
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 1

Citywide Estimation of Travel Time Distributions
with Bayesian Deep Graph Learning

James J.Q. Yu, Senior Member, IEEE

Abstract—Estimation of road link travel time serves a critical role in intelligent transportation operation and management. Due to the
uncertainty nature contributed by the volatile traffic, travel time estimates are better described by probability distributions than
deterministic models. Existing travel time distribution estimation approaches are mostly based on predefined probability distributions.
Other approaches, while relaxing the constraint, fail to utilize the topological information and are data-inefficient. In this paper, we
propose a novel Bayesian and geometric deep learning-based approach to estimate the travel time distributions of road links within
citywide transportation networks based on vehicular GPS trajectories. Particularly, historical or real-time trajectories are first
pre-processed to construct partial travel time maps, which are input into a tailor-made Bayesian graph autoencoder to reconstruct
multiple complete travel time maps. We further adopt an auxiliary neural network to facilitate the parameter training of the proposed
approach following adversarial training principles. To evaluate the proposed approach, we employ a real-world vehicular trajectory
dataset in a series of comprehensive case studies. The empirical results indicate that the proposed approach outperforms the
best-performing state-of-the-art baseline with an approximately 10% Kullback-Leibler divergence reduction.

Index Terms—Travel time distribution estimation, deep learning, Bayesian inference, graph convolution, adversarial training.

✦

1 INTRODUCTION

INTELLIGENT transportation systems (ITS) are among the
essential constituting components of smart cities [1]. As

a fundamental and strategic industry in the modern econ-
omy, intelligent transportation that aims to alleviate traffic
congestion, reduce fossil fuel consumption, and improve
transportation efficiency is calling for the attention of both
the industry and the research community [2], [3]. Within
ITS, travel time estimation plays a critical role in supporting
high-level ITS services such as traffic monitoring and vehicle
routing [4]. Better estimates improve the performance of
these services, which in turn lead to a better experience of
transportation users, including but not limited to vehicles
and commuters [5]–[7].

Existing industrial solutions and research efforts on es-
timating travel time mostly aim to accurately provide the
travel time of road links within a transportation network
based on historical data [8]. Nonetheless, the exact link
travel time is influenced by many factors that cannot be
easily recorded, e.g., vehicle conditions and driving styles
[9]. As a result, these uncertainties may hinder these de-
terministic travel time estimators from generating reliable
estimates [4], [8]. In response to this issue, the community
is embracing increasing research attention to the so-called
travel time distribution estimation (TTDE), which presumes
that the link travel time is a time-varying random variable
driven by the heterogeneous and dynamic nature of the
traffic [10], [11]. Pioneer TTDE work typically assumes
that the travel time follows either Gaussian or log-normal
distributions, and empirical results are developed to dis-
cuss their respective applicability [12], [13]. However, such
parametric models, while easy for theoretical analyses, are
not providing sufficient expressibility to represent the travel
time dynamics [9], [14]. This concern leads to the current

state-of-the-art research on TTDE without the Gaussianity
assumption.

In general, there are two mainstream approaches to esti-
mate travel time distributions without the prior assumption.
Recently, Prokhorchuk et al. proposed to transform the non-
Gaussian characteristics of travel time into Gaussians by us-
ing a Gaussian copula graphical lasso model in [4]. The main
principle is to utilize the covariance matrices in the copula
models to exploit the statistical correlation of travel times
among adjacent road links. Thanks to its parametric nature,
the proposed approach can estimate time distributions using
low-resolution and sparse GPS trajectories without relying
on previously common assumptions, e.g., Gaussianity and
link independency. Subsequently, Duan et al. took a further
step and devised a kernel density estimation-based model
for TTDE [8]. By adopting this non-parametric probability
density estimation method, the proposed approach is supe-
rior in capturing time-varying travel time dynamics with
the change of road conditions.

However, there is a research gap in the TTDE problem.
Existing TTDE approaches mainly use sparse vehicular
traces [4] or limited traffic detectors [8] to estimate the
distributions. On the one hand, these approaches can be ap-
plied to practical transportation networks with low-quantity
and/or low-quality traffic data support, which expands the
applicability. On the other hand, either data down-sampling
has to be employed [4] or a high computational burden
may be experienced [8] when a massive volume of histor-
ical vehicular traces are being processed, which is widely
expected and highly plausible with contemporary crowd-
sourcing technologies. As a result, the data under-utilization
issue arises. There exists related route travel time predic-
tion approaches aiming to provide the time estimation of
arbitrary routes between two locations in the urban area.
These approaches, however, cannot fulfill the requirement

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2

of TTDE, as the latter is better utilized to generate optimal
routes in real time while the former is more adopted in
travel analysis and offline route inference [15]. The research
gap advocates effort from the academia and industry to
devise novel solutions to TTDE.

The prospects of a data-efficient TTDE approach make
deep learning a compelling solution, which makes use of
multiple layers of perceptrons to exploit latent character-
istics from raw data [16]. To bridge the research gap, we
propose a novel citywide TTDE approach based on recent
developments of deep learning techniques in this work.
We particularly consider the uncertainties that exist in the
raw historical and real-time vehicular GPS trajectories and
employ the principle of Bayesian deep learning [17] to
learn from them. Furthermore, we adopt the graph con-
volution concept [18] for non-Euclidean space feature ex-
traction, which better describes the transportation network
than canonical tensor-based data analyses [7]. The proposed
model is built using deep neural network building blocks
from data mining and machine learning research to provide
a novel solution to TTDE, as well as insights for future
TTDE model development. The main efforts of this work
are summarized below:

• We propose a novel TTDE approach based on
deep learning techniques. The design principles of
Bayesian and geometric deep learning are adopted
to formulate the new deep neural network.

• We employ an adversarial training method to boost
the model training performance of the proposed ap-
proach, whose training and online inference schemes
are thereby devised.

• We validate the efficacy of the proposed approach
on a real-world dataset with more than one billion
GPS records. Empirical results demonstrate the sig-
nificance and sensitivities of the proposed approach.

To our knowledge, this is one of the pioneering works on
using deep learning to estimate travel time distributions of
road links. The proposed approach is not limited to TTDE
and can be further adapted to address a wide range of
probabilistic estimation problems in ITS.

The rest of this paper is organized as follows. Section 2
gives a brief overview of the related work and formulates
the TTDE problem. Section 3 elaborates on the proposed
deep learning-based approach for TTDE with a detailed
introduction to its training and inference. Section 4 presents
case studies on a real-world dataset to demonstrate the
efficacy of the approach. Finally, this work is concluded in
Section 5.

2 PRELIMINARIES

2.1 Related Work

Travel time estimation is a well-studied research topic in
the literature [4] and is an application of spatio-temporal
data mining [19]. Related research can be generally classified
into two categories, i.e., deterministic travel time estimation
which aims at estimating the mean travel time of road
links, and TTDE that provides an estimated probability
distribution of the travel time. With the emergence of the big

data era, both of the problems now notably rely on the avail-
ability of historical travel time data [20]. A variety of data
mining-based approaches are proposed to develop mean
estimates, including but not limited to linear regression [21],
support vector regressor [22], artificial neural network [23],
hidden Markov models [24], etc. We refer readers to [4],
[7] for a detailed overview of the deterministic travel time
estimation literature.

Together with the deterministic estimation problem,
TTDE received a growing interest in the past few years [8].
A line of research was conducted with the assumption of
Gaussian or log-normal travel time. To name a few, refer-
ences [12] and [13] analyzed the applicability of Gaussian
and log-normal distributions in modeling travel time con-
sidering traffic flow conditions and spatial dependencies.
Reference [25] further investigated alternative probability
distributions as the base parametric model. Reference [26]
formulated the travel time using a gaussian mixture model.
References [4], [27], [28] combined Gaussian copula with the
graphical lasso, Bayesian inference, and section spillover
analysis for TTDE, respectively. Reference [29] employed
an moving average approach for estimating the determin-
istic travel time and a distribution estimation algorithm to
provide the confidence interval of the previous estimation.
On the other hand, attempts on relaxing the Gaussianity
assumption lead to TTDE approaches based on a wide
spectrum of learning techniques. For instance, reference [30]
devised a Markov chain-based heuristic to compute travel
time distributions for arterial road links. Reference [31] pro-
posed an origin-destination pair-based Bayesian network
for TTDE with the expectation-maximization algorithm to
address path uncertainties. Reference [20] developed a deep
learning-based generative adversarial network considering
trip information maximization to estimate the distributions
of both short and long trips. Reference [32] proposed a deep
generative model to estimate the travel time distributions
for routes comprising multiple road links, which better fits
for post-travel analysis and route recovery than pre-travel
planning [15]. Reference [33] adopted an encoder-decoder
deep neural network to exploit the embeddings of road seg-
ments, traffic periodicities, and route trajectories for travel
time estimation. The model aims at providing deterministic
travel time estimations on routes than road links, which is
still not an exact match for TTDE.

To summarize, a number of approaches have been
proposed to properly estimate travel time distributions.
Nonetheless, less research concentrated on modeling and
learning from the data uncertainties, which is significant
and includes both epistemic (system) and aleatoric (mea-
surement) ones in this context. Additionally, the spatial
data correlation regulated by the transportation network
is not taken into account, rendering possible performance
degradation. To address these limitations, we propose a new
deep learning-based TTDE approach in this work.

2.2 Travel Time Distribution Estimation

We aim to estimate the travel time distributions of road
links in a citywide transportation network with sparse real-
time GPS data. The transportation network is modeled as
a directed graph G = {V, E} where V is the set of links

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 3

1

2

3

4

11

5 6

7

8

910
12

(a) A toy transportation network with 12 links.

1

2

3

4

11

5 6

7

8

91012

(b) The corresponding directed
graph.

Fig. 1. An example of the graph representation of transportation net-
work.

(road segments) and E represents the connectivity of links
in V , i.e., (vi, vj) ∈ E if vehicles can directly traverse to
link vj ∈ V from vi ∈ V . Fig. 1 presents an illustrative
example of this graph representation, which is different
from the common one of road networks where intersections
are represented by graph nodes, and is more expressive
when exploiting link correlations [34]. Given ubiquitous and
sparse real-time GPS trajectories, the objective of TTDE is to
obtain the travel time distribution Prv,t(T) of all links v ∈ V
during time slot t of length ∆. The path travel time distribu-
tions can be subsequently developed by accumulating those
of the constituting links [4].

The primary challenge of TTDE trifold, each of which
has garnered study interest from the data mining commu-
nity but has not been adequately addressed collectively,
particularly for TTDE. First, the aggregated epistemic and
aleatoric uncertainty in GPS trajectories make any data
mining strategy for discovering latent journey time distri-
butions challenging. Generic data-driven approaches may
be disturbed and instead learn the noise patterns, rendering
inferior estimations. Developing a tailor-made estimator to
fully utilize the massive historical data in the presence of
uncertainties is a challenging task. Second, the travel time
variations of connecting links are highly correlated so that
the estimator needs to exploit how the link travel time
depends on others [4], [7]. In a transportation network, such
correlations are mainly captured by the adjacency matrix.
Failing to use this topological information can potentially
lead to degraded performance as notable computational ef-
fort is devoted to exploring the structural or spatial data cor-
relation. Third, TTDE considers travel times as random vari-
ables and produces their estimates, unlike the well-studied
deterministic travel time estimation that develops fixed-
point estimations [8]. How to infer accurate and reliable
probability distributions is still an open question to the data
mining and representation learning communities. There are
no de facto solutions for collaboratively addressing these
challenges, and earlier efforts on other subjects cannot be
easily transferred to TTDE. Taking these challenges into
account, we offer a solution for TTDE by utilizing multiple
building blocks and design concepts of deep learning.

3 METHODOLOGY

To overcome the previous challenges, in this work we pro-
pose a novel solution for estimating citywide travel time
distributions of road links, named DeepTTDE. This solution
is inspired by recent studies and advances in Bayesian deep
learning, graph convolution, and adversarial generative
models. It attempts to combine the merits of both to address
all the previous challenges of TTDE. In this section, we first
present an overview of the proposed DeepTTDE and then
elaborate on its constituting components. Finally, we discuss
the unique DeepTTDE training and inference schemes.

3.1 Overview
Fig. 2 presents the general framework of the proposed
DeepTTDE. Three major modules cooperate to derive the
travel time distributions, namely, map matching and travel
time modeling, travel time distribution estimator, and ad-
versarial training model. Given a collection of GPS trajec-
tories, we first convert the raw geographical coordinates
into paths on the graph G, by which it is trivial to calcu-
late the link travel time concerning each trajectory. Subse-
quently, multiple travel time maps are constructed using
the trajectory link travel time data by a unique travel time
modeling algorithm. Each of the travel time maps is an
individual sample from the latent travel time distributions
across the city, and we adopt a Bayesian graph autoencoder
to resemble the distributions from these samples. Finally,
an auxiliary adversarial training neural network is incorpo-
rated to assist the parameter training of the previous graph
autoencoder, so that the accuracy of estimated distributions
can be enhanced.

Before delving into the details of each module that makes
up DeepTTDE, we first explain the rationale behind the
techniques used, particularly the Bayesian graph autoen-
coder structure. All modules have been designed around the
requirements of travel time distribution estimators. While
deep learning-based techniques have demonstrated state-of-
the-art performance in solving a vast number of problems,
they generally suffer from a series of limitations including
being weak in uncertainty learning, non-Euclidean repre-
sentations, and being easily compromised by adversarial
samples [17], [35]. One may find that the primary challenges
of TTDE introduced in Section 2.2 notably overlap with the
above limitations of general deep learning techniques.

DeepTTDE addresses the challenges and limitations by
adopting the design principles of Bayesian deep learning,
geometric deep learning, and adversarial machine learn-
ing. Bayesian deep learning is capable of accounting for
both epistemic and aleatoric uncertainty, both of which are
prevalent in traffic data [17], [36]. In particular, the model
places a prior distribution over each of the neural network
parameters and the posterior can be subsequently approx-
imated via Bayesian inference. Therefore, model uncertain-
ties are captured by the shape of parameter distributions
and statistical uncertainties in the input data are reflected
in the posterior. Second, geometric deep learning enables
DeepTTDE to represent graph structures effectively during
computation, alleviating the significant computational bur-
den associated with deep learning models attempting to
extract topological information from traffic data that does

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 4

Time
Modeling

Map
Matching

Map Matching and Travel Time Modeling TTD Estimator (Bayesian Graph Autoencoder) Adversarial Training Model

GPS
Trajectory

Link
Trajectory

Travel
Time Maps

Road
Network

Fig. 2. Overview of DeepTTDE.

not explicitly demonstrate road connectivity [35]. Third, the
Bayesian model is intrinsically probabilistic that enables
general deep learning models to represent uncertainties and
infer distributions, which perfectly meets the requirement
of TTDE on estimating probability distributions [36]. With
conditional probabilities serving as neural network param-
eters, Bayesian models estimate distributions by sampling
these parameters instead of adding output noise or setting
up multiple input scenarios.

3.2 Map Matching and Travel Time Modeling
In DeepTTDE, the main objective of map matching and
travel time modeling is to provide adequate travel time
maps for the latent information extraction by the subsequent
travel time distribution estimator. As the name implies,
it has two major steps. Map matching aims at projecting
GPS trajectories onto a road network. As this problem has
been studied extensively [37]–[39], we adopt an interactive
voting-based algorithm implementing [37] to perform the
map matching in DeepTTDE. This is also a widely adopted
manner in related research, see [4], [7] for some examples.

After developing map-matched paths, travel time mod-
eling attempts to compute the travel times for each link
in the paths. This can be trivially achieved by assuming
that vehicles follow a constant speed between consecutive
trajectory points [4]. Specifically, for an arbitrary trajectory
with k GPS locations, let the mapped position of the first
trajectory point be p1 and that of the last trajectory point
be pk. If consecutive positions pi and pi+1 are both on
the same link, the sampling time difference between them,
denoted by ∆i→i+1, is accumulated to the travel time of the
respective link. Otherwise, the travel time of the “from” link
is incremented by di→i+1

di→i+1+di+1→i
∆i→i+1 and the remaining

time is added to that of the “to” link, where di→i+1 and
di+1→i are the distance from pi and pi+1 to the intersection
of the two links.

Consequently, multiple travel time maps can be con-
structed based on the calculated link travel times. For
each travel time map, we first create a directed trans-
portation graph according to Fig. 1 where each node em-
beds a road link. Each node vi is initialized with a tuple
xi = ⟨ti, ci, f1

i , f
2
i , · · · ⟩, where ti is the instantaneous travel

time of vi, ci is the sampling time embedding1, and f j
i are

static features of the respective road link, e.g., speed limit,
lane count, link length, etc. Then, we randomly select a
time interval of length 15min and aggregate all trajectories
that fall in the period. The trajectories are permuted and

1. We use sinusoidal encoding to embed the sampling time. Each
date-time is represented by six values, i.e., sine and cosine of the time-
of-day, time-of-week, and time-of-year, respectively.

iteratively selected to be included in the travel time map:
one is included if none of its constituting links are already
covered by others. If a trajectory is included, the ti and
ci values of all its constituting links are updated with the
previously calculated respective travel time and sample
time. This process repeats until a pre-defined portion (70%
in the case studies to avoid the excessive computational
burden, the value is taken from [4]) of all links are covered,
or all trajectories have been checked. The produced travel
time map is a real sample from the ground truth citywide
travel time distributions. Notably, the map matching and the
travel time modeling pre-processes are typical for trajectory-
based traffic big data analysis. We open the possibility of
exploring alternatives to traditional methods as a possible
future research direction.

3.3 Travel Time Distribution Estimator
With the previous module that constructs ground truth
travel time samples from the raw GPS trajectories, the objec-
tive of the subsequent travel time distribution estimator is
to learn the travel time distribution dynamics with respect
to the time. In DeepTTDE, a Bayesian graph autoencoder is
proposed to accomplish the objective thanks to the merits as
introduced in Section 3.1. To describe the architecture of the
proposed deep learning model, we first briefly present its
fundamental operation for non-Euclidean data processing,
namely, graph convolution.

Graph convolution, most widely recognized in graph
convolutional network [18], is a numerical operation that ag-
gregates nodal information from neighboring nodes within
a graph. When employed in neural networks, it aims at
extracting local graphical features from the raw data. The
operation inherits the concept of convolution filter from
canonical convolutional neural networks (CNN) that handle
data in Euclidean space. Such filters perform neighborhood
mixing on the source data by defining a parametric uniform
receptive field, resulting in local information sharing [16].
While receptive fields in CNN are typically rectangular,
graph convolution employs the graph connectivity as the fil-
ter for neighborhood mixing to cope with the non-Euclidean
structure of input graph data. Given the augmented ad-
jacency matrix with a self-loop on each node of a graph,
denoted by Ã, graph convolution takes in features x to
compute the output y as follows [18]:

y = σ(D̃− 1
2 ÃD̃− 1

2xw), (1)

where D̃ = diag(Ã1) is the diagonal degree matrix, w is the
weight parameter of this graph convolution to be learned
by back-propagation, and function σ is a nonlinearity —
ReLU(x) = x+ = max(0, x) in this work. (1) can be

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 5

interpreted as a first-order approximation to the localized
spectral filter network, which itself is a local approximation
to the spectral network that employs the graph Fourier
transform to perform convolution in the frequency do-
main according to the convolution theorem [40], [41]. This
connects the graph convolution with the Euclidean space
convolution and the merits of the latter also apply to the
former.

Note that the graph convolution defined by (1) is based
on the premise that the graph Laplacian is symmetric,
implying an undirected graph. This notion contradicts the
illustration in Fig. 1 where traffic networks are directed. A
typical way of resolving the issue is to relax the directed
graph into an undirected one, thereby constructing a sym-
metric Laplacian matrix. Considering that transportation
networks are modeled as graphs G, we employ the sym-
metric matrix of the edge weight matrix as the adjacency
A = {aij} when deriving Ã = A + I, i.e., aij = 1 if
(vi, vj) ∈ E or (vj , vi) ∈ E . In the transportation network
context, this modification implies that while vehicles can
only drive from link vi to vj if (vi, vj) ∈ E , the travel
time distribution of vi is also correlated to that of vj . Over-
all, this graph convolution operation reflects the physical
relationships of the traffic in a transportation network. In
practice, the travel times of adjacent links demonstrate a
strong correlation. For example, if a link is congested, its
merging traffic is also possibly jamming. This characteristic
can be captured by the adjacency links in (1) so that neural
networks know that the traffic state of one node (road link)
can be propagated to its neighboring ones.

With the aforementioned graph convolution, one can
already construct a deep neural network to capture the
inter-link travel time correlation and perform travel time
estimation. However, one significant challenge remains: no
uncertainty estimates can be developed. Given a determin-
istic travel time map as constructed in Section 3.2, (1) can
only calculate a deterministic output. This is resolved by
Bayesian deep learning. From the probability theory point of
view, a neural network with one or multiple layers of graph
convolution is a probabilistic model Pr(y|x,ω), where ω
is the collection of all weight parameters including w in
(1) and other neural network weights. Without Bayesian
inference, the training of fix-valued ω follows the maximum
likelihood estimation with the training set D = {y(i)|x(i)}i,
i.e., ω∗ = argmaxω Pr(D;ω). If the regularization term is
adopted to avoid overfitting, the optimal parameters follow
the maximum a posteriori probability [42]:

ω∗ = argmax
ω

log Pr(D|ω) + log Pr(ω)

= argmax
ω

log Pr(ω|D). (2)

If we consider the parameters to actually follow the pos-
terior distributions embedded in the training set, the prob-
abilistic model can exploit data uncertainties and estimate
distributions with Bayesian inference [17], [43], [44].

Following this principle, the original graph convolution
can be modified accordingly, denoted by y = fω(x), to cope
with travel time uncertainties using zero-mean Gaussian as
the prior distributions over the parameter space Pr(ω) [45],
[46]. Note that this does not impose a Gaussianity assump-
tion on the travel time distributions, therefore overcomes

the limit of existing research. According to Bayes’ theorem,
the posterior distribution can be obtained by

Pr(ω|D) = Pr(D|ω) Pr(ω)

Pr(D)
=

Pr(ω)
∏

i l(y
(i)|fω(x(i)))∫

Pr(ω)
∏

i l(y
(i)|fω(x(i))) dω

,

(3)

where l(·) is the likelihood. Nonetheless, the marginal prob-
ability Pr(D) cannot be estimated analytically. To over-
come this problem, we employ variational inference to
approximate the posterior through a variational distribution
qϕ(ω) parameterized by ϕ [47]. The optimal variational
distribution that best approximates Pr(ω|D) can be found
by minimizing the Kullback-Leibler (KL) divergence with
respect to ϕ as follows:

KL(qϕ(ω)||Pr(ω|D)) =
∫

qϕ(ω) log
qϕ(ω)

Pr(ω|D)
dω. (4)

With (3), (4) can be re-written as

KL(qϕ(ω)||Pr(ω|D)) =
∫

qϕ(ω) log
qϕ(ω)

Pr(ω)
dω

−
∑
i

∫
qϕ(ω) log l(y(i)|fω(x(i))) dω

+ log

∫
Pr(ω)

∏
i

l(y(i)|fω(x(i))) dω.

(5)

To properly minimize this KL divergence, data subsampling
[48] and reparameterization [47] are typically used [46].
The key idea is to reduce the total number of samples in
calculations involving D to alleviate the computation bur-
den. Furthermore, the neural network parameters are repa-
rameterized by a deterministic differentiable transformation
ϕ = µ + σϵ where ϕ ∼ N (µ,σσT) and ϵ ∼ N (0, I) [47].
Subsequently, (5) can be optimized by stochastic optimizers.
The obtained optimal µ∗ and σ∗ reflect the optimum to
the original KL(qϕ(ω)||Pr(ω|D)) so that qϕ∗(ω) is a close
approximation to Pr(ω|D). The estimated distribution can
be approximated by

Pr(y|x,D) =
∫

Pr(y|x,ω)qϕ∗(ω) dω = qϕ∗(y|x). (6)

We refer readers to [47], [48] for related theoretical analyses.
To summarize, Bayesian inference substitutes each neu-

ral network parameter (e.g., w in (1)) with a parameterized
Gaussian prior N (µ,σσT). After training the new param-
eters µ and σ via KL divergence (5), we can sample K ϵ
values to draw fix-valued parameters from the prior. As
each of the parameter samples can generate one determinis-
tic inference, the K inferences naturally form the posterior
distribution — travel time distribution in our context.

With the help of Bayesian graph convolution, we con-
struct a Bayesian graph autoencoder for travel time distri-
bution estimation. Fig. 2 presents the layered architecture of
the proposed autoencoder that takes one travel time map
as the input x and develops K outputs yk, each of which
represents a possible complete citywide travel time map.
At the beginning of this process, the original nodal features
⟨ti, ci, f1

i , f
2
i , · · · ⟩ are standardized with z-score normaliza-

tion, and the missing travel time entries are assigned with
zeros. The resulting zero-padded graph feature matrix is

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 6

input into the autoencoder, which adopts three consecutive
Bayesian graph convolutions jointly defined by (1) and (6)
for feature and uncertainty learning. In each of the convolu-
tions, the number of nodal features is extended/squeezed
to 128, 256, and 128, respectively. The last convolution
operation is appended with a tanh-activated Bayesian graph
convolution with the number of output features to be one in
order to reconstruct the travel time map with missing values
generated.

3.4 Adversarial Training Model

In the previous sub-section, we propose a Bayesian graph
autoencoder to serve as the travel time distribution estima-
tor. Accepting the travel time maps generated by the pre-
ceding map matching and travel time modeling module, the
estimator can learn from the raw data and estimate citywide
travel time distribution. Nonetheless, empirical results on
training the autoencoder show that the optimization of its
neural network parameters is subpar.

To accelerate the model training process, in DeepTTDE
we employ an auxiliary adversarial training neural network
(also known as discriminator [49]) to add a time map
authenticity term to the KL divergence training objective.
Adversarial training is motivated similarly to the inclusion
of the discriminator into generative adversarial networks.
While the prior Bayesian graph autoencoder is capable
of predicting journey time distributions, it may require a
significantly larger model capacity to make estimations and
regularize the output based on latent transportation domain
information that can aid the model’s performance. Rather
of that, we use an adversarial training neural network to
determine if the generated travel time distributions agree
with the extracted traffic dynamics from the ground truths.
Case studies to be presented in Section 4.4 also reveal its
efficacy empirically.

In particular, a discriminator neural network with three
layers of graph convolution is established, each of which has
64, 16, and one output feature, respectively. The neural net-
work accepts any reconstructed travel time map yk derived
by the preceding Bayesian graph autoencoder, and outputs
a feature graph zk. Finally, the features are aggregated with
summation and a sigmoid function is employed to map the
aggregated feature to (0, 1). This output reflects whether the
discriminator considers the respective yk “authentic” or not.

The objective of this discriminator is to help the estima-
tor generate travel time maps indistinguishable from their
real counterparts so that the estimator training is accelerated
by adding this additional authenticity information to its
fitness objective. The estimator and discriminator form a
two-player minimax game with the following objective:

min
ϕ

max
Φ

V =EPr(x)[log(1− hΦ(fω(x)))]

+EPr(x)[log hΦ(x)] + KL(qϕ(ω)||Pr(ω|D)),
(7)

where hΦ(z) describes the discriminator parameterized
by Φ. At the beginning of training, a randomly initial-
ized ϕ makes the discriminator easily reject the generated
travel time map fω(x), rendering a large EPr(x)[log(1 −
hΦ(fω(x)))] value. The training process then tries to adjust

Algorithm 1: Data Augmentation for DeepTTDE

Data: {x(i)}Ni=1, M
Result: X = {x(i),m,x(i)}N×M

i=1,m=1

1 initialize the augmented travel time map set X = ∅;
2 for {i,m} ∈ {1, 2, · · · , N} × {1, 2, · · · ,M} do
3 generate a random V(i)∗,m as a subset of V(i)+;
4 x(i),m ← x(i);
5 for j ∈ V(i)∗,m do
6 x

(i),m
j ← 0;

7 end
8 append x(i),m to X ;
9 end

ϕ to generate realistic travel time maps to compromise the
discriminator and resemble the real ones. At the same time,
Φ is also consistently optimized to improve the discrimina-
tor’s capability of identifying generated maps. This process
repeats until the estimator parameters are good enough to
circumvent the discriminator by learning the latent travel
time distribution in the raw data. Interested readers can re-
fer to [49]–[51] for more detailed analyses of the adversarial
training mechanism.

3.5 DeepTTDE Training and Inference

In the previous sub-sections, we introduced the three ma-
jor modules in DeepTTDE. Before adopting the model for
online travel time distribution inference, one needs to first
adjust the neural network parameter values to fully capture
the latent raw data characteristics. While the Bayesian graph
autoencoder can be trained with any stochastic gradient
descent variant considering (1) and (5), it remains unclear
how the input travel time maps can be used as the input and
target output of the neural network. Therefore, we propose
a training scheme tailored for DeepTTDE to account for
the multi-sample nature of its travel time modeling and
Bayesian deep learning.

Given a collection of raw GPS trajectories, the map
matching and travel time modeling module is capable of
constructing multiple travel time maps, each of which com-
prises the deterministic incomplete citywide travel time data
of an arbitrary 15min time interval (Section 3.2). For any
travel time map x(i) consisting of road link data x

(i)
j for

vj ∈ V , we use sets V(i)+ and V(i)− to aggregate the links
that are covered and not covered by any raw trajectories
in the travel time map, respectively. We augment the map
by manually removing some of the available link data from
V(i)+ and construct multiple new training maps. Algorithm
1 presents the pseudo-code for the augmentation process.
In particular, M random subsets V(i)∗,m ⫋ V(i)+ are inde-
pendently generated. Then we duplicate x(i) to construct
M identical maps x(i),m. Within each x(i),m, the available
features of links in V(i)∗,m are removed. Consequently,
N×M augmented travel time maps are developed based on
N original maps. The objective of the subsequent travel time
distribution estimator is to recover x(i) based on the partial
x(i),m. Aggregating both maps forms the training data set
X .

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 7

The neural network parameters in the Bayesian graph
autoencoder and adversarial training model are adjusted
iteratively. In each iteration, the autoencoder takes an x(i),m

and infers K different x̂(i),m to estimate x(i), denoted by
x̂
(i),m
k . Considering (7), the objective function of the autoen-

coder is designed as follows:

min
ϕ

EPr(x)[log(1− hΦ(x̂
(i),m
k))] + KL(qϕ(ω)||Pr(ω|D)),

(8)

where x̂
(i),m
k is identical to the y(i) when computing the

KL divergence, i.e., (5). Subsequently, both x(i) and x̂
(i),m
k

are input into the discriminator to evaluate the following
objective function also derived from (7):

min
Φ

EPr(x)[log(1− hΦ(x̂
(i),m
k))] + EPr(x)[log hΦ(x

(i))]. (9)

For every 32 iterations, the computed loss values of both the
autoencoder and the discriminator are utilized to adjust all
neural network parameters using the Adam optimizer [52].

With trained DeepTTDE parameters, we can use the
Bayesian graph autoencoder to infer the real-time citywide
travel time distribution. Upon constructing a partial map
with available information as introduced in Section 3.2,
DeepTTDE uses the autoencoder to produce P complete
travel time maps for prediction. Note that this hyperparam-
eter is different from the previous K, which serves as the
number of network parameter samples only during train-
ing. For each road link in the transportation network, we
consider that each of the deterministic travel time inference
in all of the P maps is a random sample from the travel
time distribution, which shall approximate the ground truth
given by the data. When evaluating the inferred distribu-
tion, we use the formulae of KL divergence and Hellinger
distance for two discrete distributions Q =

∑
r Q(r) and

R =
∑

r R(r):

KL(Q||R) =
∑
r

Q(r) log
Q(r)

R(r)
, (10a)

Hellinger(Q,R) =
1√
2

(∑
r

(Q(r)
1
2 −R(r)

1
2)2

) 1
2
, (10b)

where r is the index of histogram bins. Following the
analysis in [4], we set the default number of histogram bins
to 11 when calculating these two formulations.

4 CASE STUDIES

In this section, we conduct a series of comprehensive case
studies on a real-world dataset to evaluate the performance
of DeepTTDE. Specifically, we first briefly introduce the
dataset and simulation configurations employed. Then, the
comparative study on the preciseness of estimated travel
time distributions are investigated, and the impact of GPS
trajectory sparsity is examined. Subsequently, an ablation
test is carried out to validate the necessity of DeepTTDE
constituting modules. Finally, a hyperparameter test demon-
strates the impact of hyperparameter selection on model
performance.

4.1 Data and Configuration
In this work, we employ the KDD CUP 2020 dataset2

provided by DiDi Chuxing for thorough case studies. In
particular, the dataset includes GPS trajectories of ride-
sharing vehicles in the city Chengdu, China from Nov.
1st, 2016 to Nov. 30th, 2016. It provides approximately
1097 million GPS records with 2 s to 4 s sampling intervals
from vehicles traversing the urban city. The transportation
network topology is obtained from OpenStreetMap, and the
map matching is conducted as introduced in Section 3.2.

To develop the ground truth traffic speed distributions,
we first split the complete dataset into 2880 time periods,
each of which contains all vehicular traces of 15min in
the day. In case that a trajectory spans over multiple pe-
riods, it is included in all of them. Subsequently, we adopt
the standard travel time modeling technique introduced in
Section 3.2 to develop the travel time of each trajectory
with respect to every comprising road links. Since multiple
trajectories may pass through the same road link within an
arbitrary time period, all the respective travel time values
are aggregated and collectively serve as the ground truth.
Particular links that are not covered by any trajectories
within the period is regarded as an element of V(i)− and are
not involved in the performance evaluation. We compare the
TTDE results of the proposed DeepTTDE with these ground
truth traffic speed distributions.

When employing the proposed approach for TTDE, real-
time vehicular trajectories may only provide the instanta-
neous travel time of a small portion of all roads. To emulate
such real-world cases, we use the methodology proposed in
Section 3.2 to construct N = 75 base travel time maps for
each of the time periods, rendering a total of 216 000 time
maps. For each base travel time map, we randomly con-
struct M = 5 maps by retaining the travel time data of β%
links in V(i)+ according to Section 3.5. As a result, there are
1 080 000 travel time maps available for TTDE training and
evaluation. For cross-validation, we randomly select 3600
time periods (540 000 samples) for training, 1800 (270 000
samples) for early-stopping validation, and the remaining
1800 (270 000 samples) for testing. The validation samples
are evaluated after each neural network training epoch, and
the whole training is terminated if the loss on this valida-
tion set does not decrease in the past three epochs. When
evaluating the quality of estimated travel distributions, the
KL divergence and Hellinger distance (Hlg. for short in the
following tables) of all road links in V(i)+ are calculated and
averaged with respect to the ground truth. Unless otherwise
stated, β = 30%, K = 32, and P = 512. All simulations
are performed on computing servers with two Intel Xeon
E5 CPUs and 128GB RAM. nVidia RTX 2080Ti GPUs are
utilized for neural network computing acceleration.

4.2 Travel Time Distribution Estimation
We first study the deviation between estimated travel time
distributions and the ground truth ones, which is among
the most important metric in evaluating TTDE methods. In
particular, the following methods serve as the baselines in
this empirical study:

2. Available at https://outreach.didichuxing.com/appEn-
vue/KDD CUP 2020.

https://outreach.didichuxing.com/appEn-vue/KDD_CUP_2020
https://outreach.didichuxing.com/appEn-vue/KDD_CUP_2020

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 8

TABLE 1
Performance of DeepTTDE and State-of-the-art TTDE Methods on KDD CUP 2020 Dataset

Time Metric DeepTTDE Hist-1D Hist-1W Gaussian Log-normal LSH MGMM BISN

All KL 0.86± 0.12 1.78± 0.30 1.63± 0.35 1.56± 0.21 1.28± 0.24 0.99± 0.15 1.08± 0.13 0.95± 0.14
Hlg. 0.49± 0.07 1.01± 0.19 0.94± 0.14 0.94± 0.13 0.86± 0.16 0.59± 0.10 0.63± 0.10 0.55± 0.08

Congestion KL 0.84± 0.12 1.73± 0.28 1.58± 0.36 1.75± 0.33 1.30± 0.25 1.04± 0.17 1.11± 0.15 0.95± 0.15
Hlg. 0.48± 0.07 1.00± 0.19 0.94± 0.13 1.00± 0.12 0.86± 0.17 0.59± 0.10 0.68± 0.13 0.55± 0.09

Free Flow KL 0.87± 0.13 1.82± 0.31 1.65± 0.33 1.47± 0.21 1.27± 0.22 0.97± 0.15 1.07± 0.12 0.96± 0.12
Hlg. 0.49± 0.07 1.03± 0.18 0.94± 0.17 0.87± 0.15 0.86± 0.14 0.58± 0.10 0.59± 0.08 0.55± 0.08

• Historical asserts that link travel time distributions
are static over time. The distribution of the same time
period in the previous day (Hist-1D) or the previous
week (Hist-1W) is used as the current travel time
distribution.

• Gaussian [12] and Log-normal [13] assume that
travel times follow either Gaussian or log-normal
distribution. The two methods use historical data to
fit the respective probabilistic model.

• Latent-Segmentation, Hazard-Based (LSH) [10]
method leverages road condition-influencing factors
to construct hazard-based models for TTDE. We use
only the traffic speed to set up the hazard-based
model due to the lack of meteorological data in GPS
records.

• Modified Gaussian Mixture Model (MGMM) [26]
employs a Gaussian mixture model for TTDE by
considering signalized intersection delays.

• Bayesian Inference of Sparse Networks (BISN) [4]
combines Gaussian copulas and Bayesian inference
for TTDE. This approach is among the state-of-the-
art.

We notice a recent work [8] that leverages a kernel density
estimator (KDE) to estimate travel time distributions. As this
work focuses on using data from sparsely-deployed static
traffic detectors for TTDE, we do not include the method
as a baseline. According to the results, KDE develops re-
sults comparable to MGMM with approximately 0.05 KL
divergence improvement [8, Table VI]. Therefore, comparing
with MGMM can give a qualitative reference to its relative
performance over the proposed DeepTTDE.

Table 1 presents the performance comparison of
DeepTTDE and the above baseline methods on the KDD
CUP 2020 dataset. In the table, we summarize the mean
and standard deviation of KL divergence and Hellinger
distance of all links in all testing time periods. Additionally,
we further show the performance of compared methods
on the congestion time periods (7:30am–9:30am and 5pm–
7pm) and remaining free flow ones. From the comparison,
we can observe that the proposed DeepTTDE consistently
outperforms all baselines in all time periods. On average,
DeepTTDE achieves a satisfactory average KL divergence
at 0.86 on all time periods, while the best-performing base-
line scores 0.95. The approximately 10% reduction can be
credited to the unique Bayesian graph convolution operator
devised in DeepTTDE which helps the model to better learn
from the travel time uncertainties. This advocates the adop-
tion of Bayesian and geometric deep learning principles
in future data-driven TTDE related research. Furthermore,

0AM

3AM

6AM

9AM

12NN

15PM

18PM

21PM

0.2
0.4
0.6
0.8
1.0
1.2

DeepTTDE
MGMM

LSH
BISN

(a) Daily KL divergence.

MON

TUE

WED

THUFRI

SAT

SUN

0.2
0.4
0.6
0.8
1.0
1.2

DeepTTDE
MGMM

LSH
BISN

(b) Weekly KL divergence.

Fig. 3. KL divergence performance of DeepTTDE and best-performing
baselines.

DeepTTDE is capable of generating precise travel time
distributions in both congestion and free flow time periods
with negligible performance deviation. While similar results
can also be observed on BISN, other statistical approaches
generally favor one type of time periods over the other,
rendering less robust performance.

To better illustrate the model performance regarding
time-of-day and time-of-week, Fig. 3 presents the KL di-
vergence metric of DeepTTDE and three best-performing
baseline methods with respect to time. The plot also sug-
gests that the proposed DeepTTDE outperforms baselines at
all investigated time periods. While not obvious, all TTDE
methods demonstrate a periodic pattern for each day within
a week, which accords with the ground truth where the
congestion status of road links is also generally periodic. A
deeper look into the raw results indicate a similar conclusion
as previously given by [4], namely, Sunday generally has the
largest estimation error for all four methods in Fig. 3. In the
meantime, we did not observe the unusual KL divergence
spike during the congestion hours. This discrepancy may be
contributed by the different characteristics of the datasets
employed in this work and [4]. Fig. 4 presents the empirical
and estimated cumulative distribution functions (CDFs) for
an arbitrary road link during a congested and a free flow
time period. It can be observed that the CDF curve of
DeepTTDE is generally the closest one to the empirical CDF.

Furthermore, the baseline approaches presented and
compared in Table 1 are designed primarily for TTDE, while
DeepTTDE adopts graph learning-based probability estima-
tion techniques to handle this problem. We also compare the
proposed approach with existing state-of-the-art probabilis-
tic deep learning models and preliminary graph learning-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 9

TABLE 2
Performance of DeepTTDE and Probabilistic Prediction Methods on KDD CUP 2020 Dataset

Time Metric DeepTTDE DeepGTT RAT-SPN GCN-Gauss GCN-Logn

All KL 0.86± 0.12 1.32± 0.17 1.85± 0.26 1.62± 0.24 1.30± 0.23
Hlg. 0.49± 0.07 0.88± 0.11 1.07± 0.15 0.91± 0.13 0.87± 0.15

Congestion KL 0.84± 0.12 1.35± 0.17 1.96± 0.29 1.73± 0.27 1.29± 0.21
Hlg. 0.48± 0.07 0.90± 0.10 1.11± 0.15 0.99± 0.14 0.85± 0.16

Free Flow KL 0.87± 0.13 1.31± 0.18 1.79± 0.25 1.52± 0.23 1.30± 0.23
Hlg. 0.49± 0.07 0.88± 0.11 1.03± 0.14 0.89± 0.13 0.88± 0.15

20 40 60 80 100 120 140
Travel Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Ground Truth
DeepTTDE
LSH
MGMM
BISN

(a) CDF at a congestion time period.

20 40 60 80 100 120 140
Travel Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Ground Truth
DeepTTDE
LSH
MGMM
BISN

(b) CDF at a free flow time period.

Fig. 4. KL divergence performance of DeepTTDE and best-performing
baselines.

based distribution estimators to demonstrate the efficacy of
DeepTTDE. Particularly, the following additional baselines
with minuscule non-algorithmic changes are included in the
comparison as summarized in Table 2:

• Deep Generative Travel Time (GTT) [32] adopts
a three-layer deep generative model to learn the
travel time distribution for trip routes. For a fair
comparison, we consider each route comprises one
road link, and the objective is to estimate its travel
time distribution.

• Random and Tensorized Sum-product Network
(RAT-SPN) [53] employs sum-product networks for
deep learning by generating unspecialized random
structures for the network and use deep learning
optimizer to train a tensorized view of the network.

• GCN-Gauss employs a stack of three graph convo-
lution layers [18] to estimate the mean and variance
of road travel time distributions, considering them as
Gaussian.

• GCN-Logn is similar to GCN-Gaussian with Log-
normal distributions as the prior.

From the comparison, it is clear that none of the non-TTDE
probabilistic prediction methods perform on par with or
outperform DeepTTDE, indicating the necessity of devel-
oping tailor-made TTDE approaches. Albeit DeepGTT can
produce reasonably steady estimations when compared to
other baselines, the resulting accuracy is worse than both
DeepTTDE and the better-performing Bayesian inference-
based BISN. This finding can be attributed to the fact
that DeepGTT was originally designed for route estimation
rather than road link estimation, where the two problems
may have significantly different properties. RAT-SPN also
faces the same challenge, rendering it inferior than base-
lines in Table 1. Lastly, it seems that directly estimates
the distribution parameters using graph learning with an
either Gaussian or Log-normal prior does not cohere with
the ground truth data distribution while the posterior es-
timation of DeepTTDE is relatively more intrinsic in this
particular travel time estimation scenario.

As travel time estimation is a real-time service of intel-
ligent transportation systems, the computation time is of
critical importance in determining whether a TTDE method
can be applied online. Both the offline training and online
inference of DeepTTDE require intensive algebraic calcu-
lations. With the computing platform adopted in the case
study, one complete training of DeepTTDE takes approxi-
mately 26 h with the enormous 540 000 training and 270 000
validation sets. Considering that significant transportation
network topology or traffic pattern changes are typically
infrequent, DeepTTDE can be re-trained with the new data
in a sufficiently short time. Furthermore, a well-trained
DeepTTDE takes less than 3 s to generate 512 travel time
maps for constructing travel time distributions, which is
minuscule compared with the 15min time period length.
Therefore, we can conclude that DeepTTDE can be adopted
in online TTDE services. Noted that the model training time
heavily depends on the optimizer parameters. We employ
the default configuration of Adam in this work, and training
efficiency improvement is plausible with better parameter
settings.

4.3 GPS Trajectory Sparsity

In the previous case study, we set β = 30% in both offline
training and online inference. One may note that while it is
possible to create travel time maps with 30% available data
for time periods in the past, real-time GPS trajectories may
not be so abundant that 30% of all road links are covered.
In this test, we investigate the impact of GPS trajectory
sparsity on the DeepTTDE performance. Specifically, the
trained DeepTTDE with β = 30% is adopted as the esti-

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 10

TABLE 3
Performance of DeepTTDE Architectural Variants on KDD CUP 2020 Dataset

Time Periods Metric DeepTTDE DeepTTDE-AEGC DeepTTDE-ATGC DeepTTDE-AT DeepTTDE-GC-AT BISN

All KL 0.86± 0.12 1.17± 0.18 0.91± 0.13 1.25± 0.31 1.57± 0.33 0.95± 0.14
Hlg. 0.49± 0.07 0.73± 0.14 0.52± 0.07 0.88± 0.22 0.94± 0.20 0.55± 0.08

Congestion KL 0.84± 0.12 1.15± 0.17 0.91± 0.12 1.22± 0.32 1.49± 0.31 0.95± 0.15
Hlg. 0.48± 0.07 0.72± 0.14 0.52± 0.07 0.86± 0.24 0.91± 0.20 0.55± 0.09

Free Flow KL 0.87± 0.13 1.18± 0.18 0.91± 0.13 1.26± 0.31 1.59± 0.34 0.96± 0.12
Hlg. 0.49± 0.07 0.73± 0.15 0.52± 0.07 0.89± 0.21 0.95± 0.19 0.55± 0.08

Relative Training Time 1× 1.64× 1.08× 0.89× 1.40× N/A

0AM

3AM

6AM

9AM

12NN

15PM

18PM

21PM

0.5

1.0

1.5

2.0

30%
2%
20%

0%
5%

1%
10%

(a) Daily KL divergence.

MON

TUE

WED

THUFRI

SAT

SUN

0.5

1.0

1.5

2.0

30%
2%
20%

0%
5%

1%
10%

(b) Weekly KL divergence.

Fig. 5. KL divergence performance of DeepTTDE at various GPS trajec-
tory sparsities.

mator. We emulate practical scenarios where only 1%, 2%,
5%, 10%, or 20% of all road link data are available. These
configurations can be achieved by using the same travel
time modeling approach in Section 3.2 and stopping the
trajectory-inclusion process at the above coverage percent-
age. For reference, the no-real-time-trajectory case (β = 0%)
is also emulated, where Hist-1D instead of DeepTTDE is
adopted as a baseline approach.

Fig. 5 depicts the KL divergence of DeepTTDE given
various GPS trajectory sparsities, where the weekly KL
divergence is averaged over each hour for better illustration.
It is also observed that the number of available trajectories
does not have a notable influence on the model training and
inference time. The simulation results accord with the in-
tuition that more available real-time data generally leads to
better-estimated travel time distributions. When β is smaller
than 10%, increasing β significantly reduces the average KL
divergence. Additionally, the performance of DeepTTDE is
less stable with few data. For instance, the free flow off-peak
performance is notably inferior to that during the congestion
time periods. This is due to that congested time periods
typically provide more GPS trajectories, rendering more
data available given a fixed β percentage. The pattern is also
clearly identifiable in the weekly chart, where the worst-case
performance of 1% GPS sparsity is close to no-data scenario
because the bare minimal available trajectories are not suffi-
cient to drive DeepTTDE for proper estimations. However,
none of the above issues exist when sufficient trajectories
(β ≥ 10%) are provided. Considering that the current state-
of-the-art TTDE methods require approximately 63% [8]

to 70% [4] coverage of road links, DeepTTDE is capable
of being applied to scenarios where much fewer real-time
trajectories are available.

4.4 Ablation Test

In this work, we devise three TTDE modules to con-
struct DeepTTDE. While the first map matching and travel
time modeling module implements the standard data pre-
processing for travel time estimation and is indispensable,
the architecture of the Bayesian graph autoencoder and the
inclusion of the adversarial training model is based on the
intuitive insights into TTDE. In this subsection, we carry out
an ablation test to validate their efficacy in the proposed
DeepTTDE. In particular, we are interested in investigat-
ing the contribution of graph convolution and adversarial
training towards the overall performance. Therefore, the
following four variants of DeepTTDE are constructed:

• DeepTTDE-AEGC: All graph convolution opera-
tions in the Bayesian graph autoencoder is substi-
tuted by fully-connected neurons, i.e., (1) is replaced
by y = σ(wx + b) where b is a trainable bias
parameter.

• DeepTTDE-ATGC: All graph convolution opera-
tions in the adversarial training model is substituted
by fully-connected neurons. The last summation-
sigmoid transformation is replaced by an additional
layer of one fully-connected neuron activated by
sigmoid.

• DeepTTDE-AT: The adversarial training model is
removed from DeepTTDE. The training objective
becomes the KL divergence defined in (5).

• DeepTTDE-GC-AT: All graph convolution opera-
tions in the model is substituted by fully-connected
neurons. Additionally, the adversarial training model
is removed.

All DeepTTDE variants are trained with the same dataset
and configurations as introduced in Section 4.1.

Table 3 summarizes the simulation results of DeepTTDE
variants with the KL divergence and Hellinger distance of
the best-performing baseline, i.e., BISN, for reference. Ad-
ditionally, the relative training time for DeepTTDE variants
is presented considering the time required by DeepTTDE as
the base value. The comparison indicates the necessity of
graph convolution and adversarial training in DeepTTDE,
in which adopting either technique can provide a notable
performance metric improvement. This conclusion can be

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 11

TABLE 4
Hyperparameter Configurations

Label Bayesian Graph Autoencoder Adversarial Model

DeepTTDE 128 + 256 + 128 + 1 64 + 16 + 1
A 128 + 1 64 + 16 + 1
B 128 + 256 + 128 + 1 16 + 1
C 128 + 128 + 256 + 128 + 128 + 1 64 + 16 + 1
D 128 + 256 + 128 + 1 64 + 64 + 16 + 1
E 64 + 128 + 64 + 1 32 + 16 + 1
F 256 + 256 + 256 + 1 128 + 16 + 1

directly drawn by comparing DeepTTDE with DeepTTDE-
AEGC and DeepTTDE-AT where approximately 36% and
45% average KL divergence degradations are witnessed by
removing either technique, respectively. Additionally, the
introduction of graph convolution can aim in the model’s
convergence by relieving the model of the burden of ex-
tracting graphical information from the training data due
to the topology that has been incorporated into the model.
Even though the training time for removing the adversarial
model is lowered by 11%, the estimation accuracy has suf-
fered as a result of the reduction. Therefore, the adversarial
model is critical when it comes to both prediction and
time performance. Finally, BISN can estimate better travel
time distributions than both variants, rendering the two
techniques essential in DeepTTDE.

4.5 Hyperparameter Test

In Section 3 we propose two neural networks in DeepTTDE,
namely a Bayesian graph autoencoder and an adversarial
training model. When designing a neural network, what are
the optimal numbers of layers and neurons is a common
question to be answered in order to achieve satisfactory
model performance. While there are no generalized theo-
retical analyses that guide the selection of these hyperpa-
rameters, the trial-and-error approach is widely adopted to
determine neural network architectures. In this subsection,
we construct DeepTTDE variants according to the hyper-
parameter configurations recorded in Table 4 and examine
their TTDE performance as the hyperparameter test. In
this table, the values under column “Bayesian Graph Au-
toencoder” denote the number of graph convolution layers
and their respective number of neurons (nodal features)
in the distribution estimator of DeepTTDE, and the values
under “Adversarial Model” describe those in the adversarial
training model. For ease of discussion, each hyperparameter
configuration is referred to as the label under the “Label”
column.

Fig. 6 presents the performance comparison of the hyper-
parameter configurations. In this figure, the training time is
presented as a relative value to that of DeepTTDE. From
the comparison, we can come to a series of conclusions.
First, reducing the model capacity by removing layers or
neurons generally impairs the model performance. This can
be derived by comparing DeepTTDE with models A, B,
and E, which reduces the Bayesian graph autoencoder, the
adversarial model, and both, respectively. The conclusion
accords with the widely recognized principle of deep learn-
ing that adequately more layers and neurons in a neural
network can improve its expressibility and therefore exploit

DeepTTDE A B C D E F
Label

0.00

0.25

0.50

0.75

1.00

1.25

1.50

K
L

D
iv

er
ge

nc
e

0.0

0.2

0.4

0.6

0.8

1.0

H
el

lin
ge

r D
is

ta
nc

e

x0

x1

x2

x3

x4

x5

x6

Tr
ai

ni
ng

 T
im

e

Fig. 6. Performance of DeepTTDE hyperparameter variants

TABLE 5
Performance of DeepTTDE and Baseline Methods on SIGSPATIAL

2021 GISCUP Dataset

Metric DeepTTDE BISN DeepGTT

KL 0.95± 0.15 1.11± 0.17 1.28± 0.19
Hlg. 0.57± 0.09 0.66± 0.12 0.83± 0.13

more latent data characteristics for inference. Nonetheless,
such improvement experiences marginal utility when the
model capacity is sufficient for the designated task, and
further expansion leads to drastically increased training
time as a side effect of the expanding network parameter
searching space. This is reflected in the comparison where
models C and F use much more training time to achieve a
comparable performance than the original DeepTTDE.

Apart from the preceding architectural tests, another
crucial hyper-parameter affecting model performance is the
number of samples required to approximate the prior dis-
tribution in Bayesian inference, i.e., K. We also run offline
tests on simulation settings with K ∈ {8, 16, 32, 64} and
observe that when K is decreased, model estimation accu-
racy degrades rapidly. For instance, the KL divergence of
K = 16 reaches as high as 1.81± 0.38, nearly doubling that
of the default K = 32. This is contributed by the calculation
of loss defined in (8), which is partially grounded on the
KL divergence calculation. A small K value renders the
generated discrete distribution highly volatile and stochas-
tic, which cannot resemble the posterior distribution and
deteriorate the loss and subsequently the back-propagating
gradient. On the other hand, increasing K to 64 does not im-
pose statistically significant performance improvement but
instead leads to prolonged training time. As each parameter
sample of K requires one forward pass through the neural
network, there is a saturation point of this hyper-parameter
where introducing more samples cannot further improve
the quality of loss. We figured that 32 is a good candidate
for K, and adopt this value in all case studies.

4.6 Generality of DeepTTDE
KDD CUP 2020 dataset is adopted as the testing data
in all previous case studies, which may not indicate the
generality of DeepTTDE on other datasets. In this section,
we further adopt the SIGSPATIAL 2021 GISCUP data3 as an

3. Available at https://www.biendata.xyz/competition/didi-eta/
rules/

https://www.biendata.xyz/competition/didi-eta/rules/
https://www.biendata.xyz/competition/didi-eta/rules/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 12

indication on whether the proposed model can be adopted
in other cities and datasets. Specifically, the dataset includes
approximately nine million trajectories in the city Shenzhen,
China during August 2020, each of which includes the
exact individual travel time of all traversing road links. The
individual travel time values of each road comprising one
or multiple links during the same time period are aggre-
gated to formulate the ground truth travel time distribution,
which are further utilized to construct base travel time maps
according to Section 3.2. All simulation configurations are
kept identical to Section 4.1, and the simulation results
comparing DeepTTDE with BISN and DeepGTT are sum-
marized in Table 5. The results indicate that DeepTTDE
possess the generality of being applied to other cities and
datasets while maintaining the advantage over the best-
performing baselines powered by both Bayesian inference
and deep learning techniques.

5 CONCLUSIONS

In this work, we propose a new travel time distribution
estimation method based on Bayesian and geometric deep
learning techniques. This method, named DeepTTDE, ex-
ploits the historical vehicular GPS trajectories to model
citywide road link travel time distributions. Particularly, the
historical data are first pre-processed to construct past travel
time maps, each of which represents an instantaneous travel
time status of the investigated transportation network. A
novel Bayesian graph autoencoder neural network is subse-
quently used to learn from the historical data and explore
the data uncertainties for estimating travel time distribu-
tions. Finally, an auxiliary neural network is incorporated to
stabilize the training process of DeepTTDE. The proposed
DeepTTDE is among the pioneering work on using deep
learning techniques to estimate travel time distributions. It
addresses a few critical challenges of TTDE, namely, data
uncertainty and network topology learning, and probability
distribution generation.

To evaluate the performance of DeepTTDE, we conduct
a series of comprehensive case studies on a large-scale
real-world dataset of vehicular trajectories. The comparison
with state-of-the-art baselines demonstrates the outstanding
performance of DeepTTDE, which achieves approximately
10% KL divergence reduction with much less real-time data
requirement. Additionally, we conduct a data sparsity test
to reveal the sensitivity of DeepTTDE on the availability of
real-time GPS trajectories, and an ablation test to investigate
the necessity of the constituting components of DeepTTDE.
Finally, a hyperparameter test proposes guidelines to deter-
mine the optimal neural network structure.

Future work can be divided into three parts. First, it
is possible to extend the proposed method to address a
wide range of data-driven intelligent transportation system
problems, e.g., bus arrival time estimation and vehicular
trajectory prediction. The merits of DeepTTDE can also
address the challenges of these problems. Second, existing
non-deep learning methods for TTDE may help design a
hybrid estimator based on ensemble learning, which can be
expected to inherit benefits from both parents. The existing
undirect graph relaxation of transportation networks may
also be replaced by directed graph convolution for better

performance. Last, future research may uncover superior
alternatives to DeepTTDE’s building blocks, such as the pre-
processes, which will help a wide range of traffic big data
analysis applications in general.

REFERENCES

[1] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi,
“Internet of things for smart cities,” IEEE Internet Things J., vol. 1,
no. 1, pp. 22–32, Feb. 2014.

[2] F. Y. Wang, “Parallel control and management for intelligent
transportation systems: concepts, architectures, and applications,”
IEEE Trans. Intell. Transp. Syst., vol. 11, no. 3, pp. 630–638, Sep.
2010.

[3] A. Perallos, U. Hernandez-Jayo, I. J. G. Zuazola, and E. Onieva,
Intelligent transport systems: technologies and applications. John
Wiley & Sons, 2015.

[4] A. Prokhorchuk, J. Dauwels, and P. Jaillet, “Estimating travel time
distributions by Bayesian network inference,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 5, pp. 1867–1876, 2020.

[5] Y. Shen, C. Jin, and J. Hua, “TTPNet: A neural network for
travel time prediction based on tensor decomposition and graph
embedding,” IEEE Transactions on Knowledge and Data Engineering,
2020, in press.

[6] S. Ma, Y. Zheng, and O. Wolfson, “Real-time city-scale taxi
ridesharing,” IEEE Transactions on Knowledge and Data Engineering,
vol. 27, no. 7, pp. 1782–1795, 2015.

[7] K. Tang, S. Chen, and Z. Liu, “Citywide spatial-temporal travel
time estimation using big and sparse trajectories,” IEEE Trans.
Intell. Transp. Syst., vol. 19, no. 12, pp. 4023–4034, 2018.

[8] P. Duan, G. Mao, J. Kang, and B. Huang, “Estimation of link travel
time distribution with limited traffic detectors,” IEEE Trans. Intell.
Transp. Syst., vol. 21, no. 9, pp. 3730–3743, 2020.

[9] S. Susilawati, M. A. P. Taylor, and S. V. C. Somenahalli, “Distribu-
tions of travel time variability on urban roads,” Journal of Advanced
Transportation, vol. 47, no. 8, pp. 720–736, 2013.

[10] E. K. M. Moylan and T. H. Rashidi, “Latent-segmentation, hazard-
based models of travel time,” IEEE Trans. Intell. Transp. Syst.,
vol. 18, no. 8, pp. 2174–2180, 2017.

[11] R. Zhang, S. Newman, M. Ortolani, and S. Silvestri, “A network
tomography approach for traffic monitoring in smart cities,” IEEE
Trans. Intell. Transp. Syst., vol. 19, no. 7, pp. 2268–2278, 2018.

[12] R. Li, G. Rose, and M. Sarvi, “Using automatic vehicle identifica-
tion data to gain insight into travel time variability and its causes,”
Transp. Res. Rec., vol. 1945, no. 1, pp. 24–32, 2006.

[13] W. Pu, “Analytic relationships between travel time reliability
measures,” Transp. Res. Rec., vol. 2254, no. 1, pp. 122–130, 2011.

[14] M. Rahmani, E. Jenelius, and H. N. Koutsopoulos, “Non-
parametric estimation of route travel time distributions from
low-frequency floating car data,” Transportation Research Part C:
Emerging Technologies, vol. 58, pp. 343–362, 2015.

[15] D. Delling, A. Goldberg, M. Muller-Hannemann, T. Pajor,
P. Sanders, D. Wagner, and R. Werneck, “Route planning in
transportation networks,” Microsoft Research, Tech. Rep. MSR-
TR-2014-4, January 2014.

[16] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, 2016.

[17] H. Wang and D.-Y. Yeung, “Towards bayesian deep learning:
a framework and some existing methods,” IEEE Transactions on
Knowledge and Data Engineering, vol. 28, pp. 3395–3408, 2016.

[18] T. N. Kipf and M. Welling, “Semi-supervised classification with
graph convolutional networks,” in Proc. International Conference on
Learning Representations, Toulon, France, Apr. 2017.

[19] S. Wang, J. Cao, and P. Yu, “Deep learning for spatio-temporal
data mining: A survey,” IEEE Transactions on Knowledge and Data
Engineering, pp. 1–1, 2020.

[20] K. Zhang, N. Jia, L. Zheng, and Z. Liu, “A novel generative
adversarial network for estimation of trip travel time distribution
with trajectory data,” Transportation Research Part C: Emerging
Technologies, vol. 108, pp. 223–244, 2019.

[21] X. Zhang and J. A. Rice, “Short-term travel time prediction,”
Transportation Research Part C: Emerging Technologies, vol. 11, no. 3,
pp. 187–210, 2003, traffic Detection and Estimation.

[22] C.-H. Wu, J.-M. Ho, and D. T. Lee, “Travel-time prediction with
support vector regression,” IEEE Trans. Intell. Transp. Syst., vol. 5,
no. 4, pp. 276–281, 2004.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2021.3117986, IEEE
Transactions on Knowledge and Data Engineering

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 13

[23] F. Zheng and H. van Zuylen, “Urban link travel time estimation
based on sparse probe vehicle data,” Transportation Research Part
C: Emerging Technologies, vol. 31, pp. 145–157, 2013.

[24] B. Yang, C. Guo, and C. S. Jensen, “Travel cost inference from
sparse, spatio temporally correlated time series using markov
models,” Proc. VLDB Endow., vol. 6, no. 9, pp. 769–780, Jul. 2013.

[25] Y. Guessous, M. Aron, N. Bhouri, and S. Cohen, “Estimating travel
time distribution under different traffic conditions,” Transportation
Research Procedia, vol. 3, pp. 339–348, 2014.

[26] Q. Yang, G. Wu, K. Boriboonsomsin, and M. Barth, “A novel arte-
rial travel time distribution estimation model and its application to
energy/emissions estimation,” Journal of Intelligent Transportation
Systems, vol. 22, no. 4, pp. 325–337, 2018.

[27] K. Wan and A. L. Kornhauser, “Link-data-based approximation
of path travel time distribution with gaussian copula estimated
through lasso,” in Proc. Transportation Research Board 89th Annual
Meeting, Washington DC, Jan. 2010.

[28] Y. Yu, M. Chen, H. Qi, and D. Wang, “Copula-based travel
time distribution estimation considering channelization section
spillover,” IEEE Access, vol. 8, pp. 32 850–32 861, 2020.

[29] C. Shi, B. Y. Chen, and Q. Li, “Estimation of travel time distri-
butions in urban road networks using low-frequency floating car
data,” ISPRS International Journal of Geo-Information, vol. 6, no. 8,
2017.

[30] M. Ramezani and N. Geroliminis, “On the estimation of arterial
route travel time distribution with Markov chains,” Transportation
Research Part B: Methodological, vol. 46, no. 10, pp. 1576–1590, 2012.

[31] T. Hunter, R. Herring, P. Abbeel, and A. M. Bayen, “Path and
travel time inference from GPS probe vehicle data,” in Proc. Neural
Information Processing Systems foundation, Vancouver, Canada, Dec.
2009.

[32] X. Li, G. Cong, A. Sun, and Y. Cheng, “Learning travel time
distributions with deep generative model,” in Proc. The World Wide
Web Conference, 2019, pp. 1017–1027.

[33] H. Yuan, G. Li, Z. Bao, and L. Feng, “Effective travel time esti-
mation: When historical trajectories over road networks matter,”
in Proc. ACM SIGMOD International Conference on Management of
Data, 2020, pp. 2135–2149.

[34] K. Guo, Y. Hu, Z. Qian, H. Liu, K. Zhang, Y. Sun, J. Gao, and B. Yin,
“Optimized graph convolution recurrent neural network for traffic
prediction,” IEEE Transactions on Intelligent Transportation Systems,
pp. 1–12, 2020.

[35] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A
comprehensive survey on graph neural networks,” IEEE Trans.
Neural Netw. Learn. Syst., pp. 1–21, 2020.

[36] C. Blundell, J. Cornebise, K. Kavukcuoglu, and D. Wierstra,
“Weight uncertainty in neural networks,” in Proc. International
Conference on Machine Learning, 2015, p. 1613–1622.

[37] J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G. Sun, “An interactive-
voting based map matching algorithm,” in International Conference
on Mobile Data Management, Kansas City, MO, May 2010, pp. 43–52.

[38] R. Das and S. Winter, “Automated urban travel interpretation: a
bottom-up approach for trajectory segmentation,” Sensors, vol. 16,
no. 11, p. 1962, Nov 2016.

[39] C. Y. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and
P. Jaillet, “Online map-matching based on hidden Markov model
for real-time traffic sensing applications,” in IEEE International
Conference on Intelligent Transportation Systems, Anchorage, AK,
Sep. 2012, pp. 776–781.

[40] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional
neural networks on graphs with fast localized spectral filter-
ing,” in Proc. Advances in Neural Information Processing Systems,
Barcelona, Spain, Dec. 2016.

[41] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks
and locally connected networks on graphs,” in Proc. International
Conference on Learning Representations, Banff, Canada, Apr. 2014.

[42] R. Bassett and J. Deride, “Maximum a posteriori estimators
as a limit of Bayes estimators,” 2016, arXiv:1611.05917
[math.ST].

[43] D. J. C. MacKay, “Bayesian methods for adaptive models,” Ph.D.
dissertation, California Institute of Technology, 1992.

[44] M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic
variational inference,” Journal of Machine Learning Research, vol. 14,
no. 4, pp. 1303–1347, 2013.

[45] M. Sun, T. Zhang, Y. Wang, G. Strbac, and C. Kang, “Using
Bayesian deep learning to capture uncertainty for residential net

load forecasting,” IEEE Trans. Power Syst., vol. 35, no. 1, pp. 188–
201, 2020.

[46] Y. Gal, “Uncertainty in deep learning,” Ph.D. dissertation, Cam-
bridge, 2016.

[47] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,”
in Proc. International Conference on Learning Representations, Banff,
Canada, Apr. 2014.

[48] A. Graves, “Practical variational inference for neural networks,”
in Proc. International Conference on Neural Information Processing
Systems, Red Hook, NY, USA, 2011, p. 2348–2356.

[49] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
nets,” in Proc. Advances in Neural Information Processing Systems,
2014, pp. 2672–2680.

[50] A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sen-
gupta, and A. A. Bharath, “Generative adversarial networks: an
overview,” IEEE Signal Process. Mag., vol. 35, no. 1, pp. 53–65, Jan.
2018.

[51] K. Wang, C. Gou, Y. Duan, Y. Lin, X. Zheng, and F. Y. Wang,
“Generative adversarial networks: introduction and outlook,”
IEEE/CAA J. Autom. Sinica, vol. 4, no. 4, pp. 588–598, 2017.

[52] D. P. Kingma and J. Ba, “Adam: a method for stochastic optimiza-
tion,” in Proc. International Conference on Learning Representations,
San Diego, CA, Dec. 2015.

[53] R. Peharz, A. Vergari, K. Stelzner, A. Molina, X. Shao, M. Trapp,
K. Kersting, and Z. Ghahramani, “Random sum-product net-
works: A simple and effective approach to probabilistic deep
learning,” in Proc. Uncertainty in Artificial Intelligence Conference,
ser. Proceedings of Machine Learning Research, vol. 115, Jul. 2020,
pp. 334–344.

