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Abstract—In the evolving field of urban development, precise traffic prediction is essential for optimizing traffic and mitigating
congestion. While traditional graph learning-based models effectively exploit complex spatial-temporal correlations, their reliance on
trivially generated graph structures or deeply intertwined adjacency learning without supervised loss significantly impedes their
efficiency. This paper presents Contrastive Learning of spatial-tEmporal trAffic data Representations (CLEAR) framework, a
comprehensive approach to spatial-temporal traffic data representation learning aimed at enhancing the accuracy of traffic predictions.
Employing self-supervised contrastive learning, CLEAR strategically extracts discriminative embeddings from both traffic time-series
and graph-structured data. The framework applies weak and strong data augmentations to facilitate subsequent exploitations of
intrinsic spatial-temporal correlations that are critical for accurate prediction. Additionally, CLEAR incorporates advanced
representation learning models that transmute these dynamics into compact, semantic-rich embeddings, thereby elevating downstream
models’ prediction accuracy. By integrating with existing traffic predictors, CLEAR boosts predicting performance and accelerates the
training process by effectively decoupling adjacency learning from correlation learning. Comprehensive experiments validate that
CLEAR can robustly enhance the capabilities of existing graph learning-based traffic predictors and provide superior traffic predictions
with a straightforward representation decoder. This investigation highlights the potential of contrastive representation learning in
developing robust traffic data representations for traffic prediction.

Index Terms—Traffic prediction, spatial-temporal data, contrastive learning, representation learning, self-supervised learning.
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1 INTRODUCTION

IN THE EVER-EVOLVING landscape of urban development
and mobility management, the analysis and prediction of

traffic data play essential roles [1], [2]. Accurate traffic pre-
dictions allow city planners, traffic management systems,
and navigation services to anticipate and mitigate traffic
issues, thereby enhancing urban mobility [3]. By leveraging
historical and real-time traffic data, predictive models can
forecast traffic dynamics, enabling online monitoring of
the transportation system and proactive measures to traffic
management [4].

In recent years, graph learning-based traffic predictors
have emerged as a dominant approach in the field of traffic
data analysis [2]. These models utilize the natural graph
structure of transportation networks, where intersections
and road segments are represented as nodes and edges,
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respectively. The strength of graph-based models lies in
their ability to capture the complex spatial-temporal depen-
dencies between these nodes, facilitating more accurate and
granular traffic predictions. By integrating techniques such
as Graph Convolutional Network (GCN) [5], these models
can effectively process and learn from the vast amounts
of spatial-temporal data generated by traffic systems, thus
significantly enhancing traffic prediction accuracy [6].

Despite their advantages, graph learning-based traffic
predictors face significant challenges that impede their effi-
cacy. The first major challenge arises from the conventional
method of constructing graph node connectivity. Typically,
these graphs are formed based on geographic distances
or traffic connectivity, ignoring the contextual relationships
between nodes or the temporal dynamics of traffic flow [7].
Static topology graphs do not reflect the real-time, dynamic
nature of traffic, which can vary significantly due to various
time-dependent factors such as peak-valley flows [8]. There
exists research on capturing dynamic spatial correlations
in spatiotemporal data by using a learnt 3-D tensor [9].
Nonetheless, the number of additional trainable parameters
(e.g., the learnable adjacency matrix requires approx. 120M
parameters for 1000-node 1-hour lookback forecast) may
overwhelm the model training process.

The second challenge pertains to the strong coupling
of adjacency and data correlation learnings during model
training process used in these models. Except for static
adjacency matrices, there are other traffic predictors utiliz-
ing one or more learnable matrices to adaptively learn the
adjacency relationships between nodes [10]. However, this
method couples the learning of adjacency information with
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that of the intrinsic data correlation, leading to a complex bi-
level optimization problem. Such complexity increases the
computational intensity of the training process, requesting
notably more data and computation to achieve optimal
performance according to the scaling law [11]. What makes
the situation worse is that the former typically does not have
supervised loss information to facilitate a guided search
[12]. The complexity not only makes the training process
more challenging but also increases the risk of overfitting
or underfitting, thereby potentially reducing the model’s
overall effectiveness and adaptability to new data or envi-
ronments [13].

To bridge the research gap, we propose a novel
CLEAR framework (Contrastive Learning of spatial-
tEmporal trAffic data Representations) specifically designed
to address the aforementioned challenges in traffic pre-
diction. CLEAR utilizes the power of self-supervised con-
trastive learning [14]–[16] to extract discriminative embed-
dings from both traffic time-series and graph-structured
data. The core principle of CLEAR revolves around cap-
turing intrinsic spatial and temporal correlations inherent
in traffic data, leveraging these learned representations for
accurate traffic prediction, and facilitating seamless integra-
tion with existing graph learning-based traffic predictors.
CLEAR employs a strategy of using weak and strong data
augmentation techniques to facilitate the contrastive rep-
resentation learning process, which enhances the model’s
ability to understand diverse traffic patterns and respond to
dynamic changes in the network [17]. This approach allows
CLEAR to dynamically generate and update adjacency in-
formation that reflects the real-time contextual relationships
and connectivity changes over time, effectively addressing
the first challenge.

Moreover, by learning robust representations that en-
code essential traffic information and substituting the input
data and/or internal modules, CLEAR greatly simplifies the
training process and difficulty of existing graph learning-
based predictors. Principally, CLEAR decouples the adja-
cency learning from data correlation, thus mitigating the bi-
level optimization complexity associated with these models.
The training of integrated models becomes more straight-
forward as CLEAR eliminates the need for additional rep-
resentation extraction steps during model training [18]. By
incorporating these representations, existing predictors can
also benefit from the rich semantic information captured
through self-supervised contrastive learning, thereby en-
hancing their ability to model complex spatial and temporal
dependencies within traffic data, directly tackling the sec-
ond challenge.

The contributions of this paper are multifaceted:
• Design of the CLEAR Framework: We introduce CLEAR,

a novel learning framework that utilizes contrastive learn-
ing to extract detailed and discriminative representations
from spatial-temporal traffic data. This framework is de-
signed to capture intrinsic correlations within traffic data
to develop semantic-rich data representations for down-
stream applications, e.g., traffic prediction.

• Data Augmentation Strategies: We develop specialized
data augmentation strategies that involve weak and
strong manipulation techniques. These strategies are criti-
cal for enriching the training data and enabling the model

to learn robust features from diverse traffic patterns,
thereby improving the generalizability of the learned
models.

• Representation Learning Models: We devises compre-
hensive representation learning models for both time-
series and graph-structured traffic data. These models are
capable of encoding crucial traffic dynamics into compact,
information-rich embeddings, which are essential for ac-
curately predicting traffic conditions.

• Traffic Predictor Based on Representations: We propose
a simple-yet-effective traffic predictor that benefits from
the representations learned by CLEAR. This predictor uti-
lizes the embeddings to predict future traffic conditions,
demonstrating how learned representations can achieve
accurate traffic predictions.

• Bootstrapping Graph Learning-Based Predictors: We
present novel bootstrapping techniques that integrate
CLEAR with existing graph learning-based predictors.
These techniques leverage the rich semantic embeddings
from CLEAR to bootstrap existing traffic prediction mod-
els for performance improvements.

The remainder of this paper is structured as follows:
Section 2 reviews related work in graph learning-based
traffic predictors and contrastive representation learning.
Section 3 outlines the preliminary definitions and problem
formulation specific to this study. Section 4 details the
CLEAR framework, including our proposed data augmen-
tation strategies and representation learning models, and
discusses the integration of CLEAR with existing graph
learning-based predictors. Section 5 describes the experi-
mental setup and presents a comprehensive evaluation of
CLEAR’s performance across various datasets. Section 6
concludes the paper, summarizing our contributions and
suggesting avenues for future research.

2 RELATED WORK

In this section, we briefly review the related work on graph
learning-based traffic predictors and contrastive representa-
tion learning. The audience are referred to [6], [19]–[21] for
more thorough discussions and analyses.

2.1 Graph learning-based Traffic Predictors

Graph deep learning has emerged as a transformative ap-
proach in traffic prediction, utilizing the rich spatial inter-
connections within traffic systems to significantly enhance
prediction accuracy [6]. This evolution from traditional
time-series models to complex graph-based approaches has
catalyzed the development of more sophisticated predictive
tools, capable of understanding the intricate dynamics of
traffic flow that are critical for accurate real-time traffic
prediction. Given the extensive body of related work in this
field, this section focuses on a few pivotal models due to
page limits.

One of the pioneering models in this domain is Graph
WaveNet [10], which ingeniously combines graph neu-
ral networks with WaveNet’s temporal convolutional ap-
proach. This model is designed to capture spatial depen-
dencies through graph convolutions while utilizing di-
lated causal convolutions to handle temporal sequences
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efficiently. By integrating these two mechanisms, Graph
WaveNet addresses both spatial and temporal aspects of
traffic data, leading to improved accuracy in short-term
traffic prediction. Its ability to model dynamic spatial struc-
tures without predefined adjacency matrices sets it apart,
allowing it to adapt to various traffic scenarios and predict
potential congestions with higher precision.

Another exemplary model is the Dynamic Graph Con-
volutional Recurrent Network (DGCRN) [22], which in-
troduces an innovative approach to traffic prediction by
addressing the dynamic nature of road network correla-
tions. Unlike static models, DGCRN uses hyper-networks
to capture dynamic characteristics from node attributes,
updating the parameters of its filters at each time step
to reflect ongoing changes. This allows for the creation of
a dynamic graph that integrates with a pre-defined static
graph, offering a more accurate representation of real-time
traffic conditions.

Recently, the introduction of Transformers in traffic
prediction like the Spatio-Temporal Adaptive Embedding
Transformer (STAEformer) has brought new dimensions to
this field [23]. The STAEformer leverages the Transformer
architecture known for its effectiveness in natural language
processing to the realm of traffic prediction. It utilizes a
novel spatio-temporal adaptive embedding that enhances
the model’s ability to capture complex spatio-temporal
relationships. STAEformer highlights the effectiveness of
combining advanced embedding techniques with the self-
attention mechanism of transformers, providing a powerful
tool for traffic prediction that surpasses many traditional
and graph-based methods.

Despite these advancements, the field of graph deep
learning for traffic prediction faces several challenges. The
(semi-)static nature of many graph constructions does not
reflect the dynamic changes in real-world traffic conditions
over time. Further, the computational intensity of these
models, especially those based on transformers, poses dif-
ficulties for efficient model training on large-scale networks.

2.2 Contrastive Representation Learning

Contrastive representation learning develops an embedding
space where similar instances are grouped together and
dissimilar ones are separated. This approach is employed
across various fields including natural language processing,
computer vision, and time-series analysis. InfoNCE loss
[24], SimCLR [15], and MoCo [25] are among the general
and classical contrastive representation learning models that
utilize pairs of positive and negative examples to refine this
space, achieving robust results and setting the foundation
for more sophisticated methods.

While contrastive representation learning for traffic data
is relatively scarce, recent years have witnessed advance-
ments on contrastive time-series representation learning.
For example, the Time-Series representation learning frame-
work via Temporal and Contextual Contrasting (TS-TCC)
represents a significant advancement in exploiting unla-
beled time-series data [26]. TS-TCC utilizes dual view aug-
mentations to transform raw time-series into correlated
views, employing a novel temporal contrasting module that
challenges the model with a cross-view prediction task.

Another innovative approach is the Temporal Neighbor-
hood Coding (TNC) [27], which leverages the inherent local
smoothness of time series to establish temporally stationary
neighborhoods. Further, the STEP algorithm introduces a
pre-training model to spatial-temporal graph neural net-
works [18], utilizing long-term historical data to enhance
the contextual understanding essential for accurate multi-
variate time-series forecasting. Additionally, the Contrastive
Seasonal-Trend representation learning framework (CoST)
innovatively applies contrastive learning to disentangle sea-
sonal and trend components of time series data [28]. By
incorporating both time and frequency domain contrastive
losses, CoST effectively learns discriminative features that
significantly outperform traditional methods on multivari-
ate time series prediction, underscoring its robustness across
different neural architectures and regression models.

While the aforementioned representation learning ap-
proaches achieve satisfactory results in general time-series
tasks, their capability of bootstrapping arbitrary graph
learning-based traffic preditors generally remains unknown.
This is among the primary objectives of CLEAR.

When confining the graph-structured data into grid-
based presentations, self-supervised learning approaches
have been applied to learn spatial-temporal representations.
Notable past efforts include [29] and [30]. In the former, the
proposed ST-SSL framework utilizes an integrated module
with temporal and spatial convolutions to encode infor-
mation across space and time. It employs adaptive aug-
mentation on traffic flow data and incorporates two self-
supervised learning auxiliary tasks to enhance the main traf-
fic prediction task with spatial and temporal heterogeneity
awareness. Further, the method in [30] introduces a con-
trastive self-supervision approach to predict fine-grained
urban flows by leveraging correlated spatial and temporal
patterns. It employs self-supervised tasks to extract high-
level representations from flow data and utilizes a fine-
tuning network combined with three pre-trained encoder
networks for enhanced performance. While both methods
achieved promising results in their respective tasks, they
are limited to grid-based traffic data and require non-trivial
effort to adapt to graph-structured traffic data.

3 PRELIMINARIES

In this section, we first introduce the definitions and nota-
tions to be used in this paper. Then, we define the spatial-
temporal traffic data representation learning and prediction
problem.

3.1 Definitions
Definition 1 (Traffic Network). In this work, the traffic
network is conceptualized as a directed graph G(V, E),
where V represents the set of traffic data sensing locations,
such as induction loops and surveillance cameras. The nodal
connectivity, E , is typically defined by geographical adja-
cency, which informs the creation of the adjacency matrix
A. We contend that this conventional approach to defining E
and A fails to adequately capture the complexities of traffic
dynamics. To address this, we advocate for the use of repre-
sentation learning to develop semantically rich embeddings
that enhance our construction of adjacency information.
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Definition 2 (Spatial-temporal Traffic Data). A set of spatial-
temporal traffic data comprises multiple time-dependent
variables captured from traffic sensors distributed across
V . This data is represented as X = {xi,t} within a real
number space R|V|×|T |×F , where T indicates the discrete
time horizon of the examined traffic data, and F denotes
the types of data observed, such as speed and flow. Notably,
the traffic datasets used in subsequent experiments are
univariate (i.e., F = 1); thus, we omit this dimension in
subsequent discussions for clarity.

3.2 Problem Formulation

Definition 3 (Traffic Data Representation Learning). The ob-
jective of representation learning in traffic data analysis is to
identify low-dimensional representations for the time-series
data of each traffic sensor and for the graph-structured data
encompassing all sensors at any given time. Specifically, an
embedding function ω : RT → RD maps the past T traffic
observations at node i ∈ V into a D-dimensional vector
in a compact latent space, where D is significantly less than
|V|×|T |, optimizing for computational efficiency and model
simplicity. Another embedding function ϑ : R|V| → RD

translates all traffic observations across V at any arbitrary
point in time into a similarly concise D-dimensional em-
bedding. These two embedding functions are crafted to
encapsulate the most informative and compact features of
both traffic time-series and graph data.

Definition 4 (Traffic Prediction). Traffic prediction aims
to forecast H-dimensional future traffic conditions based
on X by projecting the next L time steps of traffic data
across all sensors, denoted by X̂ ∈ R|V|×L×H . Drawing
parallels to X, for the traffic datasets focused on speed and
flow, predictions are typically univariate, thus H = 1 is
maintained throughout subsequent experiments to simplify
the notations.

Definition 5 (Traffic Predictor Bootstrapping). Current
graph-based traffic predictors leverage spatial-temporal cor-
relations in diverse ways. Traffic predictor bootstrapping
centers on utilizing representations derived from the well-
trained embedding functions ω and ϑ. These representations
replace certain input components and/or internal modules
within the predictors, thereby enhancing prediction accu-
racy and streamlining model training.

4 CONTRASTIVE LEARNING OF SPATIAL-
TEMPORAL TRAFFIC DATA REPRESENTATIONS

In this section, we present CLEAR (Contrastive Learning
of spatial-tEmporal trAffic data Representations), a novel
learning framework designed to extract rich representations
of spatial and temporal traffic data. The design principle
of CLEAR revolves around capturing intrinsic spatial and
temporal correlations inherent in traffic data, leveraging
these learned representations for accurate traffic prediction,
and facilitating seamless integration with existing graph
learning-based traffic predictors.

4.1 Overview
Fig. 1 presents an overview to the architecture of the pro-
posed CLEAR framework. CLEAR employs self-supervised
contrastive learning to extract discriminative embeddings
from both traffic time-series and graph data, following the
SimCLR contrastive training architecture [15]. By applying
composition strategies of weak and strong data augmenta-
tion strategies, CLEAR learns robust representations that en-
code essential information regarding traffic flow, congestion
patterns, and anomaly detection, enabling comprehensive
analysis and modeling of transportation systems. For time-
series representation, CLEAR utilizes a series of Transformer
encoders to capture long-range dependencies and develop
latent representations. Similarly, for spatial data, CLEAR
employs a graph-embedded Transformer encoder architec-
ture to process graph-structured data and extract spatial
representations. Both are then fed into a traffic predicting
decoder to generate predictions for future time steps.

Further, the CLEAR-learned representations can be
leveraged to enhance or replace the spatial and temporal
correlation learning components of existing graph-based
predictors, thus seamlessly integrated with these predictors
for performance improvements. By incorporating these rep-
resentations, existing predictors can benefit from the rich
semantic information captured through self-supervised con-
trastive learning, thereby enhancing their ability to model
complex spatial and temporal dependencies within traf-
fic data. The training of integrated models becomes more
straightforward as CLEAR eliminates the need for addi-
tional representation extraction steps during model training.
Note that when integrating CLEAR with existing predic-
tors, only the Transformer-powered time-series and graph
data encoders are adopted. The contrastive learning com-
ponents, namely, the data augmentation strategies and the
contrastive loss, are used to train the encoder parameters.

In the following sub-sections, we delve into the method-
ology of CLEAR, detailing the process of representation
learning (Sections 4.2 and 4.3), its direct application in traffic
prediction (Section 4.4), and its integration with existing
traffic predictors equipped with various spatial-temporal
correlation mining strategies (Section 4.5).

4.2 Traffic Time-series Representation Learning
Understanding the temporal dynamics within traffic data
is essential for its comprehensive analysis and effective
modeling. These temporal dynamics encapsulate crucial in-
formation regarding the evolution of traffic flow, congestion
patterns, and anomaly detection, which are fundamental
for devising efficient transportation strategies and intelli-
gent traffic management systems. Additionally, each traffic
sensor possesses a time-series, which, in the context of
transportation graph G, can be regarded as its nodal data
feature. Node representations can be thereupon learnt from
the corresponding time-series by adopting a time-series
encoder fT(·), and subsequently used to explore the spatial
correlation among nodes across the graph.

CLEAR utilizes self-supervised contrastive learning to
construct the discriminative embedding space for traffic
time-series. Contrastive learning operates on the principle of
maximizing agreement between similar instances (positive
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Traffic Time-series
Encoder

Traffic Graph Data
Encoder

Traffic Time-series
Feature Projection

Traffic Graph Data
Feature Projection

T-S. Weak Aug.

T-S. Strong Aug.

G. D. Weak Aug.

G. D. Strong Aug.

Augmentations Representations Projections

Maximize
Similarity

Time-series

Graph Data
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T-S. Encoder

G. D. Encoder

Traffic Prediction
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Graph Learning-
based Predictor
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CLEAR Representation Learning
CLEAR Predictor CLEAR Bootstrapping

Fig. 1. Overall architecture of the proposed CLEAR framework. In the illustration, “T-S.” and “G. D.” denotes “time-series” and “graph data”,
respectively. “Feat. Proj.” means “Feature Projection”.

samples) while minimizing agreement between dissimilar
ones (negative samples) within a latent space. At an arbi-
trary time t, each node i ∈ V has a historical traffic data
feature xi,t = {xi,t, xi,t−1, . . . , xi,t−T+1} ∈ RT . We employ
the approach of applying weak and strong augmentations to
this original time-series and perform cross-view contrastive
learning to learn robust nodal representations. Particularly,
the weak augmentation is achieved by a moving-average-
and-jitter strategy, where the moving average of length M
is calculated on xi,t and the result is further perturbed by
Gaussian noise N (0, σ2):

x̃w
i,t = MA(xi,t;M) +N (0, σ2), (1)

where MA(·;M) is the moving-average function with
padding. Further, the strong augmentation is done by a
probablistic-swap-and-jitter strategy for a more significant
perturbation to the time-series. We first divide the original
time-series xi,t into chunks xi,t[c] of length C . Then, we
randomly select half of all chunks to form a set C and apply
a random permutation function π(·) over the set. The result
is subsequently perturbed by Gaussian noise N (0, σ2) to
construct the strongly augmented time-series:

x̃s
i,t[c] =

{
xi,t[π(c)] +N (0, σ2) if c ∈ C
xi,t[c] +N (0, σ2) otherwise

. (2)

As empirically demonstrated in [15], applying composi-
tions of data augmentation operations (principle of Eqs. (1)
and (2)) is critical for effective representation learning. Both
augmented time-series are then passed to the time-series
encoder fT to calculate their latent space embeddings.

As depicted in Fig. 3, encoder fT of CLEAR utilizes
the Transformer encoder architecture to capture long-range
time-series dependencies from the augmented data. fT

starts with an input 1 × 1 convolution layer to first project
the traffic time-series, typically univariate or in low di-
mensions, into a higher-dimensional context space, which
is subsequently superimposed with a learnable positional
encoding p. As the semantics of time-series are generally
more straightforward than languages for which Transformer
was originally designed for, we apply three Transformer
encoders over the projected input:

h
(0)
i,t = Conv1×1(x̃i,t) + p, (3a)

(a) Example source traffic speed time-series of 24 h.

(b) Weak augmentation. Thick blue curve is the augmented data. Thin
red curve is the pre-noisification data.

(c) Strong augmentation. Thick blue curve is the augmented data. Thin
red curve is the pre-noisification data. Thin green segments are the
time-series chunks.

Fig. 2. An example of the source and augmented time-series.

h̃
(l)
i,t = MHA

(
BN(h

(l−1)
i,t )

)
+ h

(l−1)
i,t , 1 ≤ l ≤ 3, (3b)

h
(l)
i,t = MLP

(
BN(h̃

(l)
i,t)

)
+ h̃

(l)
i,t , 1 ≤ l ≤ 3, (3c)

hi,t = FC
(
MeanPool(h

(3)
i,t )

)
, (3d)

where Conv1×1(·) is the 1 × 1 convolution, MHA(·) is
the multi-headed self-attention1, MLP(·) is the multi-layer
perceptron with two fully-connected layers of 2048 neurons
and a non-linear ReLU activation function, BN(·) is the
batch normalization operation, FC(·) is the fully-connected
layer, and MeanPool(·) is the mean pooling operation,
respectively. Notably, a learnable positional encoding is
adopted over the canonical sinosoidal ones in favor of the
former’s capability in maintaining time-series’ periodic fea-
ture and the better experimental performance to be demon-
strated in Section 5.5. Additionally, pre-norm residual links
are adopted to produce more stable gradient values during
model training [32]. The final hi,t ∈ RD is the learnt D-

1. Following [31], we adopt eight heads in each multi-headed self-
attention calculation.
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Linear

ReLU

Linear

Feature
Projection

Fig. 3. CLEAR time-series encoder.

dimensional representation of the input augmented time-
series x̃i,t ∈ {x̃w

i,t, x̃
s
i,t}.

Given an arbitrary t, there are in total |V| number of xi,t

samples in the dataset, leading to 2 × |V| augmented time-
series, weakly or strongly done. We use fT(x̃w

i,t) and fT(x̃s
i,t)

as a pair of positive samples, and the other augmented time-
series as negative samples. In order to further preserve the
semantic information in representations developed from fT,
we concatenate the encoder with a concluding time-series
feature projection head gT(·) before training the model with
contrastive loss, which can be accordingly formulated as
follows:

ℓT =
∑
i∈V

∑
t∈T

(
− log

exp
(
sim(zw

i,t, z
s
i,t)/τ

)∑k ̸=i
k∈V exp

(
sim(zw

i,t, z
s
k,t)/τ

)
− log

exp
(
sim(zs

i,t, z
w
i,t)/τ

)∑k ̸=i
k∈V exp

(
sim(zs

i,t, z
w
k,t)/τ

)), (4)

where sim(a,b) = aTb/∥a∥ · ∥b∥ is the cosine similarity
calculation, zi,t = gT(hi,t) = W(2) ReLU(W(1)hi,t), and τ
denotes a temperature parameter. Principally, each weakly
augmented time-series is contrastively tested against all
strongly augmented time-series, and vice versa. As the
contrastive loss in Eq. (4) forces the model to learn data
transformation-agnostic projections zi,t, information useful
for downstream traffic tasks may be removed in the process
[15]. The perceptron feature projection head gT(·) is intro-
duced to isolate this transformation-invariant training step
and maintain more context in hi,t. This hypothesis is empir-
ically verified in Section 5.5 by testing the performance of
including hi,t in Eq. (4), stand-alone or jointly.

4.3 Traffic Graph Data Representation Learning

The aforementioned time-series encoder fT(·) is not suffi-
cient in identifying the temporal correlation within traffic

Concat + Mean P.

Conv 1 × 1

Batch Norm.

Attention

BN + FC × 2

FC FC FC

Layer Norm.

Attention

FC FC FC

FC

Fig. 4. CLEAR graph data encoder. The feature projection shares the
same structure as that in Fig. 3 with the linear transformations replaced
by graph convolutions

data. Rather, it essentially embeds time-series corresponding
to traffic nodes in transportation networks, and the result
indeed illustrates the inter-nodal dependency, i.e., spatial
correlation. The missed is a graph data encoder fG(·) that
takes the traffic data at an arbitrary time to compute their
embeddings, so that multiple time instances can develop
their correlation with these numerical representations. Fur-
ther, such embeddings intrinsically capture the spatial de-
pendency among traffic nodes in the condensed represen-
tation without confined by explicit geographical adjacency
information, thereby dynamically exploits the spatial corre-
lation for traffic prediction. In CLEAR, we employ a con-
trastive learning-based representation learning paradigm to
establish the graph data encoder, aiming at projecting traffic
graph data into a semantic-rich embedding space.

Following the same contrastive sample augmentation
principle of spatial data representation learning, traffic data
feature ut = {xi,t | ∀i ∈ V} ∈ R|V| at an arbitrary time
t is augmented by a periodic-average-and-jitter strategy as
the weak one and a one-hop-average-and-jitter strategy as
the strong one. Particularly, the former first calculates the
average traffic data at t and that of the same time-of-day
and day-of-week in the last week (denoted by t − 1wk),
with a further Gaussian noise perturbation:

ũw
t = (ut + ut−1wk)/2 +N (0, σ2). (5)

The latter aggregates the values of one-hop neighboring
nodes for any arbitrary node, and use the Gaussian noise-
perturbed average value as the strongly augmented data:

ũs
t = {us

i,t | ∀i ∈ V}, (6a)

us
i,t =

∑
j∈V1(i;At)

xj,t/
∣∣V1

t (i;At)
∣∣+N (0, σ2), (6b)
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where V1
t (·;At) is the self-containing one-hop neighboring

function of an input node on the graph according to the ad-
jacency defined by At ∈ B|V|×|V|. When augmenting ut, we
propose to employ the previous spatial data representations
after feature projection zi,t to construct preliminary nodal
adjacency as follows

at,ij = sim(gT(fT(xi,t)), g
T(fT(xj,t))), (7a)

At[i, j] =

{
1 if at,ij is among top-λ in {at,ik | ∀k ∈ V}
0 otherwise

,

(7b)

instead of using geographical adjacency as defined in E .
Hypothetically, the projected representation embeds more
semantic information about traffic dynamics than the road
network connectivity and facilitates better data augmen-
tation on ut. We present empirical studies in Section 5.5
supporting this claim.

With the two augmented graph data samples (ũw
t and ũs

t

with adjacency At), we further adopt a variant of Trans-
former architecture to process the graph-structured data,
depicted in Fig. 4. Three encoder layers are adopted after
an input 1× 1 convolution layer for feature projection:

q
(0)
t = Conv1×1(ũt), (8a)

q̇
(l)
t = BN(q

(l−1)
t ), q̈

(l)
t = BN(Atq

(l−1)
t ), (8b)

q̄
(l)
t = MHA(q̇

(l)
t ) + q̇

(l)
t , 1 ≤ l ≤ 3, (8c)

q̃
(l)
t = MHA(q̄

(l)
t , q̈

(l)
t , q̈

(l)
t ) + q̄

(l)
t , 1 ≤ l ≤ 3, (8d)

q
(l)
t = MLP

(
BN(q̃

(l)
t )

)
+ q̃

(l)
t , 1 ≤ l ≤ 3, (8e)

qt = FC
(
MeanPool(q

(3)
t ∥Atq

(3)
t )

)
, (8f)

where we abuse the notation of MHA(·, ·, ·) to use the first
input as the query of multi-head self-attention and the latter
two as the key and value [31], respectively. Comparing
Eq. (8) with the standard Transformer encoder in Eq. (3),
we highlight the introduction of an additional inter-layer
attention in Eq. (8d). The model incorporates both intra-
level attention Eq. (8c) and inter-level attention Eq. (8d)
mechanisms to effectively capture dependencies and rela-
tionships within and across different levels of abstraction in
the input graph-structured. Intra-level attention facilitates
the exchange of information between nodes within the same
level of the graph hierarchy, enabling nodes to update their
embeddings based on their local neighborhoods. On the
other hand, inter-level attention allows nodes to exchange
information with neighboring nodes across different levels
of abstraction, facilitating the understanding of the global
graph structure. After the stacking encoders, the resulting
output q

(3)
t is passed to a two-layer graph pooling MLP

to generate the embedding. The model thereby efficiently
processes and learns complex relationships within the input
data, ultimately enabling it to generate rich representations.
The final qt ∈ RD is the learnt representation of the input
augmented graph data ũt ∈ {ũw

t , ũ
s
t}.

The contrastive loss of fG(·) follows a similar principle
of fT(·). Given a traffic dataset, there are |T | graph data

samples U = {ut | t ∈ T }. The loss is accordingly defined
as (c.f. Eq. (4)):

ℓG =
∑
t∈T

(
− log

exp
(
sim(vw

t ,v
s
t)/τ

)∑r ̸=t
r∈U exp

(
sim(vw

t ,v
s
r)/τ

)
− log

exp
(
sim(vs

t,v
w
t )/τ

)∑r ̸=t
r∈U exp

(
sim(vs

t,v
w
r )/τ

)), (9)

where vt = gG(qt) is the graph feature projection head with
two sequential graph convolution operations and a non-
linear ReLU in-between. By this design, CLEAR is capable
of adaptively capturing the dynamic spatial correlations
within traffic graph slices independently across time steps.
This flexibility allows the spatial correlation to be different
over time and relaxes the reliance on a fixed or predefined
spatial structure. Furthermore, the framework’s ability to
autonomously learn spatial relationships from data aligns
with the concept of adaptability seen in advanced traffic
prediction models like Graph WaveNet.

4.4 Traffic Prediction with Traffic Data Representations

In the previous sub-sections, we introduced two self-
supervised representation learning models for generating
task-agnostic traffic data embeddings. These representations
can be utilized in downstream traffic data mining tasks,
where traffic prediction is among the most prominent ones.
The objective of the task is to develop a prediction function
f : R|V|×T → R|V|×L that takes the historical traffic data as
input and develop those for the next L time instances.

Given the original traffic data X ∈ R|V|×|T | and xi,t ⊂
X,qt ⊂ X, CLEAR extracts the latent time-series and graph
data representations at current time t with data encoders

hi,t = fT(xi,t), qt = fG(ut), (10)

respectively. Subsequently, a traffic predicting decoder fF(·)
develops the predicted values. We follow the principle of
Graph Attention neTwork (GAT) [33] and devise to use the
nodal relationship defined by hi,t to aggregate traffic data
representations by graph convolution defined as follows2:

ℏℏℏi =
∑

j∈V1(i;At)

hT
i,thj,tW(hi,t∥qt), (11)

where W ∈ RD′×2D is a trainable weight matrix. Follow-
ing the graph convolution, fF(·) adopts two convolutional
layers with kernel sizes of 1 × D′ and 1 × 1 and a ReLU
activation in-between, and the final output channel number
is L. After decoding, the output matrix X̂ ∈ R|V|×L corre-
sponds to the L-step traffic prediction of each node in V .
The decoder is trained with mean absolute error between
the predicted X̂ and the ground truth:

ℓF =
∑
i∈V

∑
t∈T

L∑
∆=1

|x̂i,t+∆ − xi,t+∆|. (12)

2. The presented GAT-based model is among many possible choices
for the predictor. Simpler structures like MLP or more complex ones
like Transformer can also be adopted.
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4.5 Bootstrapping Existing Graph Learning-based Pre-
dictors

In addition to empowering downstream traffic data mining
tasks, the learned representations from CLEAR possess ver-
satility beyond standalone prediction models. These embed-
dings can also integrate with existing graph learning-based
traffic predictors, replacing or enhancing their spatial and
temporal correlation learning components. The merit lies on
a recognition that the integration of graph structure learning
and data correlation mining often presents a tightly coupled
scenario, where the learning task becomes a complex bilevel
optimization problem due to the absence of supervised
loss information for graph structure learning. This interplay
underscores the importance of devising strategies that ef-
fectively leverage learned representations to complement or
bootstrap existing graph-based predictors, decoupling the
adjacency matrix learning from the spatial-temporal data
prediction task. The former is outsourced and preprocessed
by the prepositional representation learning, so that the
predictors can focus on training the forecast model without
concerning on another learning task.

Current graph learning-based predictors can be broadly
categorized into four patterns based on how spatial-
temporal correlation is defined or mined. By examining
these patterns, we can effectively illustrate how the repre-
sentations learned by CLEAR can be integrated with and
enhance existing predictors. Each category represents a dis-
tinct strategy for capturing and exploiting spatial-temporal
correlations within traffic data, offering unique opportuni-
ties for integration with learned representations.

Category 1 (C1): Static adjacency matrix based on geo-
adjacency. Using a statically defined adjacency matrix based
on nodal distance for G is arguably the most straightforward
approach for integrating domain knowledge on the spatial
correlation. Example usages are presented in [34], [35]. For
this pattern, we can directly replace the original adjacency
matrix, commonly denoted by A, with At as defined in
Eq. (7) to score an intuitive-yet-effective performance im-
provement:

A← At, (13)

where the current timestamp of prediction is adopted as the
t in At.

C2: Adaptive adjacency matrix based on represen-
tation learning. Another commonly adopted strategy is
to employ two learnable node embedding matrices (e.g.,
E1 and E2 as in [10]), whose softmax-ed multiplication
softmax(ReLU(E1E

T
2)) is considered as the spatial depen-

dency weights Ãadp between pairs of nodes. For this pattern,
we can also intuitively replace the learnable weights by the
time-series representations hi,t learnt by CLEAR:

Ãadp ← softmax(ReLU(HtH
T
t )), (14)

where matrix Ht ∈ R|V|×D is constructed by stacking
hi,t,∀i ∈ V as rows.

C3: Spatial and temporal attention. Besides using an
adjacency matrix to capture the spatial data correlation,
attention mechanism is another approach to represent the
data dependency within either the spatial domain or the
temporal domain, or both. Typically, the attention values

are still derived from trainable nodal or temporal repre-
sentations, e.g., in [36], [37], which can be substituted by
CLEAR-generated ones:

ααα = {αi,j} = softmax(ReLU((HtW1)(HtW2)
T)), (15a)

βββ = {βt,τ} = softmax(ReLU((QW3)(QW4)
T)), (15b)

whereααα and βββ are the attention matrices between nodes and
between timestamps, respectively, and matrix Q ∈ R|T |×D

is constructed by stacking all qt of input timestamps as
rows.

C4: Spatial and temporal representation learning. There
are also graph learning-based traffic predictors that compre-
hensively utilize learnt spatial and temporal representations
for prediction, [23], [38] for examples. For such models,
we may directly utilize hi,t as the representation for node
i, qt as the representation for time t, and hi,t∥qt if the
representation for node i at time t is required, respectively.
One thing that may sounds counter-intuitive is that we uses
“time-series representation” hi,t for node embedding and
vice versa, yet the principle is grounded on the fact that each
node i corresponds to a hi,t at an arbitrary time t, making
it effectively representing the semantic context of a node,
i.e., node representation. The same applies for graph data
representation qt, which encapsulates context of all nodes
in the graph at time t into a dense numerical representation.

While the aforementioned bootstrapping methods apply
to a wide range of graph learning-based traffic predictors, it
is essential to acknowledge that these patterns may not ex-
haustively capture all strategies employed in the literature.
However, their underlying principles provide a foundation
upon which both existing and future graph learning-based
traffic predictors can be built. Each pattern offers unique
opportunities for leveraging learned representations to en-
hance predictor performance, demonstrating the adaptabil-
ity and versatility of the CLEAR framework in traffic data
analysis and prediction.

5 EXPERIMENTS

In this section, we present a series of comprehensive experi-
ments on four real-world datasets to show the effectiveness
of CLEAR on traffic prediction and bootstrapping other
graph learning-based predictors. We first introduce the
experimental configurations, including the datasets, base-
line methods, performance evaluation metrics, and imple-
mentation details of CLEAR. Subsequently, we answer the
following research questions (RQs) by demonstrating and
discussing the simulation results:

• RQ1: Can the traffic data representations learnt by CLEAR
provide outstanding traffic predicting accuracy compared
to state-of-the-art baselines?

• RQ2: Can CLEAR bootstrap existing graph learning-
based traffic predictors?

• RQ3: How does representations by CLEAR perform in
multi-step traffic prediction?

• RQ4: How does CLEAR improve model training effi-
ciency?

• RQ5: How do the implementation details of CLEAR affect
bootstrapping performance?
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TABLE 1
Statistical Information of Datasets

Dataset # Nodes # Samples Interval Year Span

Beijing 3126 21 600 5min 2022 2months

NI-SH 1830 47 495 5min 2019 5months

PeMS04 307 16 992 5min 2018 2months

METR-LA 207 34 272 5min 2012 4months

5.1 Experimental Setup

5.1.1 Datasets

In this work, we conduct experiments on four small-to-
large-scale traffic prediction datasets:
• Beijing is a traffic speed dataset collected by [39] from the

major roads in Beijing, China. The dataset contains speed
values of 3126 sensors from May 12, 2022 to July 25, 2022.
Traffic speed is recorded every five minutes.

• NI-SH is a traffic speed dataset collected by NavInfo from
selected roads in Shanghai, China. The dataset contains
speed values of 1830 sensors from January 2, 2019 to June
15, 2019. Traffic speed is recorded every five minutes.

• PeMS04 is a traffic flow dataset collected by California
Transportation Agencies Performance Measurement Sys-
tem in the Bay Area of United States. The dataset contains
flow volumes of 307 sensors from January 1, 2018 to
February 28, 2018. Traffic volume is recorded every five
minutes.

• METR-LA is a traffic speed dataset collected from the
loop-detectors on the Los Angeles County road network
of United States. The dataset contains flow volumes of
207 sensors from March 1, 2012 to June 27, 2012. Traffic
volume is recorded every five minutes.

All four datasets are collected by different agencies. Their
statistical information is summarized in Table 1. For a
fair comparison, we adopt the chronological 7/1/2 split to
generate the training, validation, and testing data. Bayesian
Gaussian CANDECOMP/PPARAFAC tensor decomposi-
tion model [40] is employed to interpolate the missing
values in all datasets. Z-score normalization is adopted to
improve the model training stability.

5.1.2 Baselines

We select a wealth of state-of-the-art traffic prediction base-
line methods in the following experiments:
• Historical Average (HA) predicts future traffic based

on the historical average traffic volume at each spatial-
temporal location.

• Vector Auto-Regression (VAR) models capture the de-
pendencies between multiple time series variables, mak-
ing predictions based on their own lagged values and the
lagged values of other variables in the system.

• Support Vector Regressor (SVR) utilizes training data
to estimate a regression function that generalizes well to
unseen data points.

• Autoregressive Integrated Moving Average (ARIMA) is
widely used for time-series prediction by modeling the
relationship between an observation and a number of
lagged observations and error terms.

• ASTGCN [35] proposes an attribute-augmented spa-
tiotemporal graph convolutional network to enhance
spatio-temporal accuracy in predicting traffic by integrat-
ing external factors as dynamic and static attributes into
the model through an attribute-augmented unit.

• STSGCN [34] captures localized spatial-temporal corre-
lations through synchronous modeling mechanisms and
accommodating heterogeneities with multiple modules
for different time periods.

• STGODE [41] captures spatial-temporal dynamics
through tensor-based ordinary differential equations, fa-
cilitating deeper networks and synchronous utilization
of spatial-temporal features, while employing a well-
designed temporal dilated convolution structure.

• Graph WaveNet [10] introduces a graph neural network
architecture designed for spatial-temporal graph mod-
eling, effectively capturing hidden spatial dependencies
and handling long sequences with a stacked dilated 1D
convolution component.

• AGCRN [42] proposes adaptive modules, including a
node adaptive parameter learning one and data adaptive
graph generation one,to enhance graph convolutional net-
work capabilities for capturing fine-grained spatial and
temporal correlations in traffic series automatically.

• GMAN [37] utilizes an encoder-decoder architecture with
spatio-temporal attention blocks to model the impact of
spatio-temporal factors on traffic conditions.

• STWave+ [36] mitigates distribution shift with a
disentangle-fusion framework, employing a dual-channel
spatio-temporal network to model trends and events sep-
arately, and incorporating self-supervised learning and
multi-scale graph wavelet positional encoding for efficient
dynamic spatial correlation modeling.

• STAEFormer [43] introduces a spatio-temporal adaptive
embedding, enhancing vanilla transformers for superior
performance in traffic prediction by effectively capturing
intrinsic spatio-temporal relations and chronological in-
formation in traffic time series.

• GMSDR [38] introduces a multi-step dependency relation
scheme in recurrent neural networks, seamlessly inte-
grating with graph-based neural networks for spatial-
temporal prediction.

• DGCRN [22] utilizes hyper-networks to extract dynamic
characteristics from node attributes, generating dynamic
graphs at each time step and integrating them with pre-
defined static graphs, with an efficient training strategy.

Among the baselines, HA, VAR, SVR, and ARIMA are sta-
tistical methods, while all others are state-of-the-art graph
learning-based traffic predictors.

5.1.3 Performance Metrics

We evaluate the performance of CLEAR and all baseline
methods by three widely-adopted metrics in traffic pre-
diction [10], [23], [36], [37], namely, Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Mean Abso-
lute Percentage Error (MAPE).

5.1.4 Implementation Details

We set the prediction horizon L to 12. The length of time-
series in generating their corresponding representation T
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Fig. 5. Performance comparison of baselines, CLEAR-bootstrapped baselines, and the CLEAR Predictor.

TABLE 2
Numerical Results of Best-Performing Baselines, CLEAR-bootstrapped baselines, and the CLEAR Predictor

Method
Beijing NI-SH PeMS04 METR-LA

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Graph WaveNet 3.578 6.213 13.798% 2.720 4.648 9.360% 18.759 30.341 12.943% 2.688 5.176 6.954%

↪→ + CLEAR 3.207 5.617 12.353% 2.443 4.144 8.424% 18.118 29.219 12.594% 2.567 5.012 6.650%

STWave+ 3.143 5.449 12.110% 2.695 4.588 9.288% 18.457 29.925 12.722% 2.609 5.022 6.740%

↪→ + CLEAR 2.837 4.912 10.945% 2.440 4.156 8.413% 17.740 28.636 12.327% 2.545 4.923 6.569%

STAEFormer 3.108 5.360 11.985% 2.640 4.498 9.091% 18.215 29.410 12.589% 2.707 5.215 7.004%

↪→ + CLEAR 2.968 5.133 11.437% 2.578 4.370 8.880% 18.015 29.295 12.532% 2.685 5.204 6.923%

DGCRN 3.513 6.102 13.539% 2.780 4.697 9.581% 18.606 30.092 12.965% 2.602 5.025 6.706%

↪→ + CLEAR 3.349 5.849 12.914% 2.691 4.594 9.267% 18.466 29.926 12.806% 2.569 4.925 6.631%

CLEAR Predictor 3.220 5.620 12.407% 2.687 4.534 9.271% 18.624 29.965 12.903% 2.631 5.063 6.794%

is set to the number of samples in one day, i.e., 288 at
a 5min sampling interval. The dimensionality D of learnt
traffic data representations (hi,t and qt) is 256. The moving-
average horizon M in Eq. (1) is set to 12. The probablistic-
swap length C in Eq. (2) is set to 2 h. The nodal adjacency
threshold λ in Eq. (7) is empirically set to the total number
of edges in each dataset’s geographical adjacency matrix.
The number of attention heads in Transformer encoders
is set to 8. We adopted the Adam optimizer [44] with an
initial learning rate of 5 × 10−4 and weight decay of 10−4.
We applied a mini-batch size of 128. CLEAR and baseline
methods are implemented with Python and Pytorch. All
experiments are conducted on the Viking cluster provided
by the University of York with NVIDIA H100 GPUs.

5.2 Traffic Prediction Performance (RQ1, RQ2)

In this sub-section, we present empirical results on employ-
ing the proposed CLEAR for traffic prediction and boot-
strapping graph learning-based traffic predictors. Among
the baseline approaches, ASTGCN, STSGCN, and STGODE
are C1 predictors c.f. Section 4.5, Graph WaveNet and
AGCRN are C2 predictors, GMAN and STWave+ are C3
predictors, STAEFormer, GMSDR, and DGCRN are C4 pre-
dictors. We test all baselines, their CLEAR-bootstrapped
variants (Section 4.5), and the CLEAR predictor (Section 4.4)
on all four datasets. The traffic predicting accuracy statistics
are presented in Fig. 5 and Table 2. Each graph learning-
based baselines has the results from both its original model
(denoted by its name) and the corresponding CLEAR-
bootstrapped variant, denoted by the following line with
the tag “↪→ + CLEAR”. Fig. 5 presents the comparison of all
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TABLE 3
Relative MAE Improvement / Degradation of Adopting CLEAR to

Bootstrap Baselines

Method Cat. Beijing NI-SH PeMS04 METR-LA

ASTGCN C1 +11.770% +10.401% +4.375% +4.196%

STSGCN C1 +11.338% +9.759% +3.850% +4.801%

STGODE C1 +11.214% +10.887% +4.905% +4.026%

Graph WaveNet C2 +10.368% +10.185% +3.419% +4.506%

AGCRN C2 +10.426% +10.617% +3.787% +3.877%

GMAN C3 +9.405% +8.296% +3.609% +3.021%

STWave+ C3 +9.739% +9.436% +3.888% +2.440%

STAEFormer C4 +4.527% +2.323% +1.102% +0.840%

GMSDR C4 +5.647% +4.020% +0.871% +1.029%

DGCRN C4 +4.660% +3.191% +0.755% +1.251%

C1 Average +11.441% +10.349% +4.377% +4.341%

C2 Average +10.397% +10.401% +3.603% +4.192%

C3 Average +9.572% +8.866% +3.749% +2.730%

C4 Average +4.944% +3.178% +0.910% +1.040%

Overall Average +8.909% +7.911% +3.056% +2.999%

baselines, and their CLEAR-bootstrapped variants, and the
CLEAR predictor. Note that HA, VAR, SVR, and ARIMA
do not have CLEAR-bootstrapped variants, as they are not
graph learning-based predictors. CLEAR predictor cannot
be further bootstrapped. Additionally, Table 2 provides the
numerical results of the best-performing approaches for a
more precise comparison. In the table, top-3 performance
from all baselines and CLEAR predictor is underlined.

We first use Fig. 5 and Table 2 to answer RQ1, i.e., does
the CLEAR predictor work well in traffic prediction when
compared with state of the arts. The simulation results indi-
cate that the CLEAR predictor, even with a quite simplistic
convolutional representation decoder, can achieve the 3rd
best prediction performance in Beijing dataset, the 2nd in
NI-SH, 4th in PeMS04, and 3rd in METR-LA regarding
MAE. While STAEFormer develops better predicting results
in the first three datasets over CLEAR predictor, the MAE
performance gap is not overwhelming: 0.111 km/h on Bei-
jing, 0.047 km/h on NI-SH, and 0.408 vh on PeMS04. In-
deed, the best performing baseline on METR-LA, DGCRN,
outperforms the CLEAR predictor by 0.029 km/h. We credit
the outstanding plain performance of STWave+ and STAE-
Former to their effective exploitation of traffic representa-
tions, which primarily relies on discrete wavelet transform
and Transformer. In this context, the GAT-CNN-CNN struc-
ture adopted by CLEAR Predictor c.f. Section 4.4 is far
from as with efficacy, resulting in the performance gap. We
further tested offline with a straightforward linear projec-
tion decoder head in place of the GAT-CNN-CNN structure
on Beijing dataset: MAE performance minusculely drops
to 3.238 at an approximately 0.56% relative degradation.
Consequently, our answer to RQ1 is, though not the best-
performing method, the CLEAR predictor can provide out-
standing and highly competitive predictions compared with
the state-of-the-art baselines.

What makes CLEAR truly stand out is its superior
bootstrapping capability. To make the statistics more com-

prehensible, we summarize the relative MAE improve-
ment/degradation of adopting CLEAR to bootstrap graph
learning-based predictors in Table 3. The table indicates that
the traffic data representations generated by CLEAR can
almost consistently improve the predicting accuracy of all
graph learning-based predictor baselines. The improvement
is particularly notable on datasets with large and complex
transportation networks (Beijing and NI-SH) and baselines
with relatively straightforward spatial-temporal correlation
mining strategies. Particularly, C1, C2, and C3 predictors ex-
perience an average 10.171% improvement on MAE. These
results demonstrates the superiority of CLEAR representa-
tions on bootstraping graph learning-based traffic predictors
for better spatial-temporal data correlation mining on large
graphs. The other datasets, namely, PeMS04 and METR-LA
have much smaller graphs and respectively noncomplex
spatial-temporal correlation. Therefore, existing predictors
are more likely to exhaustively exploit such correlation for
traffic prediction. Nonetheless, CLEAR can still improve
the predicting accuracy by approximately 3.832% for the
first three categories. This can be attributed to the more
semantic-rich time-variant adjacency matrix (C1), more ro-
bust representation-based adjacency matrix (C2), and better
semantic-empowered attention scores (C3) developed by
CLEAR.

Moving forward to C4-type predictors, we figured that
the 2.518% improvements, while still statistically signifi-
cant with node-wise Wilcoxon signed-rank tests, are not
as remarkable as the first two categories. This observa-
tion is grounded on the nature of these baselines, which
also explicitly extract spatial and temporal traffic data rep-
resentations by learnable parameters. As a result, well-
trained baseline models, in principle, can learn semantic-
rich embeddings for the downstream prediction task. In the
meantime, the incorporation of CLEAR relieves the train-
ing difficulty by decoupling the graph structure learning
(i.e., representation learning) from the main data correlation
mining during model optimization. We may expect, and
get verified in Section 5.4, that the computation burden
and training time of respective models can be non-trivially
reduced. Datasets with large graphs but less samples can
benefit more from CLEAR bootstrapping, as the spatial-
temporal correlation mining is more challenging. Alongside
being a computationally efficient representation learning
substitute for C4 predictors, CLEAR can still obtain bet-
ter prediction results due to the lighter training difficulty.
Therefore, we conclude that CLEAR can bootstrap existing
graph learning-based traffic predictors with notable accu-
racy improvements (RQ2).

Lastly, we adopt the current art of contrastive repre-
sentation learning frameworks, namely, TS-TCC, TNC, and
CoST, to bootstrap the best-performing graph learning-
based predictors (STWave+ and STAEFormer). The publicly
available source code of respective frameworks is utilized to
generate representations for traffic time-series, and the same
bootstrapping strategies in Section 4.5 is applied. Simulation
results on Beijing dataset are presented in Table 4, indicat-
ing that CLEAR outperforms all contrastive representation
learning frameworks in enhancing the predicting accuracy
of graph learning-based predictors. We further visualize the
representations learnt by CLEAR on the Beijing dataset by
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(a) Beijing dataset. On average, baseline methods have an 11.126% MAE improvement at horizon 12.
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(b) PeMS04 dataset. On average, baseline methods have a 5.226% MAE improvement at horizon 12.

Fig. 6. Multi-step MAE performance of graph learning-based predictor baselines and their respective CLEAR-bootstrapped variants on the Beijing
and PeMS04 datasets.

TABLE 4
Relative Performance Improvement of Contrastive Representation

Frameworks on Beijing Dataset

Method MAE RMSE MAPE

ST
W

av
e+

+ CLEAR +9.739% +9.850% +9.616%

+ TS-TCC +3.621% +3.383% +3.589%

+ TNC +1.664% +1.229% +1.638%

+ CoST +1.445% +1.550% +1.433%

ST
W

av
e+

+ CLEAR +4.477% +4.157% +4.528%

+ TS-TCC −0.290% −0.166% −0.261%

+ TNC +0.513% +0.488% +0.388%

+ CoST −0.294% −0.539% −0.247%

principal component analysis in Fig. 7. The graph data rep-
resentations in Fig. 7(a) are color-coded by the time-of-day,
and each point in Fig. 7(b) refers to the traffic dynamics of a
sensor. The scatter plots shows that the contrastive represen-
tation learning effectively groups similar traffic dynamics
and repels opposite ones. We credit the performance of
CLEAR to its ability to effectively capture both temporal and
spatial dependencies within traffic data, which are essential
for accurate traffic prediction but the latter is missing in
compared frameworks.

(a) Graph data representa-
tions. Analogous colors are
time-of-day-adjacent.

(b) Time-series data represen-
tations. Each point refers to a
sensor in V.

Fig. 7. Visualization of CLEAR representations by principal component
analysis.

5.3 Multi-Step Prediction Performance (RQ3)

Multi-step traffic prediction also plays a pivotal role in the
efficacy of graph learning-based traffic predictors, as it en-
ables insights into traffic trends and patterns over extended
periods and allows for better downstream services. There-
fore, investigating how representations by CLEAR perform
in multi-step traffic prediction scenarios is essential for com-
prehensively evaluating their effectiveness and applicability
in real-world traffic prediction tasks.

In this sub-section, we extend the prediction horizon
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to 12 steps, i.e., 1 h, on the Beijing and PeMS04 datasets
for their distinct network sizes, with all graph learning-
based predictor baselines and their respective CLEAR-
bootstrapped variants. The simulation results are depicted
in Fig. 6, where the horizontal axes denote the predicting
horizon from one to twelve and the vertical axes are the
MAE values in km/h (Beijing) and vh, respectively. From the
plots, it can be observed that the performance improvement
of CLEAR over all baselins are further enlarged with the
expanding predicting horizon. On the larger-scale Beijing
dataset, the four types of predictors embrace 13.342%,
12.566%, 10.519%, and 8.354% MAE improvements at
the 12th predicting horizon, leading to an overall average
11.126% performance boost c.f. 8.909% at the first step. The
advancement persists on the smaller PeMS04 dataset with
the corresponding type improvements at the 12th horizon to
be 6.764%, 5.595%, 5.009%, and 3.588%, overall an 5.226%
up from the first step 3.056%. The substantial gains achieved
by CLEAR across multiple prediction steps underscore its
effectiveness in capturing and leveraging long-term tempo-
ral and spatial dependencies within traffic data, affirming its
potential to significantly enhance the capabilities of graph
learning-based traffic predictors in real-world applications
(RQ3).

5.4 Model Training Efficiency (RQ4)

Efficiency in model training is a crucial aspect in the de-
velopment and deployment of machine learning models,
particularly in the context of large-scale traffic prediction
tasks. With the ever-increasing volume and complexity
of traffic data, the computational resources required for
training graph learning-based traffic predictors can become
a bottleneck, hindering the scalability and practicality of
these models. Therefore, investigating how CLEAR im-
proves model training efficiency is essential for assessing
its feasibility and effectiveness in real-world applications.

In this sub-section, we delve into a comprehensive anal-
ysis of the size, computational complexity, and training time
of both baseline models and their CLEAR-bootstrapped
variants. Particularly, we calculate the number of trainable
parameters, floating-point operations (FLOPs) for each for-
ward pass calculation on the large-scale Beijing dataset, and
measure the relative model training time reduced without
and with CLEAR bootstrapping strategies. The empirical
results are presented in Table 5. In this table, we also present
the relative parameter and FLOPs reduction by introducing
CLEAR as well as the relative training time changed be-
sides the raw data. Note that for the relative training time
changed column, two values are presented where the former
employs available CLEAR representations and the latter
includes the CLEAR model training time over the respective
base model’s.

The simulation result table clearly indicate that CLEAR
can effectively reduce the model size (# parameters) and
complexity (# FLOPs) for C2, C3, and C4 baselines, thereby
improves the model training efficiency. This can be credited
to the decoupling of graph structure learning and the main
data correlation mining, where the former is pre-achieved
by CLEAR. Further, the semantic-rich adjacency matrices
employed in C1-type baselines, while do not reduce the

model footprint, help the model converge faster with effi-
cacy. When we take the CLEAR model training time into
account, Graph WaveNet experience a non-negligible in-
crease in the total training time. Nonetheless, considering
its performance gain (+10.368% c.f. Table 1) and relative
short base model training time (approx. 2.6 h), we consider
CLEAR still an effective bootstrapping method for Graph
WaveNet.

5.5 Ablation Study (RQ5)
In the design of CLEAR, we adopt a few structural de-
signs to improve model capacity and facilitate better per-
formance. Particularly, we employ a learnable positional
encoding (Learn PE) for time-series in Eq. (3) substituting
the more straightforward sinusoidal encoding, pre-norm
residual connections (Pre-N Res.) in Eqs. (3) and (8) instead
of the post-norm connection proposed in [31], and feature
projection heads (Proj. Head) gT(·) and gG(·) following [15].
Finally, we adopt the contrastive learning paradigm to train
the representation learning model.

To verify their efficacy in the model performance, we
construct a series of CLEAR ablations and test their perfor-
mance on the Beijing dataset with both the Graph WaveNet
base model and the CLEAR predictor. We create a series
of CLEAR variants with tags “A” to “G” to denote the
ablation of the Learn PE, Pre-N Res. and Proj. Head designs.
Additionally, we remove the contrastive learning parts in
CLEAR, namely, data augmentation and contrastive loss
(replaced by reconstruction loss), to create the ablated model
“CLEAR” with a variant “CLEAR-PH” that further removes
the projection head layers. Note that Beijing dataset is se-
lected for its large-scale traffic network size. Table 6 presents
the experimental results. Comparing the performance met-
rics among different rows, an easy conclusion can be made
that all the designs contribute to better CLEAR performance
in terms of both traffic prediction and predictor bootstrap-
ing, and the contrastive learning paradigm plays a critical
part in generating semantic-rich representations. The results
generally accord with previous studies on the respective
designs, namely, [15], [32], [45]. One minor discrepancy lies
in the performance boost by projection heads, which lead to
over 10% improvement rather than the approximately 3% in
Table 6. We hypothesize that the information loss induced
by the contrastive loss, conjectured in [15], is less significant
on time-series and graph data than images as originally
investigated. Despite this trivial difference, the simulation
results verify and agree with the literature that the fea-
ture projection heads indeed introduces more robust and
semantic-rich data representations for downstream tasks,
i.e., traffic prediction in this context.

5.6 Discussion on Limitations
The proposed CLEAR framework demonstrates significant
advancements in spatial-temporal traffic data representation
learning but is not without limitations. The complexity
of the framework, particularly its reliance on dual-branch
contrastive learning and Transformer-based encoders, in-
troduces computational overhead that might limit its scal-
ability in resource-constrained environments. Additionally,
CLEAR depends on complete input data for representation
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TABLE 5
Model Size, Complexity, and Training Time Reduction on Beijing Dataset

Method Cat.
Original + CLEAR % Reduced % Training Time Changed

# FLOPs # Params. # FLOPs # Params. # FLOPs # Params. Excl. CLEAR† Incl. CLEAR†

ASTGCN C1 2.386T 39.349M 2.386T 39.349M 0.000% 0.000% −11.921% −9.386%

STSGCN C1 961.327G 89.042M 961.327T 89.042M 0.000% 0.000% −9.016% −3.674%

STGODE C1 193.832G 813.684K 193.832G 813.684K 0.000% 0.000% −14.711% +1.283%

Graph WaveNet C2 202.407G 367.748K 202.387G 305.228K 0.010% 17.001% −33.751% +11.387%

AGCRN C2 243.445G 777.000K 242.585G 745.740K 0.353% 4.023% −54.944% −52.363%

GMAN C3 222.298G 513.795K 132.811G 509.187K 40.256% 0.895% −2.076% −1.501%

STWave+ C3 70.438G 881.598K 61.142G 881.598K 13.203% 0.000% −45.610% −30.242%

STAEFormer C4 77.174G 4.061M 77.174G 1.060M 0.000% 73.892% −6.135% −1.938%

GMSDR C4 12.126G 6.669M 11.188G 1.617M 7.711% 75.712% −43.292% −34.570%

DGCRN C4 1.061T 432.961K 1.061T 182.881K 0.000% 57.761% −3.602% +0.397%
† Excluding / Including the one-time CLEAR training time.

TABLE 6
Ablation Performance of CLEAR on Beijing Dataset

Model Learn PE Pre-N Res. Proj. Head
Graph WaveNet + CLEAR CLEAR Predictor

MAE RMSE MAPE MAE RMSE MAPE

CLEAR ✓ ✓ ✓ 3.207 5.617 12.353% 3.220 5.620 12.407%

CLEAR-A ✓ ✓ - 3.401 5.900 13.111% 3.447 6.025 13.291%

CLEAR-B ✓ - ✓ 3.317 5.763 12.785% 3.379 5.834 13.023%

CLEAR-C ✓ - - 3.379 5.879 13.022% 3.492 6.053 13.455%

CLEAR-D - ✓ ✓ 3.310 5.741 12.765% 3.302 5.763 12.726%

CLEAR-E - ✓ - 3.446 6.056 13.294% 3.431 5.944 13.208%

CLEAR-F - - ✓ 3.390 5.896 13.074% 3.317 5.745 12.776%

CLEAR-G - - - 3.410 5.900 13.138% 3.431 5.938 13.225%

CLEAR ✓ ✓ ✓ 3.561 6.198 13.733% 4.752 8.227 18.299%

CLEAR-PH ✓ ✓ - 3.612 6.249 13.930% 4.845 8.405 18.687%

extraction, which could restrict its applicability to datasets
with missing or noisy observations: further data imputation
approaches are required as pre-processors and they may un-
dermine the representation learning performance. Further,
while CLEAR decouples adjacency matrix learning from
spatial-temporal correlation extraction, this approach may
not outperform the ideal case of tightly coupled learning
in scenarios with abundant computational resources, train-
ing data, and carefully tailored models. Though the GAT-
based predictor within CLEAR performs competitively, its
relatively simple architecture does not outperform certain
state-of-the-art predictors, emphasizing CLEAR’s role as a
representation learning framework over a standalone pre-
dictor.

Despite these limitations, CLEAR’s ability to enhance the
performance of existing graph-based predictors highlights
its practicality and potential for impact. By decoupling
adjacency matrix learning from spatial-temporal correlation
extraction, CLEAR reduces the training complexity of in-
tegrated models and offers a flexible, task-agnostic repre-
sentation learning paradigm. Future work could address
these limitations by exploring data imputation mechanisms,
simplifying the architecture, and adapting CLEAR for a
broader range of traffic analytics task decoders.

6 CONCLUSIONS

This paper introduces the CLEAR (Contrastive Learning of
spatial-tEmporal trAffic data Representations) framework
that leverages the power of self-supervised contrastive
learning to extract meaningful embeddings from both traf-
fic time-series and graph-structured data, facilitating more
accurate traffic predictions. By employing both weak and
strong data augmentation techniques, CLEAR enhances its
robustness and generalization in generating semantic-rich
data representations within diverse traffic datasets. Its spe-
cialized models capture critical temporal and spatial depen-
dencies, allowing seamless integration with existing traffic
prediction models, increasing their accuracy and reducing
model training complexity without significant modifica-
tions.

Experimental evaluations across four real-world datasets
validate CLEAR’s superior ability to predict future traffic
and bootstrap graph learning-based predictors. Multi-step
prediction tests and ablation studies confirm its robustness
and the strategic efficacy of its design, and a thorough look
into the model training efficiency indicate its efficiency in
decoupling the graph adjacency learning and data correla-
tion learning processes during training. These experiments
substantiate the framework’s utility in real-world applica-
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tions, making it a promising approach to be integrated in
traffic prediction methods.

Looking ahead, the CLEAR framework opens several
avenues for further research. Future work could explore the
extension of this framework to other types of downstream
intelligent transportation tasks. As the CLEAR framework
is designed to be modular and flexible, it can be adapted
to other traffic-related tasks with tailor-made representa-
tion decoders, somehow similar to the Traffic Prediction
Decoder in Fig. 1. Additionally, further refinement of the
data augmentation and representation learning techniques
could yield even more robust models capable of handling
increasingly complex datasets.
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[33] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” in Proc. International
Conference on Learning Representations, ser. ICLR ’18, Vancouver,
Canada, Apr. 2018, pp. 1–12.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3536009

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 16

[34] C. Song, Y. Lin, S. Guo, and H. Wan, “Spatial-temporal syn-
chronous graph convolutional networks: A new framework for
spatial-temporal network data forecasting,” in Proc. AAAI Confer-
ence on Artificial Intelligence, ser. AAAI ’20, vol. 34, New York, NY,
Apr. 2020, pp. 914–921.

[35] J. Zhu, Q. Wang, C. Tao, H. Deng, L. Zhao, and H. Li, “AST-
GCN: Attribute-augmented spatiotemporal graph convolutional
network for traffic forecasting,” IEEE Access, vol. 9, pp. 35 973–
35 983, 2021.

[36] Y. Fang, Y. Qin, H. Luo, F. Zhao, B. Xu, L. Zeng, and C. Wang,
“When spatio-temporal meet wavelets: Disentangled traffic fore-
casting via efficient spectral graph attention networks,” in Proc.
IEEE International Conference on Data Engineering, ser. ICDE ’23,
Anaheim, CA, Apr. 2023, pp. 517–529.

[37] C. Zheng, X. Fan, C. Wang, and J. Qi, “GMAN: A graph multi-
attention network for traffic prediction,” in Proc. AAAI Conference
on Artificial Intelligence, ser. AAAI ’20, vol. 34, New York, NY, Apr.
2020, pp. 1234–1241.

[38] N. Liu, X. Wang, D. Bo, C. Shi, and J. Pei, “Revisiting graph
contrastive learning from the perspective of graph spectrum,”
in Proc. Advances in Neural Information Processing Systems, ser.
NeurIPS ’22, New Orleans, LA, May 2022, pp. 1–12.

[39] Z. Cai, R. Jiang, X. Yang, Z. Wang, D. Guo, H. H. Kobayashi,
X. Song, and R. Shibasaki, “MemDA: Forecasting urban time series
with memory-based drift adaptation,” in Proc. ACM International
Conference on Information and Knowledge Management, ser. CIKM ’23,
Birmingham, UK, Oct. 2023, pp. 193–202.

[40] X. Chen, Z. He, and L. Sun, “A Bayesian tensor decomposition ap-
proach for spatiotemporal traffic data imputation,” Transportation
Research Part C: Emerging Technologies, vol. 98, pp. 73–84, Jan. 2019.

[41] Z. Fang, Q. Long, G. Song, and K. Xie, “Spatial-temporal graph
ODE networks for traffic flow forecasting,” in Proc. ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, ser. KDD ’21,
Singapore, Aug. 2021, pp. 364–373.

[42] L. Bai, L. Yao, C. Li, X. Wang, and C. Wang, “Adaptive graph
convolutional recurrent network for traffic forecasting,” in Proc.
Advances in Neural Information Processing Systems, ser. NeurIPS ’20,
Vancouver, Canada, Dec. 2020, pp. 17 804–17 815.

[43] H. Liu, Z. Dong, R. Jiang, J. Deng, J. Deng, Q. Chen, and X. Song,
“Spatio-temporal adaptive embedding makes vanilla transformer
SOTA for traffic forecasting,” in Proc. ACM International Conference
on Information and Knowledge Management, ser. CIKM ’23, Birming-
ham, UK, Oct. 2023, pp. 4125–4129.

[44] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in Proc. International Conference on Learning Representations,
ser. ICLR ’15, San Diego, CA, May 2015, pp. 1–15.

[45] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eick-
hoff, “A Transformer-based framework for multivariate time series
representation learning,” in Proc. ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, ser. KDD ’21, Singapore,
Aug. 2021, pp. 2114–2124.

James Jianqiao Yu (S’11–M’15–SM’20) is a
Professor with the School of Computer Science
and Technology, Harbin Institute of Technology,
Shenzhen. He received the B.Eng. and Ph.D.
degree in Electrical and Electronic Engineering
from the University of Hong Kong, Pokfulam,
Hong Kong, in 2011 and 2015, respectively. He
was a post-doctoral fellow at the University of
Hong Kong from 2015 to 2018. He held pro-
fessorship/lectureship at Southern University of
Science and Technology, China and University

of York, United Kingdom from 2018 to 2024. His general research inter-
ests are in data mining, multi-modal learning, intelligent transportation
systems, and embodied artificial intelligence. His work is now mainly on
spatial-temporal data mining, multi-modal foundation model, and fore-
casting and logistics of future transportation systems. He has published
over 100 academic papers in top international journals and conferences,
and representative papers have been selected as ESI highly cited pa-
pers. He was the World’s Top 2% Scientists since 2020 and of career
by Stanford University. He is an Editor of IEEE TRANSACTIONS ON
INTELLIGENT TRANSPORTATION SYSTEMS and IET SMART CITIES. He
is a Senior Member of IEEE.

Xinwei Fang is a Lecturer with the Depart-
ment of Computer Science at the University of
York, United Kingdom. His research focuses on
the design and development of trustworthy au-
tonomous systems by understanding, detecting,
and mitigating uncertainties that may arise at
various stages of these systems through meth-
ods such as machine learning, model checking,
and statistical analysis.

Shiyao Zhang (S’18–M’20) received the B.S.
degree (Hons.) in Electrical and Computer Engi-
neering from Purdue University, West Lafayette,
IN, USA, in 2014, the M. S. degree in Electrical
Engineering from University of Southern Califor-
nia, Los Angeles, CA, USA, in 2016, and the
Ph.D. degree from the University of Hong Kong,
Hong Kong SAR, China, in 2020. He was a Post-
Doctoral Research Fellow with the Academy
for Advanced Interdisciplinary Studies, Southern
University of Science and Technology from 2020

to 2022, and a Research Assistant Professor with the Research Institute
for Trustworthy Autonomous Systems, Southern University of Science
and Technology from 2022 to 2024. He is currently an Assistant Profes-
sor with the School of Engineering, Great Bay University. His research
interests include intelligent transportation systems, autonomous driving,
embodied AI, and transportation electrification.

Yuxin Ma is a tenure-track Associate Profes-
sor in the Department of Computer Science
and Engineering, Southern University of Sci-
ence and Technology (SUSTech), China. He re-
ceived B.Eng. and Ph.D. from Zhejiang Univer-
sity, China. Before joining SUSTech, he worked
as a Postdoctoral Research Associate in VADER
Lab, CIDSE, Arizona State University. His pri-
mary research interests are in the areas of vi-
sualization and visual analytics, focusing on ex-
plainable AI, high-dimensional data, and spa-

tiotemporal data.

This article has been accepted for publication in IEEE Transactions on Knowledge and Data Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TKDE.2025.3536009

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


	Introduction
	Related Work
	Graph learning-based Traffic Predictors
	Contrastive Representation Learning

	Preliminaries
	Definitions
	Problem Formulation

	Contrastive Learning of Spatial-Temporal Traffic Data Representations
	Overview
	Traffic Time-series Representation Learning
	Traffic Graph Data Representation Learning
	Traffic Prediction with Traffic Data Representations
	Bootstrapping Existing Graph Learning-based Predictors

	Experiments
	Experimental Setup
	Datasets
	Baselines
	Performance Metrics
	Implementation Details

	Traffic Prediction Performance (RQ1, RQ2)
	Multi-Step Prediction Performance (RQ3)
	Model Training Efficiency (RQ4)
	Ablation Study (RQ5)
	Discussion on Limitations

	Conclusions
	References
	Biographies
	James Jianqiao Yu
	Xinwei Fang
	Shiyao Zhang
	Yuxin Ma


