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Abstract—Travel Time Estimation (TTE) stands as a cornerstone of efficient transportation systems. However, the critical imperative of
privacy preservation within the TTE context remains notably underexplored. This gap underscores the pressing necessity for innovative
solutions that prioritize the safeguarding of users’ geo-privacy, particularly in light of the expanding prevalence of data-driven TTE
algorithms. In this paper, a novel privacy-preserving TTE framework, CRATE, is proposed to ensure comprehensive privacy
preservation for TTE without compromising service quality. CRATE achieves this objective by identifying random routes within a
transportation network that yield identical travel times to the actual, privacy-rich route. This is accomplished through exploiting the
embedding representations for road segments and routes, followed by the development of a highly efficient heuristic for random route
generation. Furthermore, a travel time aggregation and calibration model is devised to enhance estimation accuracy while upholding
user privacy. Case studies conducted on three real-world vehicular trajectory datasets demonstrate that CRATE attains comparable
estimation accuracy to state-of-the-art non-privacy-preserving TTE algorithms while maintaining strict privacy protection. Additionally,
CRATE'’s efficiency is showcased through deployment on both high- and low-end mobile handsets spanning the past decade.

Index Terms—Travel time estimation, privacy preservation, representation learning, mobility trajectory analysis, data mining.

1 INTRODUCTION

In the contemporary landscape of transportation, Travel
Time Estimation (TTE) has emerged as a vital component
underpinning the efficiency and efficacy of modern trans-
port networks and intelligent transportation systems [1],
[2]. TTE serves as one of the cornerstones in facilitating
smooth and optimized travel experiences by providing real-
time insights into the duration required to traverse along
routes between specific locations [3], [4]. Whether it’s for
daily commutes, commercial logistics, or emergency re-
sponse planning, accurate TTE is indispensable for effective
route selection, congestion mitigation, and optimization of
transportation resources [5].

The advent of mobile devices equipped with location
tracking capabilities, combined with the ubiquity of navi-
gation apps and GPS-enabled services, has resulted in an
unprecedented abundance of trajectory data generated by
individual users [6], [7]. In the past decade, the evolution
of TTE algorithms has been significantly influenced by the
proliferation of these crowdsourced trajectory data 8], [9].
These data-driven approaches encompass a spectrum of
techniques, including machine learning and deep learning
algorithms, statistical models, and tensor-based methodolo-
gies, which all exploit the spatiotemporal characteristics
of trajectory data to infer travel times [10]. For instance,
the industry-leading ride-hailing company DiDi Chuxing
proposed a Wide-Deep-Recurrent (WDR) learning model
designed to predict travel times based on floating-car data.
Departing from conventional methods, the study formulates
TTE as a spatial-temporal regression problem [1]. Through
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the integration of wide linear models, deep neural networks,
and recurrent neural networks, the model achieves unparal-
leled accuracy in estimating travel times along predefined
routes at specific departure times. This algorithm is not
standalone, with a large array of novel algorithms in the
past years emerging to push the limit of estimation accuracy
[10].

However, amidst the progress in TTE methodologies
and the reliance on crowdsourced trajectory data, a crit-
ical issue has remained largely unaddressed: the perva-
sive concerns surrounding user privacy [11]. While users
willingly contribute their trajectory data to TTE service
providers in exchange for the benefits of optimized route
planning and real-time traffic updates, the implications of
this data sharing on individual privacy are profound and
multifaceted [12], [13]]. At the heart of the privacy dilemma
lies the inherent sensitivity of location-based data. Trajectory
data, comprising information about users’ starting points,
destinations, intermediate waypoints, and timestamps, in-
herently encapsulates intimate details about individuals’
movements and activities [14]. This wealth of information,
when aggregated and analyzed, can unveil not only routine
travel patterns but also sensitive aspects of users’ lives,
including their residential addresses, workplace locations,
recreational activities, social interactions, and even medical
appointments or other confidential engagements.

Further, the aggregation and analysis of trajectory data
from multiple users raise concerns about group privacy
and collective anonymity [13], [15], [16]. Even if individ-
ual trajectories are anonymized or pseudo-nonymized, the
aggregation of data across a diverse user base can lead to
the identification of unique travel patterns and behaviors,
thereby compromising the privacy of entire user cohorts.
This collective privacy risk is emphasized by the growing
sophistication of data analytics techniques, which enable
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service providers to extract non-trivial insights from seem-
ingly anonymized datasets [17].

Despite the importance of TTE and the increasing
emphasis on privacy preservation, the realm of privacy-
preserving TTE (PPTTE) has garnered considerably less
attention from the research community [11]]. This relative
neglect can be attributed, in part, to the inherent challenge
of striking a delicate balance between the utility of TTE
services and the imperative to safeguard user privacy. Lit-
erature [11] is among the first attempts towards PPTTE, in
which the investigated region is geographically divided into
multiple areas. Cross-area privacy-preservation is achieved
through federated learning. Nonetheless, this approach nei-
ther protects data within areas nor is robust to coalitions.
This aforementioned work, along with others, implies the
current challenges of TTE:

o Neglect of Privacy Preservation: Privacy preservation is
often sidelined in TTE research despite achieving excep-
tional performance, necessitating a reorientation towards
balancing privacy concerns with performance metrics.

¢ Complexity of Privacy-Preserving Approaches: PPTTE
methods based on federated learning face hurdles like
heavy client computation, non-IID assumptions, and high
communication overhead, impeding practical deployment
and scalability.

¢ Business Model Misalignment: Local-side PPTTE ap-
proaches require server distribution of proprietary traf-
fic data to clients, conflicting with established business
models and data governance frameworks, necessitating
solutions that align with stakeholder needs.

To bridge these research challenges, we propose
Contrastive Route-Advised Travel Time Estimation
(CRATE), a full privacy-preserving travel time estimation
solution. The design of CRATE is based on an intuitive
hypothesis that for any arbitrary route in a transportation
network, there must be numerous randomly generated
routes sharing the same travel time. CRATE discovers these
random routes, called contrastive routes, by learning the
road segment and route embeddings via trajectory-data-
free self-supervised learning and an iterative contrastive
route generation heuristic. Additionally, CRATE devises
auxiliary deep models for travel time aggregation and
calibration to achieve outstanding estimation accuracy,
which is empirically demonstrated by real-world datasets
from multiple sources.

The major contributions of this work are fourfold:

o We propose robust embedding models for road segments
and routes in the context of TTE, which precisely preserve
the semantic similarity of road segments and time simi-
larity of routes.

o We devise a highly efficient contrastive route genera-
tion heuristic based on the aforementioned embeddings,
thereby enabling CRATE to estimate travel times.

o We develop a lightweight deep learning model to aggre-
gate and calibration the travel times of contrastive routes
to achieve highly accurate estimations.

o We validate the efficacy of the proposed CRATE on three
real-world datasets in different countries and by different
data providers. Results indicate the significance of CRATE
compared with state of the arts.

2

The remainder of this paper is organized as follows.
Section [2] presents a brief literature review to the current
landscape of TTE and PPTTE. Section [3| introduces prelim-
inary definitions and the formulation of PPTTE. Section [4]
overviews and elaborates the proposed CRATE algorithm.
Section [5| demonstrates the configurations and results of
a set of comprehensive case studies. Finally, this paper
concludes in Section [l

2 PREvVIOUS WORK

In this section, we review the state-of-the-art data-driven
TTE techniques and current efforts to PPTTE. For a more
comprehensive review of the general landscape of TTE,
readers are referenced to [10].

2.1 Data-driven Travel Time Estimation

Contemporary data-driven TTE techniques can be gener-
ally grouped into two categories, namely, tensor-based and
learning-based methods. Particularly, tensor-based methods
are among promising methodologies for modeling variables
in transportation systems due to their ability to represent
multivariate relationships within high-dimensional arrays
of numerical data, commonly named tensors. Leveraging
tensors, researchers construct high-order tensors to address
TTE challenges, as demonstrated by [18], which constructs
a third-order tensor representing travel times of drivers
on specific roads at distinct times. However, inherent data
sparsity issues arise due to many road segments remain-
ing untraversed during significant time slots. To mitigate
this, tensor decomposition techniques are employed to re-
duce dimensionality, fill sparse data, and uncover implicit
relationships, as exemplified by the context-aware tensor
decomposition approach proposed by [18]. Similarly, [19]
introduces Probabilistic Traffic Condition Clustering, uti-
lizing tensor-based models alongside context-aware tensor
decomposition to accurately estimate missing entries, while
[20] incorporates congestion levels into their tensor model
and proposes a coupled tensor decomposition algorithm en-
hanced with point-of-interest features for improved missing
data recovery. Furthermore, tensor-based models are com-
bined with learning-based approaches for feature extraction,
as evidenced by [21], which integrates non-negative tensor
decomposition with a CNN-RNN model to extract both
long-term and short-term travel speed features within the
travel speed features layer.

Leveraging the merits of deep learning, learning-based
TTE methods offers the potential to further enhance pre-
dictive accuracy and feature extraction capabilities for TTE.
To list a few of the classics, [22] utilized a CNN-based
approach and introduced PathCNN, a unique architecture
incorporating diverse pooling techniques to handle hetero-
geneous sub-path TTE images and regulate convolution for
enhanced spatial feature capture. Notably, temporal depen-
dencies were effectively captured using a one-dimensional
CNN model, demonstrating novelty compared to prevalent
RNN usage for temporal feature extraction. Further, [23] di-
vided high-resolution maps into grids, integrating trajectory
data for pattern recognition via deep CNNs on morpho-
logical layout images, facilitating effective representations
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for subsequent predictions. In contrast, RNNs are adept at
modeling temporal data due to their memorization capa-
bility, with applications like bidirectional LSTM (BiLSTM)
further enhancing TTE accuracy through backward infor-
mation utilization and auxiliary supervision mechanisms,
as illustrated in [24]. DeepTTE [3] directly estimates travel
time for entire paths from raw GPS sequences, using sliding
windows to transform paths into sequences of sampled
points. Inspired by natural language processing, WDR [1]
concurrently trains wide linear, deep neural, and recurrent
networks. The algorithm treats routes as sentences and road
segments as words, utilizing both wide and deep models
to capture route statistics and recurrent models for detailed
segment characteristics, enabling accurate predictions.

2.2 Privacy-preserving Travel Time Estimation

Despite the abundance of research in data-driven TTE, the
exploration of PPTTE remains in its infancy, underscoring its
critical importance in addressing privacy concerns amidst
the proliferation of TTE solutions. Federated learning, char-
acterized by a decentralized architecture facilitating client-
side data retention and collective model training on the local
side, offers a promising avenue for PPTTE. In [11]], Zhu et
al. developed a cross-area privacy-preserving solution inte-
grating federated learning, enabling tailored travel time esti-
mators for distinct areas while upholding inter-area privacy
safeguards. Addressing limitations of traditional federated
learning, [25] introduced GOF-TTE, featuring both a base
global model and fine-tuned personalized models, enhanc-
ing prediction accuracy across diverse client scenarios while
preserving privacy. Despite the promising numerical results
shown in the respective literature, neither solutions achieve
highest user privacy level as individual trajectories and
routing requests are aggregated in middle-layer facilities
(area server in [11], transfer environment in [25]) before
computation. From end users” perspective, their privacy-
rich trajectories still need to be uploaded to third-party
devices for computation instead of being kept local, raising
individual privacy leakage concerns. Continued research
efforts are necessary to realize the vision of full PPTTE that
safeguards user privacy without compromising predictive
performance.

Besides federate learning, homomorphic encryption and
differential privacy are among the common privacy preser-
vation techniques. Homomorphic encryption allows com-
putations on encrypted data without needing to decrypt it
[26], preserving data privacy but requiring substantial com-
putational resources, which leads to inefficiencies. Addition-
ally, it is unclear how to leverage homomorphic encryption
to encode continuous spatial locations in trajectories and de-
velop corresponding server-side algorithms to interpret the
ciphertext and estimate travel time without decryption. Dif-
ferential privacy introduces statistical noise into datasets to
prevent the identification of individual entries but requires
aggregating and perturbing multiple users’ trajectories [27],
which raises similar privacy concerns as federated learning
since users must upload their real trajectories to a middle-
layer aggregator [11], [25]. The proposed CRATE takes a
different privacy preservation route by using a contrastive
route generation mechanism to create synthetic yet plausible
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routes that mimic the travel time of real routes without
exposing the actual paths of users. This method ensures data
privacy while maintaining high accuracy and efficiency in
travel time predictions, making it well-suited for real-time
TTE in transportation systems.

A related but distinct research topic is privacy-
preserving traffic prediction, which aims at forecast fu-
ture traffic conditions using recently aggregated data with
privacy preservation considerations [28]]. Traffic prediction
and TTE serve different purposes and require distinct
data handling methods. The former aggregates data like
vehicle counts or speeds from sensors, which inherently
anonymizes individual data, making privacy preservation
simpler [29], [30]. In contrast, TTE focuses on individual
trajectories with geo-spatial data, requiring sophisticated
privacy-preserving methods to prevent route reconstruc-
tion. Consequently, privacy-preserving traffic prediction al-
gorithms cannot be directly applied to travel time estima-
tion without significant modifications, as they are designed
for different types of input and output data and privacy
requirements.

3 PRELIMINARIES

In this section, we first define important concepts used
throughout the sequel of this paper. Then we formulate the
privacy-preserving TTE problem and analyze its challenges.

3.1 Definitions

Definition 1 (Road Network). In this work, the road net-
work is represented by a directed graph G(V,£), where V
is the set of nodes (e.g., junctions and points of interest)
in the network, and £ C {(u,v) | u,v € Vandu # v}
is the set of road segments connecting nodes in V. To
establish the connectivity between junctions in the road
network, we derive a square adjacency matrix denoted as
A = [a;;] € BYIXIVI Each element a;; of the matrix is set
to one if there exists a directed edge from node 7 to node j.
We further employ two descriptor functions ¢ : V — ¥ and
¢ : & — ® to map eachnode v € V and edge e € £ to sets of
pre-defined attributes denoted as ¥ and ®, respectively, i.e.,
P(v) € ¥ and p(e) € ®. These attribute sets are designed
to describe the explicit properties of the nodes and road
segments within the road network.

Definition 2 (Route). In this context, a route R =
{v1,v2,...,vn} is defined as a sequence of N traversed
nodes v; € V in the road network. The departure time of
the route is denoted as dj, indicating the time at which the
route was initiated. If the route is from the past data, it is
associated with the corresponding total travel time denoted
as tg.

Definition 3 (Contrastive Route). For privacy-preservation
considerations, users’ real routes R are not uploaded to the
server. Instead, a privacy-preserving approach is employed
where C' contrastive routes R, are generated locally and
uploaded for travel time estimation. Each contrastive route
Re = {ve1,Ve2y--.,0c.N,} is composed of a sequence of
N. nodes selected from the road network to simulate a
virtual traversal. The synthesis of contrastive routes aims to
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develop forged but realistic routes that have similar travel
times to R while veiling users’ location privacy.

Definition 4 (Road Segment and Route Representation
Learning). The goal of representation learning is to dis-
cover low-dimensional representations of road segments
and routes to facilitate contrastive route generation. Given
a road network G, an embedding function w : £ — RP
projects each road segment e € & to a D-dimensional
vector in the latent space R”, where D < |€|. We further
utilize another embedding function ¥ : R — R to embed
any route R € O or R, € O into an R-dimensional
embedding, where O is the set of all possible routes in § and
R <« |O|. These two embedding functions are designed to
capture informative and compact features of road segments
and routes, respectively. The latter also enables effective
generalization to new and unseen routes.

3.2 Problem Formulation and Analysis

The primary objective of this research is to provide users
with travel time estimations that are both accurate and
timely, all while maintaining their location privacy. To
achieve this goal, we propose the CRATE framework and
develop a set of encoding-decoding functions as follows:

L= fEnC(R)7 (1&)
T = f=4(L), (1b)
t=fo(T), (1c)

where f° : R — L and f9 : T — R are the route encod-
ing and travel time decoding functions, respectively, which
are executed on the user’s end. Additionally, the server
performs the travel time estimation function f*': £ — T
using obfuscated data L. The resulting travel time esti-
mation 7 is then communicated back to the user. Finally,
t represents the estimated travel time. By employing this
design, the sensitive route information is encoded by f°
before being uploaded as £, ensuring that the uploaded
data does not reveal the original route R. This approach
effectively safeguards user privacy while providing accurate
travel time estimations.

The realization of the CRATE framework faces several
challenges that need to be addressed in order to provide
accurate and timely TTE services to edge users. These chal-
lenges are as follows:

1) Well-designed and light-weighted neural network mod-
els are essential for effective and efficient representation
learning on the edge.

2) Past route data with travel time annotations are scarce
and biased on each user’s end, hindering large-scale local
model training.

3) Mobile TTE users are likely to concerns the energy and
cellular data consumptions, preventing them from train-
ing deep models.

4) Due to privacy concerns, users refrain from sharing their
real routes with others or the server.

5) Due to business concerns, the service provider does not
distribute real-time traffic states.

In CRATE, we propose innovative solutions to address all of

the aforementioned challenges. The contrastive route gen-

eration mechanism, coupled with the privacy-preserving
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TTE scheme, enables accurate, timely, and cost-effective TTE
while ensuring user privacy.

3.3 Privacy Model

System Setting. The system consists of a set of mobile
clients ¢ = {Cy,...,C,} and a cloud server S. Each
client C; holds a real route RY € O and, before calling
the travel time estimation service, executes a randomized
route generation algorithm GenDummy(-) that outputs a
multiset of d > 2 contrastive (dummy) routes R; =
(RED . REDY € O. Only R; is uploaded to S; the
real route R never leaves the client. The subsequent proto-
col follows the encoding/estimation/decoding pipeline of
Sec. 3.2 using the union of all uploaded dummies | J;. R.;.
Adversary Capabilities. We consider a static, probabilistic
polynomial-time (PPT) adversary A that may corrupt any
subset of clients C and/or the server S before the protocol
starts. For every corrupted party, A obtains its complete
internal state (including real routes of corrupted clients) and
may arbitrarily deviate from the prescribed protocol. Parties
not controlled by A are termed honest. The adversary’s view
is denoted View 4 and consists of: (1) public system param-
eters, (2) the internal states of all corrupted parties, and
(3) all messages exchanged during the protocol execution,
including the uploaded dummy sets R; of honest clients
and the server’s responses.

Privacy Goal. Intuitively, A must learn nothing about the
real route R} of any honest client C; beyond what was
already known a priori. We formalize this via a standard
semantic-security definition.

Definition 5 (Route Privacy). CRATE is said to provide (\)-
route privacy if for every PPT adversary A there exists a
PPT simulator S such that
(View' ™) & (Viewg™™),

where ~ denotes computational indistinguishability with
security parameter ). The real view is generated from an
execution in which each honest client runs GenDummy(R})
on its true route R}. The simulated view is produced by S
given only the public parameters and the internal states of
the corrupted parties but without any information about R
for honest C;.

Def. 5| guarantees that an adversary controlling the
server and any coalition of colluding clients cannot infer
any additional information about an honest user’s real route
from the dummies it observes, because the adversary’s view
could have been generated without access to that route.
The model deliberately focuses only on confidentiality; it
does not cover authenticity or verifiable integrity of the
uploads —i.e., we accept that malicious clients may submit
arbitrary routes as long as honest users” privacy is pre-
served.

4 PRIVACY-PRESERVING CONTRASTIVE ROUTE
ADVISED TRAVEL TIME ESTIMATION

In this section, we introduce the proposed CRATE algorithm
for PPTTE. CRATE is essentially a server-client model,
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Fig. 1. Overview of CRATE. The framework comprises three execution phases. The execution of CRATE comprises three phases: training, inference,
and calibration. The two blocks with dashed border in the inference phase are identical to corresponding ones in the training phase.

where the clients (TTE users) are responsible for the exe-
cution of f°¢ and f9 in to generate random routes
and the final travel time, respectively. The server is in
charge of calculating the travel times of random routes (f°%),
therefore exclude the involvement of users’ privacy data. In
the following, we first present an overview of CRATE and
its training/inference phases. Then we elaborate the design
of all constituting components of CRATE.

4.1 Overview

Fig. |1] illustrates the overarching framework of the pro-
posed CRATE approach for privacy-preserving travel time
estimation. The execution of CRATE unfolds through three
distinct phases, namely, an exclusive offline training phase
conducted solely on the server, an online inference phase
involving both the server and the clients, and an online
calibration phase also involving both parties.

During the initial model training phase (top part of
Fig.[I), the TTE server employs explicit road network data
and synthesized routes to train a seg2vec model, which
serves as a road segment embedding model. Subsequently,
a contrastive route embedding (route2vec) model is con-
structed based on the trained seg2vec model. The trained
route2vec model, along with a contrastive route gener-
ation algorithm, is disseminated to each user to facilitate
online TTE.

Moving on to the second online inference phase (main
lower part of Fig. [I), edge TTE users, acting as clients,
employ the contrastive route generation algorithm and
route2vec locally to generate contrastive routes derived
from their real ones. These contrastive routes are then up-
loaded to the server, allowing for the estimation of their
respective travel times using any available TTE models. Sub-
sequently, the calculated times and relevant information are
communicated back to the users, enabling the implementa-
tion of a contrastive route travel time aggregation scheme.
This scheme ultimately produces the estimated travel time
for the real routes.

The framework incorporates an additional third online
calibration phase (lower right part of Fig. [l) aimed at refin-
ing the estimated travel times through feedback calibrations.
Users may upload their estimated travel times as well as
the corresponding actual travel times. While keeping the
data related to the previous contrastive routes, the server

¥ --—-a :I'ranspose Locality
< T

w

o T Level
8l|x| s X S

) Length
S Seg. Embedding Lane

Back-propagation

Fig. 2. Representation learning model of road segments, seg2vec.

leverages this information to train a travel time calibration
model, which generates time offsets. This model is sub-
sequently utilized to produce offsets for new contrastive
routes, enhancing the accuracy of the local travel time
aggregation scheme in estimating travel times.

CRATE resolves the challenges mentioned in Section
and Section by exclusively conducting the intensive
model training process on the server, eliminating the need
for users to undergo local model training as required in Fed-
erated Learning-based approaches. Additionally, through-
out all three phases of CRATE, users are not obliged to
upload their present or previous personal routes, and the
server is not required to distribute road network data. As a
result, concerns regarding privacy and the potential expo-
sure of proprietary data are effectively addressed. Indeed,
CRATE is an incremental unsupervised learning framework
that does not rely on historical route and travel time in-
formation for initialization, although the inclusion of such
data can significantly enhance the initial estimation perfor-
mance. The accuracy of the estimations is ensured through
the employment of the calibration model, which leverages
real-time travel time (instead of route) data provided by
users. This online learning design significantly enhances
the overall performance of CRATE while simultaneously
safeguarding user privacy.

From the modular design standpoint, CRATE comprises
five key components, namely, the seg2vec model, the con-
trastive route generation algorithm, the route2vec model,
the travel time estimation and aggregation scheme, and the
travel time calibration model. The subsequent subsections
provide detailed introductions and discussions of these
components.
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4.2 Representation Learning of Road Segments

In this section, we introduce the first component of CRATE,
seg2vec, which is utilized to acquire embeddings of road
segments. The primary goal of this representation learning
endeavor is to significantly condense the dimensionality of
the road segment domain, from |€| to D, while simulta-
neously preserving the similarity (and disparities) among
segments. Given that CRATE'’s central principle revolves
around the development of contrastive routes akin to the
actual ones, the similarity of road segments is defined by
their adjacency and homogeneity relationships. seg2vec
is designed to generate embeddings in such a manner that
similar road segments find themselves proximate within the
embedding space RP.

Fig.[2| presents the representation learning model of road
segments with seg2vec. As shown in the figure, seg2vec
functions as a multi-task classifier aiming at developing the
similarity score of pairs of road segments. This approach
is rooted in and significantly expands upon the Skip-gram
technique utilized in natural language processing [31]. At
the core of this model lies the trainable embedding matrix
S € RI¥IXP_ Given a one-hot vector u € RI¢| representing
the segment u € £, seg2vec employs the only non-zero
row within u'S as the embedding for u, denoted as e, €
RP. The embedding matrix S is trained on the similarity
of road segments. Particularly, we compute s, = {s,,,} =
el ST € RI¥l to generate a vector of road segment similarity
scores, where each entry s,, , refers to the similarity between
segments v and v.

Considering the proximity and homogeneity of
road segments, the target similarity score 5,, =
(8oc,, 501, 8len glne ) is defined by four facets:

1) Locality sk’c € B is set to 1 if w and v are within L hops
in the road network.

2) Road level SIVI € Bis set to 1 if v and v are of the same
road level (e.g., motorway, truck, primary, secondary,
tertiary, and residential as classified by OpenStreetMap).

3) Segment length 57, € (0,1] is the ratio of the lengths of
u and v.

4) Road lane sg“ij € B is set to 1 if u and v has the same
number of lanes.

With the quantified similarity scores, the embeddings S
can be trained through back-propagation and the following
binary cross-entropy loss:

Loss(su0: Su) = BOE(su,0, 85%,) + BCE(su,0, 811

+ BCE(su,0, 82%) + BCE(su,0, 84%,), (2a)
1 —.’IJ

The training of S is accomplished through the multi-
objective optimization problem of minimizing (2) using the
RMSProp optimizer. In essence, if segments « and v satisfy
one or more of the aforementioned similarity metrics, e,
and e,, will gradually converge within the embedding space,
thereby producing similar embeddings.

4.3 Contrastive Route Generation

With the aim of generating contrasting routes that exhibit
similar travel times to the real route, CRATE addresses this
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question by dividing it into two distinct aspects: the genera-
tion of arbitrary contrasting routes and the determination of
route similarity in terms of travel time without explicit time
information. The former is tackled through a tailor-made
algorithm leveraging segment embeddings, and the latter
will be expounded upon in the subsequent section with the
introduction of route2vec.

The proposed algorithm for contrastive route genera-
tion encompasses three key elements: initial location, seg-
ment propagation rule, and termination criteria. Given an
arbitrary real route R, the algorithm randomly decides
whether to initiate from the origin or the destination of
the contrastive route to be generated. Subsequently, cosine
similarities between the real origin/destination u (v; or vy
c.f. Definition |2) and all segments v € &£ within the road
network are computed, defined by

cos(u,v) = ey - e,/|ledl]lesl- 3)

The contrastive origin/destination is randomly selected
from &£ based on the softmax-ed cosine similarity as the
probability:

O’(u, v) _ ecos(u,v)/z e ecos(u,v). (4)

With the initial location of the contrastive route deter-
mined, the generation algorithm proceeds to propagate the
route throughout the road network. Here we take the start-
from-origin mode as an example. Given the real route R and
a partially finished contrastive route R, the next segment of
R. is randomly chosen from all feasible next-hop segments
with a probability defined as follows:

eos(I R IRe|l+e0)

R7 RC’ - R ) 5
! ) | ecosIRILIRe [ +e.) ©®)

Zvef(’uc‘NL
where the vector norm of a route is defined as || R
> ucr €u, and E(u) denotes the set of road segments that
serve as next-hops from wu. Principally, this probability
makes the expanded contrastive route closely aligned with
the real one in terms of their cosine similarity.

Given the iterative nature of the previous segment
propagation, a termination criterion is vital for the route
generation process. CRATE introduces two distinct termi-
nation criteria tailored for different purposes of the con-
trastive route generation algorithm: travel time-based and
similarity-based. The former is employed at the server
during the training of route2vec to be introduced sub-
sequently, where the travel times of the real and contrastive
routes can be estimated using historical data. In this context,
route generation will cease if adding a new segment would
exacerbate the discrepancy in travel time between R and
Rc. The latter is utilized when employing route2vec
for contrastive route inference at the edge, which will be
elaborated on next.

It is important to note that the contrastive route gen-
eration algorithm proposed in this section is not exclusive.
Instead, any heuristic or learning-based algorithm that takes
a real route and the road network as inputs can be employed
as long as it stochastically produces alternative routes. This
leaves room for the possibility of more advanced generation
algorithms in future research endeavors.
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Fig. 3. Representation learning model of routes, route2vec.

4.4 Representation and Contrastive Learnings of
Routes

Assuming we have a real route R and a set of randomly
generated contrastive routes R, CRATE aims to select the
most similar contrastive routes on the client side in terms of
their unknown travel times for uploading to the TTE server.
However, the representation learning model presented in
Section solely involves the static features of road seg-
ments and disregards their time-variant characteristics. To
overcome this limitation, we propose a route2vec model
to capture the hidden representation of routes.

Given an arbitrary route R, seg2vec is first adopted
to generate the corresponding sequence of road segment
embeddings:

€y ) (6)

Subsequently, time features — encompassing absolute time
and the sequence of road segments — are superposed on the
embeddings, resulting in a pre-encoding representation Px
of the route:

seg2vec(R) = {€y;,€py, - -

P =[e,, + P1,€u, + D2,...,€uy +Pn]T € RV*P . (7a)
pi = (PE[i] + TP + TV + T) /4, (7b)

where PE[i] denotes the Positional Encoding of position i,
and TP, TW, TY represent the cosine-encoded values for
time-of-day, day-of-week, and week-of-year values, respec-
tively. The (expected) departure time of R is utilized here to
compute these absolute time features, while the positional
encoding serves to differentiate between various segments
within the route. Consequently, geographically identical
routes at different time exhibit distinct representations.

route2vec further follows the principles of Trans-
former [32] and non-contrastive Siamese network [33]], and
incorporates a series of N®E route encoder blocks to gen-
erate the route embedding based on Px. Within each en-
coder block, the input X (initially Pr and subsequently the
output of the previous block) undergoes multi-head self-
attention, allowing the generated representation to capture
dependencies within the road segment sequence of R. The
multi-head self-attention is defined as follows:

XWQ . (XWK)T
VD

Y = softmax ( ) XWV, ®)
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where W, WK, WV are trainable weight parameters of
the shape D x D. The output is then passed through a feed-
forward neural network consisting of two linear transfor-
mations with Rectified Linear Unit (ReLU) [34] activation:

(9a)
(%b)

Z = LN (ReLU(s?W1 +b)W2 4+ b2+ ?) :

Y = LN(Y + X),

where LN denotes to layer normalization aiming to reduce
the impact of covariant shift during model training. Addi-
tionally, W! W2 bl b2 represent trainable weight and bias
parameters.

To compute the similarity between routes, we adopt a
non-contrastive Siamese network architecture [33] as shown
in Fig. [3| that generates comparable output vectors for dif-
ferent input route embeddings. The model is trained using
the contrastive learning paradigm [35]. Given the real route
R and one of its contrastive route R., their embeddings
can be computed by using the aforementioned route2vec
and denoted as Hy and Hg, respectively. To fully leverage
the inter-route segment interactions within R and R., we
incorporate a cross-attention between Hy and H;, achieved
by slightly modifying (8) as follows:

H:WQ - (H,WK)T
VD

where WQ', WX’ and WV are trainable weight parame-
ters.

Note that although Hy and H; may have different
shapes (N x D and N, x D, respectively), the cross-attention
output H; shares the shape of Hj, ie., N. x D. Conse-
quently, the similarity between R and R. can be computed
as the averaged cosine similarity of all rows:

H; = softmax ( ) H,WY',  (10)

Ne—1

LP(R, ﬁp) = Z COS(flg,“haﬂ')/Nc.
=0

(11

During training of the Siamese network on the server, the
objective is to find optimal parameters such that routes with
similar travel times receive high similarity scores according
to (1I). This is achieved by generating contrastive routes
with similar travel times based on the road network and
historical traffic speed (as described in Section [4.3). Given
such routes, the following loss function is minimized:

Loss(R,Re) = 1 — (R, Re) + NLL(Hz, Hy), (12

where NLL(+, -) denotes the negative log-likelihood.

Once the model is well-trained, it can be used to generate
contrastive routes with similar travel times solely based
on ¢(-,-) at the edge clients. In particular, the aforesaid
route generation algorithm iteratively expands the gener-
ated route, and at each step, it calculates a new route
similarity score using (1I). When no higher similarity is
achieved with the past ten added road segments, the gener-
ation process terminates, and the most similar contrastive
route is selected and sent to the TTE server. In practice,
CRATE produces NR contrastive routes to enhance the
generalizability and stability of TTE results.
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4.5 Contrastive Travel Time Estimation

After defining the contrastive route generation and repre-
sentation learning components, we can now estimate the
travel time of a real route with the generated contrastive
ones. Once the NR contrastive routes are generated on
the edge client, along with their route similarity scores as
defined in (II), they are transmitted to the TTE server.
The server utilizes existing TTE algorithms to calculate a
travel time value 7. for each contrastive route. Finally, the
edge client calculates the weighted arithmetic mean of these
times, where the similarity scores serve as the weights. The
resulting value is used as an estimate for the travel time of
the real route R.

Note that CRATE is not limited to the base TTE algo-
rithm to be executed at the server side: any one as simple
as historical average or as complex as the state-of-the-art
deep learning models can be integrated with ease. This
enables CRATE to fully utilize the past advancement of TTE
algorithms and better achieve PPTTE. In the case studies
to be presented in Section [5, we use the intuitive historical
average algorithm to calculate the travel times of the con-
trastive routes for its simplicity and generalizability. Indeed,
more advanced models that incorporate various external
factors such as weather conditions, traffic patterns during
rush hours, and real-time traffic updates can be integrated to
further improve the TTE performance and make the system
robust against various external conditions. Thus, while the
historical average model serves as a straightforward and
effective baseline, the flexibility of CRATE allows for the
inclusion of comprehensive TTE models that leverage exter-
nal data, significantly boosting the overall performance of
the system.

4.6 Contrastive Travel Time Calibration

During the end-to-end training of CRATE wusing the
previous data manipulation schemes, we observed non-
stationary time shifts between the aggregated travel time
and the ground truth. This error can be effectively alleviated
by introducing a data-driven bias block, or as we call it,
travel time calibration model. In particular, the calibration
model consists of an additional two-layer feed-forward neu-
ral network with residual connections and layer normaliza-
tion, as defined in (9). This neural network compresses the
route embeddings of all contrastive routes along the road
segment dimension. The result is then concatenated to the
estimated travel time and the similarity score to produce the
model input:

xeal {Xzal} c RNCRX(D+2)’ (13a)
Ne—1 B T

Xl — ( > hel| [T 0(R, Rc)}) (13b)
=0

The network outputs a single time bias value, which is
trained using an L2-norm loss function against the discrep-
ancy between the aggregated travel time and the real one.
In summary, when a TTE request is sent to the server, it is
also passed to the calibration model, which calculates a time
bias. This time bias is sent back to the edge client and added
to the aggregated estimated travel time. Later on, when this
particular route is finished, the travel time difference is also
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uploaded to the model, enabling it to refine its parameters
and provide more accurate time biases for future requests.

4.7 Privacy Analysis of CRATE

We now establish that CRATE achieves the privacy guar-
antee formalised in Def. [5| The core argument is that the
only information about an honest client that ever leaves her
device is the multiset of dummy routes R; produced by the
proposed contrastive route generation algorithm, termed
CRG in the sequel. CRG draws randomness at three stages
(origin/destination sampling, segment propagation, termi-
nation), each time using probabilities that depend only on
the route embedding e € R? produced by the route2vec
model. Intuitively, route2vec is trained to preserve travel
time rather than geometry, so many semantically distinct
routes map to adjacent embedding vectors. For any two
embeddings e, e’ with identical travel-time label, the soft-
max probabilities that CRG uses for origin/destination and
segment propagation differ by at most negl()) in total vari-
ation distance. This follows from the high dimensionality of
e and the cosine-similarity concentration phenomenon [36].
Provided that the dummy routes are distributed inde-
pendently of the real route, the adversary’s view can be
perfectly simulated without access to the real route.

Lemma 1. For any pair of real routes 79,71 € O and every
PPT distinguisher D,

| Pr[D(CRG(ry)) = 1] — Pr[D(CRG(r1)) = 1]| < negl(),
(14)

where ) is the security parameter and negl(-) is a negligible
function.

Sketch. Algorithm CRG draws dummy routes R; by pseu-
dorandomly sampling from the public route pool O, using
only fresh local randomness and no component of the
client’s true route R;. Consequently, the joint geographical
distribution of the resulting multiset R; is identical —up
to negligible pseudo-random generator error—no matter
which R is given as input. Any PPT distinguisher therefore
gains at most negligible advantage. |

Theorem 1 (Privacy of CRATE). Under Lem. [1} CRATE
provides (\)-trajectory privacy in the sense of Def.

Proof. We construct a PPT simulator S that, given the public
parameters and the internal states of all corrupted parties,
outputs a view that is computationally indistinguishable
from the adversary’s real view Viewieal.

Simulator S. For every corrupted client C;, S inserts the
genuine state supplied by the environment, including R;
and R;. For each honest client C;, S samples a dummy
multiset R; < CSG(R]) using an arbitrary fixed route
Rj and the same dummy-set size d. Because server-side
processing (encoding, aggregation, travel-time estimation,
decoding) depends solely on the union of uploaded dum-
mies, S can execute the entire server program locally using
(U;Ri) U (U, R;), thereby generating all messages and
outputs that .4 would observe.

Indistinguishability. The real and simulated views dif-
fer only in the dummy multisets originating from hon-
est clients: R; against R;. By Lem. these distributions
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TABLE 1
Key Statistics of Datasets

Dataset # Records #Routes  Avg. Time  Sampling
Xi'an 1536641807 6733235 399.05s 2sto4s
Chengdu 1096618422 6105003 581.57s 2sto4s
Porto 83423824 1710990 942.39s 15s

are computationally indistinguishable for every C;, hence
for their concatenation across all honest clients. All sub-
sequent protocol messages are deterministic or pseudo-
random functions of those dummies; the hybrid/pseudo-

random function argument extends indistinguishability to

the entire transcript. Therefore, View s ~ View3™, satisfy-

ing Def. [ |

The theorem confirms that CRATE leaks no additional
information about an honest users true route beyond what
corrupted parties already know, even when the server is
compromised and colludes with any subset of clients. The
guarantee rests on the sole cryptographic assumption that
CSG is input-oblivious (Lemmal(T), which holds by construc-
tion in our implementation.

5 CASE STUDIES

In this section, we perform a series of comprehensive case
studies using three real-world trajectory datasets to evaluate
the proposed CRATE. We begin by introducing the details
of the datasets and the experiment configurations. Next,
we conduct an extensive comparative study to assess the
accuracy of travel time estimation achieved by CRATE while
preserving privacy. We then deploy the centrally trained
CRATE on several representative mobile devices to evaluate
the usability of the proposed learning models. Additionally,
we analyze the impact of hyper-parameters on CRATE'’s
performance.Finally, we examine the generalizability of
the contrastive travel time calibration model on different
datasets.

5.1 System Configurations and Baselines

In our case studies, we utilize anonymized historical travel
time index datasets provided by DiDi Chuxing. These
datasets were collected by ride-hailing vehicles in two major
cities in China, Xi’an (from October 1st, 2016 to November
30th, 2016) and Chengdu (from November 1st, 2016 to
November 30th, 2016), with a non-static sampling interval
ranging from 2s to 4s. Additionally, we use the taxi trajec-
tory dataset from Porto, Portugal, collected from July 1st,
2013 to June 30th, 2014, with a sampling interval of 15s.
Table (1| records some key statistics of these three datasets.
The topology and static attributes of the transportation
networks are obtained from OpenStreetMap.

As described in Section CRATE consists of three
execution phases. The framework does not rely on historical
trajectory data for training, except for the online learning
of the calibration model. Therefore, we train the seg2vec
model using the static open data of road networks until
convergence, which is determined by observing no loss
decrease for three consecutive epochs. We then map-match
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the trajectory data onto the road networks and derive the
average traffic speed of the three tested cities. This infor-
mation is used to train the route2vec model, where we
randomly generate real and contrastive routes and compute
their travel times using the averaged traffic speed. It is
important to note that no real trajectory data (route or
time) are used in this phase of training. Once these two
models are well-trained, we apply CRATE chronologically
to all trajectories in the three dataset and begin training
the calibration model using the travel time discrepancy. We
expect to observe an improvement in accuracy over time
due to the calibration, which will be evaluated in Section|5.2,
It is also worth mentioning that no trajectories are used at
any stage of the training process, thereby preserving the
location privacy.

To better simulate the practical usage of CRATE, we
implement the TTE server on computing servers equipped
with Intel Xeon E5 CPUs and nVidia RTX 2080Ti GPUs.
The edge client part of CRATE, including the trained
route2vec and the contrastive route generation algorithm,
is deployed on a number of mobile devices with Snap-
dragon 430, 855, and 888 SoCs. We use PyTorch and Ten-
sorFlow for model implementation and training, and the
deployment is achieved by the corresponding PyTorch Mo-
bile and TFLite libraries in this setup. The mobile execution
performance will be discussed in Section We set the
hyper-parameters of CRATE as follows, unless otherwise
stated in Section number of contrastive routes NR = 3,
embedding dimensionality D = 256, number of stacked
encoders NRE = 6, number of heads in the multi-head self-
attention is eight, and the hidden size of the feed-forward
neural networks in the encoders and calibration model is
2048. The training mini-batch size is set to 128 for seg2vec
and 32 for route2vec. Following contemporary TTE stud-
ies [4], [5]], [11], we use the mean absolute percentage error
(MAPE), root mean square error (RMSE), mean absolute
error (MAE), and satisfaction rate of less than 15% (SR-15)
error as accuracy metrics.

Finally, we compare the proposed CRATE with the fol-
lowing privacy-leaking and semi-privacy-preserving base-
line methods in terms of TTE accuracy:

5.1.1 Privacy-leaking baselines

« Historical Average (HA) estimates travel time by sum-
ming up the historical average travel time of each road
segment in a given route.

o TEMP [37] queries and averages trips with neighboring
origins and destinations of a given route.

« XGBoost [38] adopts an ensemble of regressors for TTE.

o Wide-Deep-Recurrent (WDR) [1] is a state-of-the-art
trajectory-based TTE model that combines wide, deep,
and recurrent neural networks for estimation.

e DeepTTE [3] employs 1-D convolution and recurrent net-
works to estimate travel times from raw GPS trajectories
and external features.

5.1.2 Semi-privacy-preserving

o WDR-F [11] utilizes standard federated learning to train
WDR by partitioning the road network into eight regions.
Privacy is preserved among multiple regions, but data
within each region is unprotected.
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TABLE 2
Performance Comparisons of CRATE and Baseline Algorithms
Metric CRATE HA TEMP XGBoost WDR DeepTTE WDR-F DeepTTE-F CATTUE Geo-1
Privacy? 4 X X X X X X X X X
MAPE (%) 14.45 26.51 22.38 21.35 17.66 13.59 20.69 19.11 16.33 15.28
& RMSE (s) 137.92 331.25 193.11 178.42 218.41 132.23 221.79 182.71 148.05 157.72
;—<‘ MAE (s) 81.99 151.11 125.56 118.35 100.96 77.30 117.48 108.56 92.45 86.83
SR-15 (%) 59.42 35.03 41.12 42.57 50.61 62.24 43.91 47.22 53.89 56.70
_g MAPE (%) 14.40 24.44 24.63 16.82 16.04 13.35 19.99 18.09 15.20 15.00
& RMSE (s) 132.85 444.84 172.26 109.96 239.66 235.34 325.58 269.72 165.30 273.22
g MAE (s) 59.47 105.21 98.61 65.32 68.54 57.89 85.91 77.22 63.80 65.13
U SR-15 (%) 59.54 37.74 37.52 52.31 54.44 63.04 45.18 49.32 57.06 57.47
MAPE (%) 14.58 25.56 26.22 23.65 21.88 15.19 23.01 20.36 18.54 16.61
g RMSE (s) 174.72 310.06 294.12 246.95 258.07 188.62 277.31 250.60 224.90 200.88
& MAE (s) 103.48 181.97 184.01 163.76 155.39 108.39 163.76 145.10 131.71 118.32
SR-15 (%) 60.12 37.15 36.53 39.75 42.86 58.16 40.70 45.63 49.28 53.88

e DeepTTE-F is similar to WDR-F, with the base model
changed to DeepTTE.

o Cross-area travel time uncertainty estimation (CATTUE)
[11] quantifies the uncertainty of travel time data to assist
accurate TTE with inter-region privacy preservation.

¢ Geo-Indistinguishability (Geo-I) [39] is a privacy-
preserving method that uses differential privacy to protect
user location data.

All baseline approaches are trained using configurations
presented in the respective literature with the chronolog-
ically first 75% of the dataset (3:1 training-to-validation
ratio), and are tested by the remaining 25% trajectories. It is
important to note that none of these baselines fully protect
user location privacy. While DeepTTE-FedAvg and CATTUE
achieve semi-protection, user data within a geographical
region is still collected by the edge servers. Further, Geo-
I preserves exact location privacy by adding noise to the
trajectory data, which may be nullified by the TTE server if
map-matching is applied. Therefore, all compared baselines
have an unfair TTE accuracy advantage over the proposed
CRATE due to their relaxed privacy preservation assump-
tions.

5.2 Travel Time Estimation Accuracy

We commence our investigation by examining the deviation
between predicted travel times and ground truth values, a
pivotal aspect when evaluating the performance of Travel
Time Estimation (TTE) methods. This case study deploys
the proposed CRATE method alongside the aforementioned
baseline algorithms on the three real-world datasets, eval-
uating their predictions using the four key performance
metrics. In Table |2} we present the result comparison, with
the first row after the header indicating whether each
corresponding algorithm is privacy-preserving (v), semi-
privacy-preserving (X), or privacy-leaking (X).

From our comparative analysis, it becomes evident
that the proposed CRATE method notably outperforms
all semi-privacy-preserving algorithms, including WDR-F,
DeepTTE-F, CATTUE, and Geo-I across all four performance
metrics, all while improving privacy safeguards. In com-
parison to the leading algorithm in this category, Geo-l,
CRATE achieves a substantial reduction in Mean Absolute

Percentage Error (MAPE), ranging from 5.4% (Xi’an dataset)
to 12.2% (Porto dataset). Despite both CRATE and the
baselines utilizing historical trajectory data for route esti-
mation, we assert that CRATE’s unique contrastive route de-
sign significantly contributes to this improved performance.
Furthermore, it is important to note that CRATE achieves
full privacy preservation, surpassing existing federated
learning-based TTE solutions. The results also demonstrate
the remarkable generalization capabilities of CRATE across
datasets from different sources with varying characteristics,
thereby advocating its practical applicability.

Furthermore, it’s noteworthy that CRATE consistently
produces top-tier estimations, even when compared with
the privacy-leaking group of baseline algorithms, where
DeepTTE serves as the state of the arts. Notably, CRATE
demonstrates superior estimation performance on the Porto
dataset compared to all other baseline algorithms. This
achievement may be attributed to the unique characteristics
of the Porto dataset, which boasts a smaller total number of
trajectories and a broader time span than the other datasets.
The outcome highlights CRATE’s potential applicability in
relatively sparsely populated regions.

Meanwhile, it’s crucial to emphasize that CRATE’s
strengths are not limited to less densely populated areas.
CRATE maintains the second-best TTE accuracy on the Xi’an
and Chengdu datasets. Moreover, it achieves full privacy
preservation. As such, the proposed algorithm can make
a significant contribution to the development of privacy-
preserving ITS in regions of all types.

To provide a more vivid depiction of the predicted Travel
Time Estimations (TTE) and ground truths, we present
trimmed scatter plots for CRATE and the best-performing
baseline algorithms: WDR(-F), DeepTTE(-F), and CATTUE,
as shown in Fig. ] Each scatter plot includes 2000 randomly
selected routes from the Xi’an dataset, with their actual
and predicted travel times displayed. The horizontal axes
represent the ground truth travel times in seconds, while
the vertical axes illustrate the TTE values generated by the
respective algorithms. To enhance clarity, we also depict the
5th and 95th percentiles of the prediction errors with two
red lines, including annotations indicating their slopes at the
endpoints. These scatter plots strongly support our earlier
conclusion that CRATE offers exceptional TTE performance
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Fig. 4. Scatter plots of travel time ground truths and estimates by CRATE and best-performing baselines on the Xi’an dataset. This figure is best
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Fig. 5. Box plot of percentage errors of TTE values by CRATE over time on the Xi'an dataset.

while uniquely providing full privacy preservation capabil-
ities.

Within CRATE, the travel time calibration model serves
as a crucial component where user inputs play a pivotal role
in enhancing model training while safeguarding users’ geo-
privacy. As previously discussed, we anticipated observing
a gradual improvement in TTE accuracy. To demonstrate
this process, we provide a box plot of TTE values by CRATE,
using the Xi’an dataset as the basis for this analysis. The
Xi’an dataset was chosen due to its best balance between the
number of days and the number of routes per day. In Fig. 5|
each box represents the percentage error of 200 randomly

selected routes within a day. The plot includes the first
and third quartiles (depicted as the box), the mean value
(represented by the blue bar), 1.5 times the inter-quartile
range whiskers, and any outliers (indicated by red dots).
The figure clearly illustrates how the calibration model
benefits from reported TTE errors, leading to a progressive
enhancement of CRATE’s performance over time.

5.3 Contrastive Route Generation on Mobile Devices

Diverging from conventional TTE algorithms in the litera-
ture, CRATE strategically offloads a portion of route com-
putation from the server to edge clients, ensuring compre-
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TABLE 3
route2vec Inference Time (ms) on Mobile Devices

Snapdragon SoC 888 855 430

Available Since Q1 2021 Q1 2019 Q22016
PyTorch Mobile 79.90 95.37 536.08
TFLite 28.92 34.55 202.24

hensive privacy preservation. However, concerns may arise
regarding potential delays in computation due to the limited
resources available on mobile devices.

According to Fig. [} primary computations on the edge
are concentrated in the route2vec embedding process
during contrastive route generation. To demonstrate the
effectiveness of CRATE on the edge, we conducted a series
of benchmark tests on mobile devices. route2vec initially
developed and trained centrally with PyTorch in an offline
manner, is deployed to mobile devices leveraging PyTorch
Mobile and TFLite libraries on Snapdragon 430, 855, and
888 SoCs. During testing, mobile devices optimize perfor-
mance by clearing the system environment, terminating
other applications, and utilizing four big SoC cores for
model inference. Both PyTorch Mobile and TFLite libraries
are preloaded into memory for warming up.

The summarized results of generating 1000 contrastive
routes for each library on each SoC are presented in Ta-
ble Bl The route2vec inference times on modern SoCs
within the past five years indicate that the proposed CRATE
is highly efficient on the edge, achieving averaged route
embedding times of around 30ms with TFLite. Although
multiple route2vec inferences are necessary for generat-
ing a contrastive route due to the auto-regressive nature of
the generation algorithm (as discussed in Section [4.3), the
total computation time remains well below one second for
medium-length routes with around 30 segments.

Further, CRATE exhibits the potential to be applied to
earlier mobile platforms with inferior computational ca-
pabilities. On the Snapdragon 430 SoC released in 2016,
each route embedding consumes an average of 202ms.
The benchmarking indicates that CRATE can maintain high
performance across both modern and older mobile plat-
forms, making it a versatile solution for various deploy-
ment scenarios. Furthermore, CRATE’s ability to operate
efficiently on edge devices ensures quick and accurate TTE,
which is crucial for real-time applications. By leveraging
the processing power of mobile devices, CRATE not only
preserves privacy but also enhances the responsiveness and
scalability of the system. This dual benefit of privacy and
efficiency sets CRATE apart from other TTE frameworks
that either compromise on privacy or require significant
mobile-side resources. Considering the prospect of more
efficient and optimized route generation algorithms in the
future, coupled with the continuous strengthening of mobile
computational power, CRATE can potentially cater to the
full spectrum of consumer-level mobile devices.

5.4 Hyper-parameter Sensitivity Analysis

CRATE incorporates several hyperparameters to define its
contrastive route aggregation scheme and the architecture
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of the embedding models. These include the number of con-
trastive routes NK, the dimensionality of road segment and
route embeddings D, and the number of stacked encoders
in route2vec, N®E. Intuitively, increasing N} provides
more information to the aggregation scheme, potentially
improving estimation at the cost of heavier computation.
Similarly, increasing D and N®F expands the embedding
models’ capacity but may increase the difficulty of model
training.

In this sub-section, a series of hyperparameter sensitivity
analyses are conducted to validate these hypotheses and
offer an initial guideline on parameter selection. We begin
by testing CRATE performance over time with NR € [1, 5]
on the Xi‘an dataset. The averaged MAPE results are de-
picted in Fig. [} The plots reveal that a moderate number
of contrastive routes is essential for achieving satisfactory
TTE performance. Too few routes (N“R < 2) incorporate
insufficient travel time context for the edge device to infer
the real time. Meanwhile, further increasing the number
beyond N“R = 3 results in diminishing returns on estima-
tion accuracy, accompanied by a linearly increasing local
computation time (as discussed in Section [5.3), making it a
less favorable choice.

We then trained numerous route2vec models with
D x RRE € {64,128,256,512} x {2,4,6,8,10}, and the
TTE accuracy and model training time are plotted in Figs.
and[B] respectively. The results confirm the expected increase
in model training time with rising trainable parameters.
However, the MAPE values suggest that stacked encoders
reach saturating performance at RRF = 6. We hypothe-
size that introducing additional encoders improves model
expressiveness but also increases model training difficulty,
leading to slightly worse MAPE values with RRE > 6.
Similar observations are made for D, and we determine
that D = 256 and R®E = 6 are a satisfactory pair of
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hyperparameter choices.

5.5 Generality of Travel Time Calibration

From the analysis in Section later confirmed by Fig. 5|
it is clear that the travel time calibration model plays an
important role in refining the aggregated travel time. In
practical deployment, however, there might be cases where
no user reports on their real travel times are readily available
for calibration model training, rendering CRATE less perfor-
mant on its initial deployment to new regions. Nevertheless,
we argue that the calibration model, grounded on the high-
dimensional route embeddings developed by route2vec,
can be intrinsically transferred between cities to bootstrap
initial CRATE deployment.

To verify this assertion, we perform a transfer-ability test
of the calibration model in this sub-section. In particular,
we adapt the calibration model trained on the Xi'an dataset
to the Chengdu and Porto datasets on their first day of
deployment and observe their daily MAPE changes while
fine-tuning the pre-trained calibration model. The results
are summarized by box plots in Figs. [ and where
the green line plots are the averaged percentage error of
TTE without pre-trained calibration model from Xi’an. From
the simulation results, it can be observed that employing
the transferred calibration model helps both datasets to
achieve an approximately 20% TTE error on the first day
(Chengdu) and week (Porto). We credit the outstanding
transfer-ability of the calibration model to the highly gener-
alized road segment embeddings by seg2vec and the built-
upon route2vec, which offers cross-city route similarity in
the embedding space. The potential of CRATE's calibration
model is not limited to transfer-ability, and we will further
explore its all-round contribution to CRATE and the general
TTE problem in the future.

6 CONCLUSIONS

In this paper, we introduce Contrastive Route-Advised
Travel Time Estimation (CRATE) as a comprehensive solu-
tion for privacy-preserving travel time estimation in mod-
ern transportation networks. The primary objective of this
research is to provide users with accurate and timely travel
time estimations while ensuring the protection of their geo-
location privacy.

The fundamental concept behind CRATE is based on
the idea that for any given route in a transportation net-
work, there exist numerous randomly generated routes that
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would result in the same travel time. CRATE identifies these
random routes, known as contrastive routes, through the
utilization of road segment and route embeddings learned
via self-supervised learning and an iterative contrastive
route generation heuristic. Furthermore, CRATE employs
a lightweight deep learning model for aggregating and
calibrating the travel times of contrastive routes and de-
velop the final travel time. This comprehensive approach
ensures that CRATE not only achieves outstanding estima-
tion accuracy but also maintains full privacy preservation
capabilities.

By conducting a series of case studies on real-world
trajectory datasets, we demonstrate the efficacy of CRATE
in outperforming non- and semi-privacy-preserving base-
lines and achieving full privacy preservation. The results
highlight CRATE'’s generalization capabilities across diverse
datasets and its applicability in sparsely populated regions.
Additionally, we deploy the proposed CRATE on various
mobile devices to evaluate its model usability, and the
results indicate its high efficiency.

In the future, we will further explore more advanced
and learning-based contrastive route generation algorithms
to improve the overall model accuracy. Investigating algo-
rithms to incorporate ancillary information (external factors
such as meteorology and incident) into the algorithm is
another promising extension of CRATE.
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