the optimization problem, and
the free energy of the molecule corresponds to the objective
function value of the solution. CRO is developed based on this
discovery, mimicking the behavior of molecules in chemical
reactions.

Simulations of OPF problem are conducted on the standard
IEEE-14, -30, and-57 bus system [23] and the simulation
results show that CRO can give good performance in solving
the problem. The rest of the paper is organized as follows. We
formulate the problem in Section II. In Section III, we present
the algorithm design. The simulation results are discussed in
Section IV and we conclude the paper in Section V.

II. PROBLEM FORMULATION

We consider a transmission network with N buses, collected
into a set N . Each bus i ∈ N is characterized by four
variables: active power injection Pi ∈ R, reactive power
injection Qi ∈ R, voltage magnitude Vi ∈ R, and a phase
angle θi ∈ [−π, π]. In general, each bus i can have both active
power generation (PGi

≥ 0) and consumption (PLi
≥ 0). Its

active power injection Pi refers to the net active power injected
into the network from bus i, and thus we have Pi = PGi

−PLi

(i.e. generation minus consumption). If Pi > 0, bus i supplies
power to the network. Otherwise, it demands power from the
network. Similarly, the reactive power injection Qi of bus i
can be defined by its reactive power generation QGi

≥ 0 and
consumption QLi

≥ 0, i.e., Qi = QGi
−QLi

. Each bus can be
classified into three types: a slack bus, a PV bus, or a PQ bus,
where PV and PQ buses refer to generator and load buses,
respectively. When Pi is positive, bus i is a generator (PV)

bus. Otherwise, it is a load (PQ) bus. There is only one slack
bus in the network and it is considered as a special generator
bus with known phase angle for the reference of other buses.
We denote the sets of the slack bus, the PQ buses and the PV
buses by N0, NPQ, NPV , respectively. Assume that there are
NPV PV buses and NPQ PQ buses in the network. Hence, we
have N = 1 +NPV +NPQ. For the PV buses and the slack
bus, their voltage magnitudes (V ), active and reactive power
generations (P and Q) can only operate in certain ranges:

V mini ≤ Vi ≤ V maxi , ∀i ∈ N0 ∪NPV , (1)

PminGi
≤ PGi

≤ PmaxGi
, ∀i ∈ N0 ∪NPV , (2)

QminGi
≤ QGi

≤ QmaxGi
, ∀i ∈ N0 ∪NPV . (3)

Similarly, for the PQ buses, we have

V mini ≤ Vi ≤ V maxi , ∀i ∈ NPQ. (4)

For any PV or slack bus i, we impose a cost fi on the amount
of active power generation, i.e.,

fi(PGi
) = ai + biPGi

+ ciP
2
Gi
,∀i ∈ N0 ∪NPV . (5)

There are NC shunt volt-ampere reactive (VAR) compen-
sators, which attach to a subset of the buses, denoted by NC ,
to unify the power factor (i.e., to improve the power factor by
making it closer to one). Attaching a compensator to a bus has
the same effect of adding conductance to the bus. We denote
the reactive power generated by the shunt compensator at bus
i by QCi

. When bus i does not have a compensator attached
(i.e., i 6∈ NC), the amount of reactive power contributed by
compensators QCi

are set to zero. The shunt compensators can
only produce reactive power within certain limits, specified by

QminCi
≤ QCi ≤ QmaxCi

, i ∈ NC . (6)

The transmission line connecting buses i and k is charac-
terized by its conductance gik, its susceptance bik, and the
phase angle difference θik = θi − θk. If buses i and k are
not connected, then both gik and bik are equal to zero. Let E
be the set of transmission lines, where |E| = NTL and NTL
is the total number of transmission lines in the network. Let
Ii, i = 1, . . . , NTL, be the magnitude of the current flow on
the ith power line. To ensure that there is no excessive power
flow on a line, each power line has a current flow limitation
given by

Ii ≤ Imaxi , i ∈ E . (7)

There are also NT transformers in the system, each of which
attaches to a transmission line between two buses. Let ET
be the set of transmission lines with transformers attached.
Consider that the ith transformer is on the transmission line
between buses l and k. It is used to adjust the ratio of voltage
magnitudes of buses l to k. This ratio is called the tap ratio,
denoted by Ti, which is bounded by

Tmini ≤ Ti ≤ Tmaxi , i ∈ ET . (8)

For better illustration, an example of a five-bus system is given
in Fig. 1, which is adapted from [24].



Fig. 1. A five-bus power system example

The network can be characterized by the admittance matrix
Ybus = (Yik, 1 ≤ i, k ≤ N), where

Yik =


−(gik + jbik) if buses i, k are connected,
−
∑N
l=1,l 6=i Yil + jQCi if k = i,

0 otherwise.
(9)

By the Kirchhoff’s Law and Ohm’s Law [25], the network is
said to be balanced when the following equalities hold:

PGi
− PLi

= Pi = Vi

N∑
k=1

Vk(Gik cos θik +Bik sin θik),

(10)

QGi
−QLi

= Qi = Vi

N∑
k=1

Vk(Gik sin θik −Bik cos θik),

(11)

where Gik = Re(Yik) and Bik = Im(Yik). Given the values
of some variables, solving (10) and (11) for the unknowns is
called the PF problem.

The unknown variables can be further classified into two
types: control and dependent variables. The former are those
we can control while the latter depends on the former via
the PF problem, i.e., via (10) and (11). The control variables
include voltage magnitudes of the slack and PV buses, active
power generations of PV buses, reactive power generated by
the shunt compensators, and the tap ratios of the transformers.
The rest are dependent variables. To summarize, the constants
(i.e., the values specified by the problem instance) and vari-
ables are listed as follows:

I) Constants: (PLi
, QLi

∀i ∈ N ), (PGi
, QGi

,∀i ∈ NPQ),
(ai, bi, ci,∀i ∈ NPV ), (gik, bik,∀i, k ∈ N , i 6= k),
(θi,∀i ∈ N0);

II) Control variables: (Vi,∀i ∈ N0 ∪ NPV ), (PGi
,∀i ∈

NPV ), (QCi
,∀i ∈ NC), (Ti,∀i ∈ NT );

III) Dependent variables: (Vi,∀i ∈ NPQ), (PGi
,∀i ∈ N0),

(QGi ,∀i ∈ N0∪NPV ), (θi,∀i ∈ NPV ∪NPQ), (Ii,∀i ∈
E).

The OPF problem aims to minimize the generation costs of
active power such that the network is balanced and all variables
operate within their limits. Mathematically, the OPF problem
is stated as

minimize F =
∑

i∈NPV ∪N0

fi(PGi)

=
∑

i∈NPV ∪N0

(bi × PGi
+ ci × P 2

Gi
), (12)

subject to
Equality constraints: (10), (11),
Inequality constraints: (1), (2), (3), (4), (6),
(7), (8),

where bi and ci, for all i, are cost coefficients given by the
problem data.1

A. Power Flow Problem
In this subsection, given the control variables, we show

how to determine the dependent variables by solving (10) and
(11). We apply the Newton-Raphson Method (NRM) [26] to
solve the PF problem. We illustrate this method briefly in the
following.

NRM is an iterative method based on Taylor series with
higher order terms ignored. Recall that Pi = PGi

− PLi
and

Qi = QGi −QLi are determined from the given problem data
and the control variables. Thus, we know Pi and Qi for all
i ∈ N and we also know Vi for all i ∈ N0 ∪NPV . The phase
of the slack bus θi, i ∈ N0 is also pre-defined (usually set
to 0). We are determining Vi for all i ∈ NPQ and θi for all
i ∈ NPV ∪NPQ.

We set the initial voltage magnitudes of the PQ buses (i.e.,
Vi(0),∀i ∈ NPQ) to 1 p.u. and the initial phase angles (i.e.,
θi(0),∀i ∈ NPV ∪NPQ) to zero. Let Pi(n) and Qi(n) be the
values calculated by NRM in Iteration n. We define

∆Pi(n) = Pi − Pi(n) and (13)
∆Qi(n) = Qi −Qi(n). (14)

Without loss of generality, assume that the buses are ordered
such that we can arrange the variables of the same type into
a vector following that order. Let ∆P (n) = (∆Pi(n), i ∈
NPV ∪ NPQ)T , ∆Q(n) = (∆Qi(n), i ∈ NPV ∪ NPQ)T ,
∆θ(n) = (∆θi(n), i ∈ NPV ∪ NPQ)T , and ∆V (n) =
(∆Vi(n), i ∈ NPQ)T . Then we calculate(

∆θ(n)
∆V (n)

)
= J(n)−1

(
∆P (n)
∆Q(n)

)
, (15)

where

J(n) =

(
∂∆P (n)
∂θ(n)

∂∆P (n)
∂V (n)

∂∆Q(n)
∂θ(n)

∂∆Q(n)
∂V (n)

)
. (16)

We update θi and Vi by

θi(n+ 1) = θi(n) + ∆θi(n),∀i ∈ NPV ∪NPQ and (17)
Vi(n+ 1) = Vi(n) + ∆Vi(n),∀i ∈ NPQ. (18)

1ai can be ignored as it is a constant term given in (5).



Note that only the voltage magnitudes of the slack bus and
PV buses are control variables. We determine the voltage
magnitudes of the PQ buses by considering the transformer
ratios. If two PQ buses are connected by a transformer, the
voltage magnitude for the so-called non-standard side will also
be decided by the tap ratio from the standard side voltage.
Thus we have Vi = Vk/Ti, where (i, k) ∈ ET , i ∈ NPQ, k ∈
N0 ∪ NPV ∪ NPQ. With (10) and (11), we can determine
Pi(n+ 1) and Qi(n+ 1). A new iteration is started until both
∆Pi and ∆Qi are smaller than a certain threshold ξ, for all i.
With all Vi and θi known, all other unknown power injections
and current flows can be determined accordingly.

III. ALGORITHM DESIGN

A. Background

CRO is a general-purpose optimization framework. Con-
sider a number of molecules in a container with a central
energy buffer attached. It defines the procedures to select
candidate solutions from the solution space and the conditions
to accept new solutions. CRO has been successfully applied
to many research and practical problems, including channel
assignment in wireless mesh networks [22], the population
transition problem in peer-to-peer live streaming [27], arti-
ficial neural network training [28], and the network coding
optimization problem [29]. In this paper, we apply CRO to
solve the OPF problem.

First we define the algorithmic details to fit the solution
structures and constraints of the problems. In the following,
we will discuss the essential components to design CRO for
the problem. For other details of CRO, the interested reader
may refer to [22], [30].

B. Modified Objective Function

Given the values of the control variables, we can determine
those of the dependent variables by solving the PF problem.
Since we can control the values of the control variables, we
can ensure that the chosen values are within their limits.
However, we cannot guarantee that the dependent variables
do not exceed their limits. To ensure that a dependent variable
is within its limit, we add a penalty function to the objective
function F . Hence, the modified objective function becomes

F ′ =F + γV
∑

i∈NPQ

(Vi − V limi )2 + γG
∑
i∈N0

(PGi
− P limGi

)2

+ γQ
∑

i∈N0∪NPV

(QGi −QlimGi
)2 + γI

∑
i∈E

(Ii − I limi )2,

(19)

where γV , γG, γQ, and γI are penalty coefficients and

V limi =

 V mini if Vi < V mini ,
V maxi if Vi > V maxi ,
Vi otherwise,

∀i ∈ NPQ, (20)

P limGi
=


PminGi

if PGi
< PminGi

,
PmaxGi

if PGi
> PmaxGi

,
PGi

otherwise,
i ∈ N0, (21)

QlimGi
=


QminGi

if QGi
< QminGi

,
QmaxGi

if QGi > QmaxGi
,

QGi otherwise,
i ∈ N0 ∪NPV , (22)

I limi =

{
Imaxi if Ii > Imaxi ,
Ii otherwise. i ∈ E . (23)

Eq. (19) is adapted from [21]. In [21], transmission line flows
are penalized instead of the current flows. As long as no limits
are violated, the computed solutions are the same irrespective
of whether power flows or current flows are chosen to be
penalized. From now on, we minimize F ′ in (19) instead of
F in (12). As long as the final solution does not violate any
constraints, the objective function values computed from (19)
and (12) are identical.

C. Manipulated Agents

The manipulated agents of CRO are molecules, each of
which contains a profile of attributes. These attributes include
a molecular structure (ω), potential energy (PE), kinetic en-
ergy (KE), number of hit (numHit), minimum number of hit
(minHit), and some other optional ones. ω carries a candidate
solution which only contains the control variables.2 Let F̃ (ω)
be a function evaluating F ′ in (19) when given ω: Given ω,
we determine the dependent variables by solving PF; then we
evaluate the control and dependent variables with (19). We
define PE associated with ω as

PEω = F̃ (ω). (24)

KE represents the tolerance of the molecule having a less
feasible structure (i.e. a solution with a higher objective
function value). The purpose of KE will become clear in the
subsequent subsections.

D. Elementary Reactions

There are four kinds of elementary reactions defined in CRO
and they are explained in the following:

1) On-wall Ineffective Collision: An on-wall ineffective
collision happens when a molecule hits the container wall and
results in a slight change to the molecular structure. Suppose
the current molecule structure is ω and it tends to change to
a new one ω′ = N(ω), where N(·) is a neighborhood search
operator and N(ω) returns a solution in the neighborhood of
ω. We adopt a similar approach used in [31] to define N(·).
Instead of one variable, we add a perturbation to each variable
in ω to produce ω′. Perturbations are drawn from a Gaussian
distribution with zero mean and variance σ2.

However, some of variables in ω′ may violate its limits,
i.e., the inequalities stated in the problem. We adopt the hybrid
scheme (HS) to handle the boundary constraints [32]. With HS,
we perform reflection or absorption at a violated boundary.
For reflection, we obtain the new value of the variable by
reflecting violated boundary with the amount of violation

2Theoretically, a candidatae solution should be composed of both the
control and the dependent variables. Since the latter can be calculated from
the former by solving PF, the dependent variables are removed from ω for
simplicity.



while absorption sets the new value to be the boundary value.
Let ω′(i) be the ith variable in ω′ and u(i) and l(i) be its
upper and lower limits. We update ω′(i) by

ω′(i) :=


2× l(i)− ω(i)′ if ω′(i) < l(i) AND t ≥ 0.5,
2× u(i)− ω(i)′ if ω′(i) > u(i) AND t ≥ 0.5,
l(i) if ω′(i) < l(i) AND t < 0.5,
u(i) if ω′(i) > u(i) AND t < 0.5,

(25)

where t is a random number generated in [0, 1]. An example
of neighborhood search where the solution has four variables
is given as:

[2, 3.5, 6.3, 1.4]︸ ︷︷ ︸
ω

→ [2.04, 3.52, 6.27, 1.38]︸ ︷︷ ︸
ω′

.

The on-wall collision is allowed if

PEω + KEω ≥ PEω′ , (26)

where PEω′ is computed according to (24). In this case, KEw′

of the new structure w′ is obtained by

KEω′ = (PEω + KEω − PEω′)× q, (27)

where q is a random number generated in [KELossRate, 1]
and KELossRate is a system parameter of CRO. numHitω is
increased by one and minHitω will be equal to numHitω if
the new solution has better objective function value it has
experienced. The remaining (1 − q) portion of energy is
transferred to a central energy buffer (buffer). If (26) is not
met, the change will be forbidden and the molecule will retain
its original w, PEω , and KEω .

2) Decomposition: A decomposition happens when a
molecule hits a wall and splits into two smaller parts. This
imposes a vigorous change to the molecule and the resultant
molecules have substantially different molecular structures
from the original one. Suppose that ω is transformed to
ω′1 and ω′2. We apply the previously defined neighborhood
search operator to compute ω′1 and ω′2, i.e., ω′1 = N(ω) and
ω′2 = N(ω).

In general, a decomposition happens if

PEω + KEω ≥ PEω′
1

+ PEω′
2
. (28)

Let temp1 = PEω + KEω − PEω′
1
− PEω′

2
. If (28) holds, we

get

KEω′
1

= temp1 × k and
KEω′

2
= temp1 × (1− k),

(29)

where k is a random number in [0, 1]. Note that normally PEω ,
PEω′

1
and PEω′

2
have similar values and KEω may not be large

enough to satisfy (28). In this case, energy stored in buffer will
assist the decomposition. We consider

PEω + KEω + (buffer×m1 ×m2) ≥ PEω′
1

+ PEω′
2
, (30)

where m1 and m2 are random numbers independently and
uniformly generated between [0,1].

Let temp2 = PEω + KEω + (buffer×m1 ×m2)−(PEω′
1
+

PEω′
2
). If (30) is satisfied, the change is allowed and KEω′

1
,

KEω′
2

are updated as

KEω′
1

= temp2 × p
KEω′

2
= temp2 × (1− p),

where p is a random number in [0, 1].
The aim of using m1 and m2 is to restrict the KEω′

1
and

KEω′
2

from being too large, for the buffer is normally large.
The buffer is then updated by temp2 + buffer−KEω′

1
−KEω′

2
.

The numHitω′
1
, minHitω′

1
, numHitω′

2
and minHitω′

2
are all set to

zero. If both (28) and (30) are not satisfied, the decomposition
will not happen and the original molecule structure, PE, and
KE will be retained.

3) Inter-molecular Ineffective Collision: An inter-
molecular ineffective collision occurs when two molecules
hit each other and then bounce back. The energy requirement
for accepting the change is similar to that of an on-wall
ineffective collision except that the involved number of
molecules in the reaction is more than one and there is no
interaction with buffer.

Assume the original molecular structures are ω1 and ω2.
Two resultant molecular structures ω′1 and ω′2 are produced
from the neighborhoods of ω1 amd ω2, respectively, i.e. ω′1 =
N(ω1) and ω′2 = N(ω2). The change is allowed if

PEω1
+ PEω2

+ KEω1
+ KEω2

≥ PEω′
1

+ PEω′
2
. (31)

Set temp3 = (PEω1
+PEω2

+KEω1
+KEω2

)−(PEω′
1
+PEω′

2
)

If (31) holds, KEω′
1

and KEω′
2

are updated respectively by

KEω′
1

= temp3×r and
KEω′

2
= temp3×(1− r),

where r is a random number generated uniformly between
[0,1]. numHitω1 and numHitω2 are increased by one, respec-
tively. minHitω1

will be equal to numHitω1
if the new solu-

tion has better objective function value ω1 has experienced.
minHitω2

is updated similarly. If (31) is not satisfied, the
original molecular structures ω1, ω2 and PEω1 , PEω2 , KEω1 ,
KEω2 are all kept.

4) Synthesis: A synthesis takes place when two molecules
collide and fuse together. The energy change is generally
vigorous. Assume that two existing molecules have ω1 and ω2.
They are combined to form ω′ by the following mechanism:
For the ith variable in the ω′, we introduce a random number
ui generated between [0,1]. The ith variable of ω′ is updated
by

ω′(i) =

{
ω1(i) if ui > 0.5,
ω2(i) otherwise. (32)

Consider an example of four variables:

[2, 3.5, 6.3, 1.4]︸ ︷︷ ︸
ω1

+ [1.8, 3.2, 6.6 , 1.1]︸ ︷︷ ︸
ω2

→ [2, 3.5, 6.6 , 1.4]︸ ︷︷ ︸
ω′

.

The change is accepted if

PEω1
+ PEω2

+ KEω1
+ KEω2

≥ PEω′ , (33)



is satisfied. Then KEω′ is updated by

KEω′ = PEω1 + PEω2 + KEω′
1

+ KEω′
2
− PEω′

and numHit′ω and minHit′ω are both set to zero. If (31) not
satisfied, no change will happen.

E. The Overall Algorithm

The overall algorithm includes three stages: initialization,
iterations, and the final stage. In each simulation run, we begin
with the initialization, execute a preset number of iterations,
and stop to output the best result.

In initialization, we set the values of algorithmic parameters,
i.e., PopSize, InitialKE, MoleColl, KELossRate, α, and β.
We create PopSize number of molecules randomly in the
solution space and each of them are assigned with KE equal to
InitialKE. We go through a certain number of iterations until
a predefined number of function evaluations (FEs) is reached.

In each iteration, one elementary reaction will take place.
We first decide whether it is a unimolecular or an inter-
molecular collision by generating a random number z in [0, 1].
If z is larger than MoleColl, a unimolecular (i.e. on-wall
ineffective collision or decomposition) will be triggered. Oth-
erwise an inter-molecular collision (i.e. inter-molecular inef-
fective collision or synthesis) will happen. For a unimolecular
reaction, we randomly select one molecule (e.g. ω) and further
check the decomposition criterion minHitω − numHitω ≥ α,
where α is the preset system parameter. If the criterion is
satisfied, then we have a decomposition. Otherwise, it will re-
sult in an on-wall ineffective collision. For the inter-molecular
collision, we randomly select two molecules (e.g. ω1 and ω2)
and then examine the synthesis criterion: KEω1

≤ β and
KEω2

≤ β, where where β is a preset system parameter
constant. If so, we have a synthesis with ω1 and ω2. Otherwise,
an inter-molecular ineffective collision will happen.

At the end of each iteration, we record any newly found
solution with better objective function value. When the maxi-
mum FEs have been reached, we output the best found result.
More details of implementing CRO can be found in [22], [30],
[31].

IV. SIMULATION RESULTS

The simulation is implemented in the Visual C++ 6.0
environment executed on a 2.4 GHz Intel i5-2430M dual
core personal computer with 4GB RAM. To illustrate the
effectiveness of CRO, we test the performance of CRO on
the IEEE 14-, 30-, and 57- bus standard systems [23].

The parameter values for different test cases are determined
by trial-and-error and they are given in Table I. Note that
the penalty coefficient γG for the power generated by the
slack bus is set much larger than other penalty coefficients
because we try to suppress the power produced at the slack
bus. According to our experience, if all the coefficients have
similar values, e.g. all set to one, the power generation at
the slack bus will likely violate its limit. If the final solution
computed by the algorithm does not violate any limits, the

TABLE I
CRO PARAMETER SETTINGS

Variables Bus 14 Bus 30 Bus 57

PopSize 3 5 3
InitialKE 500 1000 1000

KELossRate 0.2 0.2 0.2
MoleColl 0.2 0.2 0.2

α 300 1000 300
β 0.005 0.0005 0.001

σ2 for Qc 0.0005 0.0005 0.0005
σ2 for others 0.05 0.003 0.003

γV 1 1 1
γG 100000 100000 100000
γQ 1 1 1
γI 1 1 1

values of the coefficients will not affect the final result and
this is true for the solutions generated by CRO shown later.

In the IEEE 14-bus test case, there are 14 buses including
Bus 1 as the slack bus, 2, 3, 6, 8 as PV buses and the rest
as PQ buses. There are three transformers between Buses 7-4,
9-4 and 6-5 and Buses 3, 6, 8 have shunt VAR compensators
connected [23]. In the IEEE 30-bus test case, there are 30
buses: Bus 1 as the slack bus, Buses 2, 5, 8, 11, 13 as PV
buses, and the rest as PQ buses. There are four transformers
between Buses 9-6, 10-6, 12-4, and 27-28 and there are shunt
VAR compenstors attached to Buses 10, 12, 15, 17, 20, 21, 23,
24, and 29. For the IEEE-57 bus system, there are 57 buses
including Bus 1 as the slack bus, Bus 2, 3, 6, 8, 9, 12 as PV
buses and the rest as PQ buses. Buses 18, 25, 53 have a shunt
VAR compensator connected. Detailed data for the constants
and various limitations can be found in [23].

We first discuss the results for the IEEE-30 test case.
To the best of our knowledge, for the same settings and
objective function for the OPF problem, there are only results
comparing the best performance among different algorithms
in the literature. We compare the best results with three other
metaheuristics including BBO [21], PSO [20], and GA [21].
We repeat each simulation test 50 times. The algorithms used
for comparison adopt the following FE limits as the stopping
criterion: 16 000 for GA [18], 10 000 for PSO [20], and 2500
for BBO [21]. To show the effectiveness of CRO, the stopping
criterion adopted for CRO is 2500 FEs. The best solution
found is reported in Table II and those computed by other
algorithms are obtained from [20]. The result generated by
CRO does not violate any physical limits and constraints so
that all the penalties are zero. Although CRO uses much fewer
FEs than GA and PSO, CRO can produce the solution with
the lowest cost among the four algorithms. The convergence
curve of the corresponding simulation run is shown in Fig 2.
We can see that CRO converges very fast and it can almost
reach the best values after 1600 FEs (for all test cases). To
be more complete, we also give the results of CRO for the
average and the standard deviation in Table III.



TABLE II
SOLUTIONS FOR THE IEEE 30-BUS TEST CASE

Variables CRO BBO PSO GA

P1 1.76767 1.7758 1.7696 1.77594
P2 0.48746 0.48701 0.4898 0.48722
P5 0.21054 0.2128 0.213 0.21454
P8 0.21743 0.2122 0.2119 0.20954
P11 0.11711 0.1157 0.1197 0.11768
P13 0.12067 0.12048 0.12 0.12052
V1 1.1 1.1 1.0855 1.081
V2 1.08717 1.071 1.0653 1.063
V5 1.06173 1.04 1.0333 1.034
V8 1.06833 1.045 1.0386 1.038
V11 1.1 1.1 1.0848 1.1
V13 1.1 1.0895 1.0512 1.055
T1 1.05534 1.07 1.0233 1
T2 0.915 0.97 0.9557 0.975
T3 0.97619 1.08 0.9724 0.975
T4 0.96139 1 0.9728 1
Q10 0.0098 0.03 0.0335 0.001
Q12 0.0441 0.02 0.022 0.007
Q15 0.0353 0.05 0.0198 0.019
Q17 0.0376 0.03 0.0315 0.024
Q20 0.05 0.04 0.0454 0.015
Q21 0.0365 0.05 0.0381 0.022
Q23 0.0123 0.046 0.0398 0.047
Q24 0.0381 0.045 0.05 0.047
Q29 0.0063 0.03 0.0251 0.024

Cost ($/hr.) 799.365 800.2803 800.41 800.805

Fig. 2. Convergence Curve of the three test cases

TABLE III
AVERAGE RESULTS AND THE STANDARD DEVIATIONS

Average Cost ($/hr.) Standard deviation

IEEE-14 764.1737 1.14286
IEEE-30 799.8655 0.28366
IEEE-57 4956.547 4.87183

TABLE IV
SOLUTIONS FOR THE IEEE-14 AND IEEE-57 TEST CASES

14-Bus 57-Bus

Variable Value Variable Value

P1 1 P1 4.0799
P2 0.5 P2 1
P3 0.35255 P3 0.4
P6 0.45 P6 2.0024
P8 0.32564 P8 4.335
V1 1.08647 P9 0.468231
V2 1.07084 P12 0.6014
V3 1.06085 V1 1.1
V6 1.05671 V2 1.1
V8 1.0565 V3 1.09123
T1 0.93111 V6 1.1
T2 1.09987 V8 1.1
T3 1.1 V9 1.08472
Q3 0.05 V12 1.0678
Q6 0.0196 Q18 0.01287
Q8 0.0055 Q25 0.03891

Q53 0.05

Cost ($/hr.) 763.137 Cost ($/hr.) 4953.9

As there are no similar results computed by other algorithms
for the IEEE-14 and -57 test cases in the literature, we give
the results obtained by CRO for reference only. For these two
test cases, the simulation settings for CRO are similar to those
used in the IEEE-30 test case. The best results for the IEEE-14
and -57 test cases are given in Tables IV. None of these results
violate any physical limits and constraints of the systems. The
corresponding convergence curves are shown in Fig. 2. The
average results and the standard deviations are also provided
in Table III. With the small standard deviations, we can see that
the results produced by CRO are very consistent in different
simulation runs for all test cases.

V. CONCLUSION

The OPF problem is one of the fundamental problems in
power engineering. It is frequently used to determine the
lowest cost generation settings in real-world power systems.
This problem is in general non-convex and there is no known
effective algorithm to solve the general OPF problem. Thus
metaheuristics are usually employed to determine the global
minimum. In this paper, we propose to use CRO to solve the
OPF problem. CRO is a recently proposed general-purpose
metaheuristic for optimization. It mimics the interactions of
molecules with elementary reactions to locate the global
minimum. CRO relies on the conservation of energy principle
and the natural tendency that a reacting system tries to stabilize
itself by transforming the resultants to the state with the lowest
potential energy. We perform simulations on the standard
IEEE-14, -30, and -57 benchmark test systems. We compare
the performance of CRO with other algorithms on the IEEE-
30 test case. Simulation results show that CRO can produce



the result with the lowest cost among all the tested algorithms.
To be more complete, we also give the average and the best
results for all three test cases. In the future, we will study
the performance of CRO on solving other variants of the
OPF problem, e.g. multiobjective function considering the
generation cost and voltage deviations (differences between
the resultant voltage and the mean value), and the security-
constrained and contingency-constrained OPF problems.
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