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Abstract— Autonomous vehicles (AVs), as one of the cores in
future intelligent transportation systems (ITSs), can facilitate
reliable and safe traffic operations and services. The ability
to automatically perform effective AV motion planning and
deploy efficient perception systems is vital for advancing the
quality of core transportation services. However, existing research
studies have only considered the applications of either of these
approaches, which neglect their necessary interactions in real-
world AV motion planning systems. To address this problem,
we design an AV motion planning strategy based on motion
prediction and V2V communication. Specifically, we propose the
perception system and V2V communication module to provide
real-time traffic and vehicular information to the participated
AVs. Then, we formulate the AV lane-change motion planning
problem through the scope of model predictive control based
problem, as well as proposing the method on learning optimal
motion planning by means of a novel deep learning technique.
We conduct extensive case studies to evaluate the performance
of the proposed system model. Our experimental results demon-
strate the effectiveness of the proposed system model under
various traffic conditions. In addition, the robustness of the
perception system is guaranteed by utilizing the Car Learning
to Act (CARLA) system with available V2V communication.
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I. INTRODUCTION

IN RECENT years, an intelligent transportation sys-
tem (ITS) has emerged as a promising technology in a

smart city. Through information processing and communi-
cation technologies, ITS can function the city transportation
system productively, which improves the quality of core trans-
portation operations and services [1]. Autonomous vehicles
(AVs), as one of the essential components in ITS, are capa-
ble of operating without human involvement while sensing
their surrounding environment. Approximately 81% of annual
vehicle-involved crashes can be greatly mitigated based on
AV techniques, according to the Research and Innovative
Technology Administration (RITA) of the U.S. Department of
Transportation (USDOT) [2]. Hence, the maturing technology
in AVs has the potential to enhance the safety, efficiency,
and convenience of ITS, such as the efficient autonomous
intersection management in urban road networks [3].

Due to the development of AV technology, the control
strategies of AVs have become a hot research topic in current
years. Several studies have investigated the motion planning
strategies of AVs in ITS. For instance, [4] studied the state of
the art on motion planning and control algorithms by using
AVs. The motion planning strategies developed in [5]–[9]
lead to optimizing the AV travel path or trajectory on various
roads by tracking the low-level feedback controller. Besides,
the continuous path of AVs can be obtained through proper
lane-change motion strategies [10]–[15]. Hence, the use of
optimal AV motion planning approaches can bring substantial
capabilities for providing timely and safe operations in ITS.

When considering the utilization of AV motion planning
methods, the intelligent networked vehicle system (INVS)
can help sense the surrounding environment to complete the
local navigational tasks. This system refers to the use of
dynamic map fusion techniques in AV cooperative perception,
motion planning, and maneuvering tasks [16], [17]. These
techniques are classified into three levels, namely, data level
[18], feature level [19], and object-level [20]. The data-level
and feature-level approaches can easily incur high commu-
nication overheads and most object-level methods do not
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consider the sensing and model uncertainties. To tackle these
issues, a dynamic map fusion framework with Car Learning
to Act (CARLA) system was proposed in [21], [22]. This
system enables scored-based object-level fusion and deploys
a distributed online learning method, which leads to low
communication overhead and high map quality.

Besides, the feasibility of INVS depends on the availabil-
ity of vehicle-to-vehicle (V2V) communication. In practice,
reliable wireless communications serve a crucial role in facili-
tating daily social activities [23], [24]. V2V communication
systems enable efficient wireless transmission among AVs,
which further facilitates safe and effective traffic operations
and services in ITS. These systems can provide each AV
with the real-time movement information of other nearby
AVs equipped with V2V techniques within the communication
range. The study in [25] demonstrated the importance of the
perception system concerning V2V communication systems.
Existing studies have investigated implementing V2V commu-
nication into the perception system, e.g. [26]–[28]. However,
the incorporation of real-time AV motion planning with these
systems is neglected. Therefore, it is a pressing issue on how
to implement real-time motion planning on these systems.

To bridge the research gaps, an AV motion planning strategy
framework, which consists of motion prediction and V2V
communication, is proposed in this paper. In this framework,
we focus on how to develop a framework to enable the
perception system to adaptively generate real-time information
to cope with the AV motion planning strategy. In addition,
the map quality and V2V communication overhead can be
improved by considering the online learning model. This
promotes the utilization of the perception system with V2V
communication techniques in practice. Then, we emphasize
investigating how to operate the effective lane-change motion
for the ego AV, which considers the safety, speed, and traffic
rules. In the meantime, the AV participated in the process of
motion planning can interact with the perception system in
real-time. The implementation of learning optimal planning
helps the ego AV to adjust the lane-change motion plans under
real-time traffic conditions.

The main contributions of this research work can be sum-
marized as follows:

• We develop a vision perception system framework to
learn both semantic and geometry information of the
environment, in order to conduct a timely interaction
between the system and real-time motion planning. This
framework is more general and practical than the exist-
ing ones since the dynamic real-time motion planning
approach is developed within the feasible regions.

• We formulate a motion planning problem based on model
predictive control (MPC) for the ego AV, in order to
determine the optimal lane-change motion based on the
availability of the perception system and V2V communi-
cation. This contributes to an accurate and effective real-
time motion planning strategy in the system.

• We propose a prediction method to learn optimal motion
planning of the participated AVs. This helps to understand
how AVs and the perception system interact in the system
framework.

• We validate the performance of the proposed system
model with different case studies in autonomous driving
simulator CARLA. We find that through the proposed
system framework, the robustness of the perception sys-
tem can be guaranteed with available V2V communica-
tion. Furthermore, the effectiveness of the lane-change
motion planning strategy can also be achieved.

The rest of this paper is organized as follows. Section II
examines closely related studies and identifies the challenges
that motivate this work. SectionIII then develops the system
model. In Section IV, the AV motion planning problem is
formulated by incorporating the perception system. Next,
SectionV details the case studies conducted to evaluate the
proposed system model. Finally, Section VI concludes this
work and provides possible future research directions.

II. RELATED WORK

Several AV motion planning strategies have been proposed
for reliable and safe maneuver operations [5]–[7], [29]. For
instance, [5] proposed an efficient motion planning method
for AV on-road driving through rapidly exploring random
tree algorithm. A novel local motion planning hierarchical
framework was conducted in [6] for AVs to track a reference
trajectory and effectively avoid obstacles. In [7], a probabilistic
method was built for real-time decision making and motion
planning for AVs. In addition, [29] presented a novel coordi-
nation approach for motion planning of connected vehicles,
especially intersection environment management. Upon the
same environment, [8] developed a motion-planning model
for urban autonomous driving at uncontrolled intersections
of road networks. Considering highway traffic roads, [9]
investigated the motion planning approaches with a focus
on highway planning of AVs. Besides, lane-change motion
is one of the essential component of lateral AV motions,
which can affect the surrounding vehicles and further impact
the traffic flow collectively. There are some existing studies
focusing on planning AV lane-change motions. In [10], a
back-to-back performance on different lane-change maneuvers
was demonstrated, which included two automated driving
approaches and manual driving. Considering dynamic vehicu-
lar constraints, a stochastic model-predictive control problem
was formulated in [12] to keep the automated driving vehicle.
In addition, [15] proposed a lane-change strategy considering
other AVs’ velocity prediction, motion planning, and trajectory
tracking control. Furthermore, [13] proposed an autonomous
lane-change decision-making model that implemented benefit,
safety, and tolerance factors. However, these work neglect
the consideration of dynamic traffic conditions, which may
cause collisions due to occurrence of sudden accidents. The
feasible maneuvers are timely associated with the time-varying
traffic environment. Hence, in order to capture the time-
varying dynamic traffic conditions, several existing studies
investigated the effect of V2V communication on lane-change
motion planning, e.g. [30], [31]. For instance, a lane change
warning system was proposed in [30] to obtain the surrounding
vehicle’ motion states via V2V communication. By means
of V2V communication techniques, [31] proposed a model
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to consider the traffic scene with multiple mandatory lane
change demands and completed the trajectory planning for
vehicles by taking the safety and efficiency into consideration.
Besides, the use of deep learning techniques contribute to
the reliable and safe AV lane-change motion by learning
optimal planning paths, since they can timely capture the
real-time traffic conditions. Through a reinforcement learning
technique, a cooperative lane-changing strategy in [11] was
developed to enable lane-changing behavior in considera-
tion of traffic efficiency. In [14], a comprehensive model
that considered different time-to-lane naturalistic crossings
based on a back propagation neural network was proposed,
which was optimized by a particle swarm optimization algo-
rithm. Although these researches implement deep learning
techniques into AV lane-change motion strategies, they do
not involve the utilization of perception systems installed
at AVs.

By considering the utilization of perception systems, known
as INVS, the AV lane-change motion planning strategy can be
further optimized in a reliable manner. The perception systems
are developed from the ground up to support the development,
training, and validation of AV urban driving systems. There
are some typical perception systems utilized for modeling the
virtual traffic environment, including suggested upper merged
ontology (SUMO) [32] and CARLA [33]. These systems
are capable of supporting flexible specifications of sensor
suites and environmental conditions in traffic networks. Sev-
eral existing studies have implemented V2V communication
techniques into the perception systems to further contribute
to the improvement of the robustness of these systems, thus
making AVs move safer on the road. For example, [26]
comprehensively discussed the framework of cooperative V2V
communication in the computation of the vehicular perception
system. In [27], a unified cooperative perception framework
was evaluated by employing V2V communication connec-
tivity. Furthermore, [28] analyzed the necessary dynamic
information for the cooperative perception to enable safe and
reliable automated driving. However, these systems may be
more concerned about the quality of map fusion, as well as
the degradation issue of the sensing and model uncertainties.
The robustness of the perception system is related to real-time
AV motion planning, in order to maintain a reliable and safe
lane-change motion. In this work, we consider evaluating the
robustness of the CARLA system with V2V techniques. The
evaluation considers the effects of the communication losses
in the ad-hoc V2V network and the unpredictable vehicle
motions in traffic by on-board sensors. Additionally, the future
context information generated by the CARLA system can
be used for learning the optimal motion planning of the
ego AV.

III. SYSTEM MODEL

This section illustrates the proposed system framework,
as shown in Fig. 2. It contains four major components, known
as environment, V2V communication, perception system, and
operation of AVs. The proposed system possesses the fol-
lowing characteristics to enable the feasibility of the entire
operations.

Fig. 1. A typical scenario of AV lane-change motion.

A. Environment

The physical-world implementation of autonomous driving
is hindered by the infrastructure costs and the difficul-
ties of testing in dangerous environment. Consequently, this
paper adopts CARLA, a widely-accepted unreal-engine driven
benchmark system, to provide complex urban driving scenarios
and high 3D rendering quality, to model the environment.
In this work, we model the road network to represent the AV
lane-change motion scenario within a particular area shown in
the specific block of Fig. 2. Consider a typical case depicted
in Fig. 1, which includes four AVs moving on two straight
lanes. The top lane is the target lane (TL) while the bottom
one is the ego lane (EL). The ego AV is initiated on the EL.
Besides the ego AV, there are three obstacle AVs moving on
these two lanes. The lane width of this case follows the real-
world road design standard listed in [34], which can be set to
3.7 meters. The entire period of lane-change motion for the
ego AV is denoted as T , which can be divided into NT time
steps. The interval of each time step is defined as �t .

Besides, we denote the set of the obstacle AVs as N with
different properties. These AVs are assumed to be stay at their
lanes during the entire period of the lane-change motion. For
the AV configurations, we denote l and w as the length and
width of each AV, including both the ego AV and obstacle AV.
In addition, h is defined as the wheeling length of each AV. The
ego AV shall determine a suitable longitudinal acceleration
and lateral yaw rate during the entire period, in order to meet
the requirements of vehicle dynamics and obstacle avoidance.
Moreover, the success of lane-change motion is guaranteed
by the efficiency and safety of the movement of the ego AV,
which considers small acceleration and jerk so that the safe
distance between the ego AV and other obstacle AVs can be
satisfied.

B. V2V Communication

The V2V communication module is the core of the entire
system framework, which is responsible for the wireless
communication among the ego AV, the obstacle AVs, and
the perception system. The lane-change motion planning and
scene parameters detected by the obstacles AVs can be deliv-
ered to the ego AV via the V2V communication module.
In the meantime, the parameters can also be transmitted by
this module, such as position, velocity, acceleration rate, and
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Fig. 2. The proposed system framework, which contains environment to generate road traffic, a V2V communication module to guarantee information
transmission flows of vehicular features, a perception system to perform feature sensing and prediction, and autonomous vehicles to proceed motion learning,
planning, and control.

orientation of all participated AVs, which are shown in the
block of V2V communication module in Fig. 2. Otherwise, the
occurrence of the random outage, latency, packet loss can lead
to the unsuccessful V2V communication, which may further
cause traffic crashes due to insufficient information received
when performing lane-change motion. Furthermore, with the
development of wireless communication, such as 6G technol-
ogy, the vehicular network analysis, planning and optimization
shall be raised from two dimensions to three dimensions so as
to further improve the motion planning strategy of AVs [35].
Note that we follow the V2V communication range standard
in [36].

C. Perception System

The perception system includes two main components,
namely, on-board sensors and vehicular computer. The specific
details of each components are listed below.

For the on-board sensors, light detection and rang-
ing (LiDAR) is assumed to be installed at all participated AVs.
LiDAR is an active near visible band sensor that can build up
a three-dimensional map of the scene by measuring the time
of flight of pulsed light. By using LiDAR, the surrounding
scene of vehicle can be scanned. However, various weather
conditions can affect the scanning process of the LiDAR.
The lane-change motion may be affected by the bad weather
conditions, such as rainy weather. The blurred images obtained
by the perception system leads to imprecise detection of the
distance range between the ego AV and the obstacle AVs.
During the period of lane-change motion, we define a time-
varying rain rate as R(t), where t = {1, . . . , NT }. According
to [37], the performance of LiDAR sensors can be affected by
the rainy weather. Specifically, the modified distance is varied
by the different level of rain rates. Hence, we can model such
relationship as follow

dmodified(t) = ddetect(t) + ζddetect(t)(1 − e−R(t))2 (1)

where R(t) refers to the rain rate at time t and ζ denotes the
variance vector. ddetect(t) presents the detected distance under
normal conditions at time t . In this work, we set ζ = 0.02,
similar to the setting in [37]. In addition, the sizes of the
raindrops are assumed to be the same.

Through the information transmitted via the clustering of
applications (CAN), the vehicular computer is responsible for
the context prediction. The function of context prediction is
used to monitor and predict the real-time traffic conditions.
In this function, data collection gathers the sensing data under
different scenarios. When the data is collected, the data pre-
processing is needed for the purpose of efficient model training
by means of a novel deep learning approach. The model pre-
training stage is able to output the initial model parameters.
The number of samples for every individual scenario is deter-
mined by the learning curves shown in [38].

The vehicular computer is mainly responsible for data
processing, including voxelization, convolution, regional pro-
posal generation, regression, classification, and orientation.
Also, the proper use of the deep learning can contribute to an
accurate prediction on the conditions of traffic networks, such
as traffic speed prediction [39]. These modules are utilized
via the perception system to perform several operations, such
as practical road simulation, weather simulation, data classi-
fication and analysis, and so on. Considering the aggregated
vehicular information, the perception system then transmits
the information to the ego AV and obstacle AVs through
the broadcast signals via the Internet. Besides, these scene
parameters can further help perform lane-change motion by
real-time interaction between the ego AV and the perception
system.

To combine with the V2V communication system, the
communication-perception information fusion model is pro-
posed, which is illustrated in Fig. 3. The output of this fusion
model is the positions and velocities of ego and obstacle
vehicles that will be subsequently used for collision avoidance
motion planning. The input of this fusion model includes:

 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHANG et al.: COLLISION AVOIDANCE PREDICTIVE MOTION PLANNING 5

Fig. 3. Flowchart of system operation.

1) sensory data; 2) communication data; 3) historical data.
These three types of data are processed in parallel, where the
senor data is fed into a deep sparsely embedded convolution
detection network for object detection, the received V2V data
is transformed from global to local coordinate system, and
the historical pose data is extrapolated to predict the current
poses of obstacle vehicles. After the above processing pipeline,
all types of data are transformed into poses in the same local
coordinate system. They can be directly merged by performing
the weighted sum. The weights of different data sources are
computed as follows. For the object detection result, a deep
convolutional neural network (CNN) is adopted to classify
the current weather. The weight is set to 1 if raining and
10 otherwise. The V2V result is computed based on the
dynamic map fusion technique in [21], which achieves higher
map quality than ego-vehicle perception. Consequently, the
weight is set to 30 if the V2V data is successfully received and
1 otherwise. Finally, the weight of poses obtained from motion
prediction is set as inversely proportional to the duration
between the current time and the data storage time.

D. Operation of Autonomous Vehicles
The operation of AVs in the system mainly involves three

functions, namely, path planning, motion planning, and vehicle
control. First of all, the operation is incurred in the information
stage based on the behaviors of the status of the participated
obstacle AVs. These AVs in the system have been installed
with on-board sensors to capture the traffic information of the
surrounding environment. Then, the ego AV mainly performs
the three functions mentioned previously. At the planning
stage, for path planning, it is related to motion learning by
tackling sensing real-time uncertainties of the surrounding
environment. This function helps the ego AV to learn the
optimal path under different circumstances. In addition, motion
planning function is associated with the strategy lane-change
motion of the ego AV. After that, based on the planning strat-
egy, at the control stage, the ego AV is controlled by operating
the vehicle brake, steer, and throtte. The related parameters
include the lateral position, velocity, acceleration rate, and
yaw angle of the ego AV. Considering these four factors,
we define them as Pego, vego, aego, and θego, respectively,
where Pego = {xego, yego} to further illustrate the x-position
and y-position of the ego AV.

TABLE I

TABLE OF PARAMETERS FOR PROPOSED SYSTEM

The above system framework inherently consists of two
novel techniques:

• Lane-change motion planning by tackling obstacle avoid-
ance while performing context prediction in real-time;

• Motion learning by tackling sensing uncertainties.

In the following sections, we will introduce these two
approaches in a detailed manner.

IV. AUTONOMOUS VEHICLE LANE-CHANGE MOTION

PLANNING

As discussed in Section III, the key problem is to investigate
the optimal lane-change strategy for ego AV by means of
effective scene perception and V2V communications. The
problem formulation is shown as follows.

A. Operational Constraints

1) Autonomous Vehicle Dynamics: The AV dynamics are
utilized to represent the vehicular motion on the road. Consider
that the motion planning is taken place over a specific time
period [Tstart, Tend ], which can be discretized equally into NT

 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

time slots. The interval of every time slot is defined as �t .
Then, we define the state vector for the ego AV as

uego = �
xego yego vego aego θego

�
, (2)

where xego, yego, vego, aego, θego denotes x-position, y-position,
velocity, acceleration, yaw angle for the ego AV.

Besides the ego AV, we denote a set of other AVs n ∈ N
as obstacle AVs in the road system. The state vector for such
AVs can be defined as

un
obs = �

xn
obs yn

obs vn
obs an

obs θn
obs

�
, ∀n ∈ N , (3)

where xn
obs, yn

obs, v
n
obs, an

obs, θ
n
obs denotes x-position, y-position,

velocity, acceleration, yaw angle for the obstacle AV n.
To represent the inner relations of AV dynamics between

the ego AV and obstacle AVs, the following constraints are
developed�

dxego

dt

dxn
obs

dt

�
= �

vego cos(θego), v
n
obs cos(θn

obs)
�
, ∀n ∈ N ,

(4)�
dyego

dt

dyn
obs

dt

�
= �

vego sin(θego), v
n
obs sin(θn

obs)
�
, ∀n ∈ N ,

(5)�
dvego

dt

dvn
obs

dt

�
= �

aego, an
obs

�
, ∀n ∈ N , (6)�

dθego

dt

dθn
obs

dt

�
= �

ωego, ω
n
obs

�
, ∀n ∈ N . (7)

In addition, the above parameters in (4) - (7) follow the
lower and upper limits in performing lane-change motion,
respectively, which are shown as�

v
ego
min, v

n
min

� ≤ �
vego, v

n
obs

� ≤ �
v

ego
max, v

n
max

�
, ∀n ∈ N , (8)�

aego
min, an

min

� ≤ �
aego, an

obs

� ≤ �
aego

max, an
max

�
, ∀n ∈ N , (9)�

ω
ego
min, ω

n
min

� ≤ �
ωego, ω

n
obs

� ≤ �
ω

ego
max, ω

n
max

�
, ∀n ∈ N .

(10)

Furthermore, we define RO as an orthogonal rotation matrix
and tr as a translation vector. This matrix is a function of the
vehicle moving angle θ(t) at time step t . The translation vector
tr (·) is a function of the longitudinal xego(t) and lateral yego(t)
positions of the ego AV. Hence, the transformed polytope can
be represented with the x and y coordinates in two dimensional
space. The matrix A and the vector b are defined as

A =
�

RO(θ(t))T

−RO(θ(t))T

�
, ∀t ∈ T , (11)

b =
�

l

2
,
w

2
,

l

2
,
w

2

�T

+ A
�
xego(t), yego(t)

�T
, ∀t ∈ T ,

(12)

where (·)T means the transpose of the matrix. l and w denote
the length and width of the ego AV, respectively. The rotation
matrix of the ego AV at each time step t is computed by

RO =
�

cos(θ(t)) − sin(θ(t))
sin(θ(t)) cos(θ(t))

�
, ∀t ∈ T . (13)

The occupied area for each AV in the system is modeled
as a time-varying polytope. At each time step, the motion

planning is performed to ensure that there is no intersection
occurs between the polytopic sets.

Considering different weather conditions, the road adhesion
characteristic is needed to be tackle when formulating the
vehicle dynamics. We follows the similar formulations of vehi-
cle dynamics under the severe weather shown in [40]. In this
reference, for rainy weather, the road adhesion coefficient is
related to vehicle states, e.g. vehicle speed, and it is calculated
via the equation μ = 0.9458 − 0.0057vego − 0.0108g, where
g is the thickness of the water film. Since severe weather
conditions have a huge impact on the adhesion coefficient of
the road and the vehicle tyres, the tyre saturated lateral force
cannot supply the vehicle steering centrifugal force. Hence,
the case of sideslip is more likely to occur while steering on
a highway. In this case, the vehicle acceleration threshold in
rainy conditions shall be lower, and it can be calculated as:

aego, max = μg. (14)

The typical situation is a sharp turn when vehicle sideslip
occurs, and this example is shown as Fig. 2 in [40]. In the
meantime, the variables of the ego AV, such as vehicle
speed, lateral/longitudinal acceleration, yaw angle, and angular
velocity, are substantially affected.

2) Obstacle Avoidance: As mentioned in Section III, the
purpose of the ego AV is to travel in an efficient way through
the lane-change motion planning strategy. To enable a safe
lane-change motion of the ego AV, we define a safe distance
between the ego AV and the obstacle AV n, which is denoted
as �n

safe. During the process of lane-change motion, we assume
that when the ego AV is in the ego lane, it should keep the
safe distance between the ego AV and the leader obstacle AV
initially. In addition, when the ego AV traverses to the target
lane, the ego AV should avoid the potential collisions between
the leader and follower obstacle AV n so as to keep the safe
distance. Hence, the constraint related to the safety distance
is denoted as

�n
safe ≤

⎧⎪⎨
⎪⎩

xn
obs,leader − xego if ego AV at the ego lane,

xn
obs,leader − xego if ego AV at the target lane,

xego − xn
obs,follower if ego AV at the target lane,

(15)

where xn
obs,leader and xn

obs,follower represent the longitudinal
position of the leader and follower obstacle AV n, respectively.
Besides, according to [41], we implement the critical warning
distance between each pair of AVs, which consists of the reac-
tion time and de-acceleration rate when the sudden accident
occurs. Hence, we merge the concept of the critical distance
to the safe distance between the ego AV and the obstacle AV
n ∈ N , and it can be calculated by

�n
safe = f (vn

obs,leader, v
n
obs,follower)

= 1

2
(
(vn

obs,follower)
2

αn
− (vn

obs,leader)
2

αn
)

−vn
obs,followerτ

n + gn(β, dmin), (16)

where τ n denotes the reaction time for the obstacle AV n
and dmin represents the minimum distance required to avoid
collisions until both vehicles have full stops. Moreover, αn is
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defined as the maximum de-acceleration rate of the obstacle
AV n. Note that, to consider the bad weather condition,
dmin can be replaced by ddetect shown in (1). Then, the
function gn(·) denotes the availability of V2V communication
in obstacle AV n, which is given by

gn(β(t), dmin) = (1 − β(t))d rec
min + β(t)dest

min, (17)

where β(t) represents the binary parameter of the availability
of V2V communication at time t within the process of
lane-change motion. Moreover, d rec

min represents the minimum
distance if the ego vehicle has received V2V information,
while dest

min denotes the estimated minimum distance if the V2V
communication fails, where the object information is obtained
from deep learning perception or calculated with the estimated
velocity and acceleration rate. Note that these two values are
not equal, and they satisfy the condition of d rec

min ≤ dest
min, which

requires much safer distance since the estimated result may not
accurate if the sudden accident occurs.

Furthermore, during the procedure of lane-change motion,
the ego AV can timely interact with the perception system
to adjust the motion planning strategy. Meanwhile, the safety
distance between the ego AV and the obstacle AVs can be
detected via the perception system in real-time. We denote dper

min
as the minimum distance if the ego vehicle has received the
value from the perception system. Then, we define the binary
parameter u to indicate the connectivity between the AV and
the perception system. The following equation indicates the
availability of the perception system

dper
min =



ddetect if u = 1,

max(d rec
min, dest

min) if u = 0,
(18)

where max(·) denotes the maximum operation of these values.
In addition, the second condition in (21) holds when the V2V
communication succeeds.

Furthermore, we can use the measurements at time step
k to estimate the future status of each AV. Without the
future information from V2V communication and CARLA
perception system, the future values of the obstacle AVs can
be estimated by using the following two equations:

vn,est
obs (k + 1|t) = vn

obs(k|t) + an
obs(k|t)�t . (19)

Besides, the estimated moving distance of the obstacle AV
n can be calculated by

xn,est
obs (k + 1|t) = xn

obs(k|t) + vn
obs(k|t) + 1

2
an

obs(k|t)(�t)2.

(20)

B. Vehicle-to-Vehicle Communication

The proposed system framework assumes that each AV is
equipped with senors for V2V communication. The ego AV
in the road system is capable of receiving the transmitted
information from other obstacle AVs when proceeding the
lane-change motion. The forecast information is corresponding
to the future velocity trajectory of these obstacles AVs, which
can be given by the CARLA system. The mathematical

representation of the forecast information of the obstacle AV
n ∈ N can be denoted as

vn,forecast
obs,leader = �

vn
obs,leader(t|t); . . . ; vn

obs,leader(t + NT |t)� ,

(21)

vn,forecast
obs,follower = �

vn
obs,follower(t|t); . . . ; vn

obs,follower(t + NT |t)� .

(22)

For the above representation, vn
obs,leader(k|t) and

vn
obs,follower(k|t) are the planned velocities for the obstacle

leader/follower AV n at each time step k. When the ego AV
receives the forecast velocities of the leader and follower
obstacle AVs, this information can be used for distance
tracking so as to keep the safe distance between the ego AV
and each obstacle AV. Besides the forecast velocity, each AV
is able to transmit its own current radar measurement, GPS
coordinates, acceleration rate, and perception images of the
surrounding scene. As mentioned in Section III, each AV
checks the current status of motion through the information
received through V2V communication. Moreover, when each
AV receives the incoming message, it is capable of verifying
the ID of the surrounding AVs and indicating their current
positions.

C. Deep Learning Perception

If V2V communication fails, then the objects are detected
by perception models or by estimation. In our system, the
perception models need to extract two types of information
from the raw data: 1) the semantic information such as
weather, road, and traffic conditions, which helps to judge the
scene complexity and determine the driving mode (aggressive
or conservative); 2) the geometry information such as the loca-
tion, length, width, and height of objects, which is necessary
for motion planning and obstacle avoidance.

For the first perception task, we use the camera images
as the input data, and train a 6-layer CNN for weather
classification. In particular, the input image is sequentially
fed into a 5 × 5 convolution layer (with ReLu activation,
32 channels, and SAME padding), a 2 × 2 max pooling layer,
then another 5 × 5 convolution layer (with ReLu activation,
64 channels, and SAME padding), a 2 × 2 max pooling layer,
a fully connected layer with 128 units (with ReLu activation),
and a final softmax output layer (with 2 outputs representing
raining or not).

For the second perception task, we use the LiDAR point
clouds ad the input data, and train a sparsely embedded
convolutional detection (SECOND) neural network for object
detection. In particular, the SECOND net is a voxel-based
neural network that converts a point cloud to voxel features,
and sequentially feeds the voxels into two feature encoding
layers, one linear layer, one sparse CNN and one RPN. The
training dataset for SECOND should consist of four parts:
1) color and gray scale images captured by the high-resolution
camera, 2) geographic coordinates including altitude, global
orientation, velocities, accelerations, angular rates, accuracies
and satellite information, 3) point cloud data from the LiDAR,
and 4) object labels in the form of 3D tracklets.
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D. MPC-Based Lane-Change Motion Planning

The proposed MPC-based lane-change motion planning
problem use a receding horizon fashion. The optimization
problem is solved and the control state vector is obtained
at each time step. For the next time step, the time horizon
is shifted forward and the process is repeated until the time
ended. The objective function penalizes the deviation between
the reference trajectory and the real trajectory generated by
the problem, which is given by

	({xego(k), yego(k), aego(k), ωego(k)}NT
k=1)

=
NT�

k=0

�
xego(k) − x ref

ego, yego(k) − yref
ego

T

·Q(xego(k) − x ref
ego, yego(k) − yref

ego)

+
NT −1�
k=0

(aego(k) − aego(k − 1), ωego(k) − ωego(k − 1))T

·W(aego(k) − aego(k − 1), ωego(k) − ωego(k − 1)), (23)

where x ref
ego and yref

ego denote the x- and y- direction reference
trajectory, respectively, and Q and W are positive semidefinite
weighting matrices. On the other hand, the obstacle avoidance
constraints are implemented to guarantee the safe distance
between the ego AV and each obstacle AV. Hence, the opti-
mization problem is formulated as

minimize 	({xego(k), yego(k), aego(k), ωego(k)}NT
k=1) (24a)

subject to (8) − (10) and (15) (24b)

In order to solve this problem in an efficient manner, we devise
a related algorithm, shown in Algorithm 1. The time complex-
ity of the formulated problem is O(1) at every time step. For
every iteration m at time step k, the optimization problem is
solved so as to obtain the solution, [xm

ego(k), ym
ego(k)]. Once

the convergence conditions are satisfied, the optimal solutions
are gained. Otherwise, the latest result is utilized as the
initialization for the next iteration. We define that the iteration
number is set as m = M f , where M f is the maximum
iteration number. Lastly, the convergence tolerance is defined
as 
 f = 10−5.

E. Learning Optimal Lane-Change Motion Planning

Based on the proposed lane-change problem formulated
previously, it can be solved with certain iterations to obtain the
optimal solution through Algorithm 1. However, this method
is restricted by its relatively long computation time so that it
cannot be used in real-time. To tackle this issue, we propose
an efficient approach to incorporate a novel deep learning
method with the optimization problem. The motion trajectories
obtained by solving the problem shall be diverse, which
consists of both feasible and infeasible paths that may not
follow the city traffic rules. In addition, it is not promising
to directly learn the policy gained from the demonstration
data. Hence, we deploy data-driven methods on the AVs, such
as CNN [42], to help determine the actions on performing
lane-change while following the city traffic rules. The reason
is that CNN can handle spatial features of the vehicular

Algorithm 1 Lane-Change Motion Algorithm
1: Initialize the status of the ego AV and the obstacle AVs

n ∈ N .
2: for k = 1:NT do
3: for m = 1:M f do
4: Solve the problem (16) and obtain the result

[xm
ego(k), ym

ego(k)].
5: if the convergence conditions are satisfied then
6: Update the optimal solutions as [xm

ego(k), ym
ego(k)]

7: else
8: Return to Step 3 in the for loop for another iteration.
9: Set k = k + 1.

10: end if
11: end for
12: Return [xm

ego(k), ym
ego(k)] as [x∗

ego(k), y∗
ego(k)].

13: end for

Algorithm 2 Lane-Change Learning Procedure
1: Initialize the states and motion task.
2: Classify the motion task.
3: if Initial states of AVs follow traffic rules then
4: for k = 1:NT do
5: Use the result output by the proposed system.
6: if Check sudden collision and surrounding environment

then
7: Perform actions on obstacle avoidance.
8: else
9: Take over by the system.

10: end if
11: end for
12: else
13: Return to Step 1 for re-initialization.
14: end if

information, e.g. lateral positions of participated AVs and
surrounding scenes captured by the installed sensors. By using
CARLA system under successful V2V communications, such
vehicular information of the obstacle AVs can be received by
the ego AV to help determine the better lane-change actions.
As described in Section III, the perception learning results
obtained by CARLA system can be represented by vn,rec

obs,leader
and vn,rec

obs,follower.

In this part, we divide the lane-change learning procedure
into the following two stages. The first stage, known as the
classification stage, is utilized to predict the road conditions
that satisfy the traffic rules. If it does not meet the criterion,
re-initialization is required. The second stage refers to the
action generation stage. If the lane-change action is output
from the first stage, the second stage shall activate and generate
the specific instructions for the lane-change motion. Addition-
ally, during the process of lane-change motion, collision detec-
tion is continuously activated. If a possible sudden collision
occurs, the ego AV detects it and stops the process of lane-
change motion. The complete lane-change motion learning
procedure is shown in Algorithm 2.
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Fig. 4. Performance of the perception system during the lane-change motion.

V. CASE STUDIES

In this section, we assess the performance of the pro-
posed model. First, we detail our experimental setup. Then,
we evaluate the proposed model in comparison of baseline
techniques. Next, we compare three characteristic cases by
using the proposed model. After that, we investigate the impact
of different weather conditions and their effect on our proposed
system model. Finally, we examine the robustness of the
perception system and the convergence trend of the devised
algorithm.

A. Simulation Setup
To demonstrate the real-world applicability of the proposed

system model, we evaluate its performance in real-world
systems. Specifically, our simulations are mainly conducted
via the unreal engine platform generated by the CARLA
system. The number of the total time period is set to 100 with
�t equals 0.05 seconds. During this time period, the rain rate
R(T ) is generated via the CARLA system.

To train the CNN network for weather classification,
we employ CARLA to generate 9 vehicles in the “Town02”
map under both rainy and sunny weathers, among which 2 are
autonomous driving vehicles that can generate the camera
image data at a frequency of 10 frames/s. The entire dataset
consists of 300 frames for training at each vehicle. To train the
SECOND network, we employ CARLA to generate 28 vehi-
cles in the “Town02” map, among which 4 are autonomous
driving vehicles that can generate the point cloud data at
a frequency of 10 frames/s. The entire dataset consists of
2800 frames in total with 700 frames at each vehicle, where
200 frames are used for training at each vehicle and 500 frames
are used for validation. The Adam optimizer is adopted with
a learning rate between 10−4 and 10−6. The model training is
implemented by PyTorch using python 3.8 on a Linux server
with a NVIDIA RTX 3090 GPU.

Besides, our parameter settings for AV lane-change motion
planning strategy are as follows. The road length is set to
7.4 meters with two separate lanes, which follows the standard
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Fig. 5. (a) Lane-change motion planning under different approaches. (b) Impact of lane-change motion planning under different cases.

in [34]. We consider that there are three obstacle AVs and one
ego AV moving on these lanes. The initial locations of these
AVs are set based on the positional data generated by the
CARLA system. For each AV, the length is set to 4.7 meters
while the width is set to 2.09 meters, which follows the
specifications of Tesla Model 3 in [43]. The minimum safety
distance ddetect between the ego AV and one obstacle AV is
set to around 1 meter. According to the average latency of
practical cellular systems [44], the one-way communication
delay is assumed to be 100 milliseconds. The simulations are
conducted using MATLAB Release 2017a with the mosek
optimization solver found in the yalmip toolbox.

B. Effectiveness of Proposed System Model

First of all, this simulation studies the effectiveness of
the proposed system model on the real traffic network. To
measure the efficacy of the AV lane-change motion planning
strategy provided by the proposed system, we compare the
proposed model with the three baselines: 1) MPC approach in
[45] without obstacle avoidance (S1); 2) proposed lane-change
without the perception system (S2); 3) proposed lane-change
with the perception system (S3).

Based on the configuration in Section V-A, we study the
lane-change motion trajectories generated by the three base-
lines. In this part, we consider there are one ego AV and three
obstacle AVs moving on the road. The result is presented in
Fig. 5a. It is apparent that the trajectory generated in S2 out-
performs S1. The reason is that, without the obstacle avoidance
constraints, when the ego AV passes the intersection line, the
trajectory is close to the location of the follower obstacle AV at
the target lane. In the meantime, the safety distance of the ego
AV and this obstacle AV cannot be guaranteed. Furthermore,
since S2 can generate effective trajectory with the constraints
of obstacle avoidance, it cannot suddenly change during the
process of the lane-change motion. This is because S2 only
considers that the movement of the three obstacles AVs
follows the traditional motion equations in (19) and (20),
which neglects the consideration of the perception system.
By interacting with the perception, S3 can obtain the best lane-
change trajectory since the proposed system model enables
the timely interaction between the ego AV and the perception
system, which can also be regarded as the difference between
motion planning and path planning trajectories. Apparently,
owing to the real-time interaction between the ego AV and

the perception system, the AV lane-change motion planning
strategy can be further improved in an efficient manner.

C. Impact of Different Cases

In this part, we investigate the lane-change motion planning
trajectories under three following cases through the proposed
model,

1) Case I: only one leader obstacle AV moving at the ego
lane;

2) Case II: Case I + one leader and one follower obstacle
AV moving at the target lane;

3) Case III: Case I + Case II;

Based on the traffic environment illustrated above, Case I
only involves one obstacle AV at the ego lane while there
is no AV at the target lane. Moreover, Case II considers the
movement of two obstacle AVs at the target lane and there
is only the ego vehicle traveling over the ego lane. Case III
basically involves one ego AV and three obstacle AVs. Here
we utilize the setting of S3 shown in the previous section so as
to guarantee the availability of both V2V communication and
perception system. The results of the AV lane-change motion
trajectories are presented in Fig. 5b. In this figure, we can
see that the proposed model performs effectively under these
three cases. For instance, the curve (Case I) in Fig. 5b clearly
indicates a sharp trajectory due to keeping the safety distance
between the ego AV and the leader obstacle AV moving at the
ego lane. Similarly, the curve (Case II) represents the trajectory
to keep the safety distance when the ego AV moving at the
target lane. Furthermore, the trajectory shown in this figure
indicates the effective performance of Algorithm 2 since it is
devised to perform the actions of obstacle avoidance for the
ego AV.

In addition, by focusing on Case III, we further analyze
the velocity and yaw acceleration rate profiles of the ego AV.
The results are presented in Figs. 6a and 6b. In Fig. 6a, it is
apparent that from the beginning of the time period, the ego
AV increases the velocity for the lane-change motion. When
it traverses on the target lane, the velocity keeps in a constant
value. Besides, the yaw acceleration rate is relatively large
when the ego AV performs the lane-change motion as shown in
Fig. 6b. Additionally, at the target lane, the ego AV changes its
acceleration rate in order to maintain a safe distance between
the ego AV and the other two obstacle AVs. Last but not least,
the profile of yaw angle is obtained as Fig. 6c, which further
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Fig. 6. (a) Profile of velocity from the ego AV. (b) Profile of yaw acceleration rate from the ego AV. (c) Profile of yaw angle from the ego AV.

Fig. 7. (a) Effect of V2V communication reliability on lane-change motion planning. (b) Motion planning under different weather conditions. (c) Effect of
proposed lane-change motion planning considering crossroads.

demonstrates the angle changes during the procedure of the
lane-change motion from the ego AV.

D. Robustness of V2V Communication

Based on the setting of S2, we further assess the reliability
and robustness of the V2V communication module. Since S2
denotes proposed lane-change without the perception system,
we define S2+ as the one with the availability of V2V
communication module while S2- is the one with the failure
of V2V communication. Specifically, for the scenario S2-,
the ego AV can only follow (19) and (20) to estimate the
status of surrounding obstacle AVs. Meanwhile, we implement
the Gaussian noise for indicating the errors of the received
information via the V2V communication module. The result
is presented in Fig. 7a. It is obvious that the trajectory of
the ego AV (S2-) deviates as the errors occurred in V2V
communication. Hence, by comparing the performance of
S2+ and S2-, the reliability and robustness of the V2V
communication module contribute to the stable trajectory of
AV lane-change motion planning strategy.

E. Robustness of Perception System

We further investigate the robustness of the perception
system that is incorporated in the proposed system framework.
In this part, we validate the performance evaluation of Case III
in the CARLA system. The results are shown in Fig. 4 and 8.
In Fig. 4, for each subfigure, the top one indicates the visual
image captured by the ego AV while the bottom one represents
the sensing diagram of the radar. In particular, the sensing
diagram can sense the surrounding scene of the ego AV in
a multi-dimensional way. Since the interaction between the
perception system and AV lane-change motion planning is
operated in real-time, we capture eight screenshots of the
perception results for every 0.5 second until T = 4s as

Fig. 8. Global lane-change motion planning under CARLA.

shown in Fig. 4. Each subfigure shows the crucial moment
of the AV lane-change motion planning and the simultaneous
visual images of the status of the ego AV. Besides, in Fig. 8,
these eight instantaneous moments of the AV lane-change
motion are captured via the CARLA system, which shows
the consistency of the lane-change motion occurred in the
results of Fig. 4. The complete trajectory is referred to the
result of S3. Hence, these results demonstrate the robustness of
the perception system utilized in the proposed system model.

F. Scene Perception Under Different Weather Conditions

In this part, we study the proposed model under different
weather conditions during the total time period. In particular,
as shown in Fig. 9, we have implemented four weathers:
sunny day, rainy day, sunny night, and rainy night. Through
the use of CNN, we are capable of simulating the practical
weather conditions during the period of the AV lane-change
motion. Specifically, the CNN model is trained on a dataset
with 4000 different images and tested on a dataset with
1000 samples. Hence, the weather classification accuracy can
reach 97%. Since the trained CNN can always distinguish
sunny and rainy days, it may fail in classifying sunny and
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Fig. 9. Scene perception under different weather conditions.

rainy nights. On the other hand, the right hand side sub-figure
of Fig. 9 compares the pose information obtained from the ego-
perception (green box), the V2V communication (blue box),
and the ground truth (red box). It can be seen that the ego-
vehicle fails in detecting one far-away object. However, its
front vehicle can successfully detect the far-away object. This
demonstrates that the V2V result is more accurate than the
ego-vehicle result.

To correspond with these test environments, we fur-
ther investigate the motion planning strategy under different
weather conditions. Based on the setting in S3, we denote
“S3-Rainy” as the motion planning trajectory under light
rain condition while “S3-Rainynight” is the motion planning
trajectory under heavy rain weather with extreme sliproad
road condition. Here we follow [46], [47] to consider the
success probability of safe driving under different sliproad
conditions of rainy weather. In Fig. 7b, we can observe
that the trajectories under rainy and rainy-night weather
conditions include several deviations to the trajectory under
sunny weather condition. The reason is that these two rainy
weather conditions cause the occurrence of slippery road
in different levels, which further affect the AV lane-change
trajectory. Owing to the effectiveness of the perception system,
the ego AV can immediately follow the target lane under
the sliproad condition. Besides, compared to the profiles in
Figs. 6a, 6b, and 6c, it indicates the changes of these vehi-
cle states due to the effect of the rainy weather condition.
These results are captured to demonstrate the effectiveness of
scene perception of the proposed system model, which further
improves the AV lane-change motion planning strategy under
different weather conditions.

G. Impact of Different Road Conditions

Based on the setting of S3 under Case III, we further
assess the effect of the proposed lane-change motion planning
strategy when considering another road condition, e.g. the
occurrence of crossroads. In practice, the traffic rule indicates
that, before a vehicle enter the zone of crossroads, it must
stay on its own lane without performing the lane-change
motion within a certain distance. Hence, we consider such

Fig. 10. Mean average precision performance at intersection and highway.

road condition to investigate the performance of the propose
model. The result is shown in Fig. 7c. The solid line indicates
the reference target lane for AV lane-change motion planning
while the dashed line presents the actual lane-change motion
trajectory for the ego AV. Apparently, the ego AV can follow
the traffic rule since it does not fully cross the target lane and
move back to the ego lane to enter the zone of crossroads.
This result demonstrates the effectiveness of our proposed AV
lane-change motion strategy under different road conditions.

Besides, we provide the average precision performance at
two scenarios in the CARLA simulator, i.e., intersection and
highway. Note that, for each scenario, we consider that four
AVs are created and each vehicle collects 1000 point cloud
frames. We use the first 500 samples for training and the rest
for testing. The result is shown in Fig. 10. First, it can be
seen that the model trained with the highway dataset breaks
down in the intersection scenario, since the examples at the
intersection are much more diverse than those at the highway.
Second, the average precision of the model trained with the
intersection dataset achieves 98% for the highway scenario
and 86% for the intersection. This indicates that the trained
model in one scenario can generalize to other scenarios.

H. Convergence of Devised Algorithm

This test evaluates the convergence of the devised algo-
rithm shown in Algorithm 1. We study the proposed model
under Case III. In the meantime, we consider the objective
value of the optimization problem formulated in (20) and
the corresponding convergence gap that is computed via the
devised algorithm. In addition, the convergence gap is related
to the difference in the objective values obtained in every
iteration. Note that the average values are obtained under
multiple random trials. The result is shown in Fig. 11. One can
observe that the objective value converges to an equilibrium
level after about 8 iterations. Meanwhile, the convergence gap
value reaches the tolerance threshold of the stopping criterion
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Fig. 11. Convergence of devised algorithm.

in Algorithm 1. This confirms that the devised algorithm
is effective in solving the formulated lane-change motion
planning problem.

VI. CONCLUSION

In this paper, we proposed a generic system framework for
AV motion planning strategy based on motion prediction and
V2V communication. Although the motion planning strategies
have been studied in prior work, to the best of our knowledge,
this is the first work to incorporate motion planning with
the perception system under a unified framework. Meanwhile,
we deployed motion prediction and V2V communication tech-
niques to satisfy the real-time interaction between AV and the
perception system. The AV lane-change motion planning was
then formulated as an MPC programming problem and solved
by deriving a related algorithm. In addition, the perception
system that is integrated with V2V communication modules
enables the motion prediction approach, which further helps
AV to learn optimal lane-change motion planning under vari-
ous traffic conditions. A series of comprehensive simulations
demonstrated the effectiveness of the proposed system model
under different scenarios. In addition, the robustness of the
perception system was validated. Last but not least, the devised
algorithm was shown to successfully solve the problem at hand
while generating near-optimal solutions.

In future work, we will investigate how to transform the
AV motion planning problem into a stochastic problem to
model the uncertainties involved in sudden accidents. We will
also explore how to implement the function of the V2V
communication module into the system model.
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