This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Cross-Area Travel Time Uncertainty
Estimation From Trajectory Data:
A Federated Learning Approach

Yuanshao Zhu
Yi Liu

Abstract— Along with urbanization and the deployment of
GPS sensors in vehicles and mobile phones, massive amounts
of trajectory data have been generated for city areas. The
analysis of these data has substantially contributed to research
and advancements of travel time estimation. However, existing
work focuses on estimating travel time inside a particular
area, and cross-area travel time estimation has privacy security
challenges due to data exchange issues among areas. Meanwhile,
the majority of methods estimate a deterministic travel time for
a given trajectory, which does not account for complex traffic
situations and user requirements. To address these problems,
we propose a cross-area travel time uncertainty estimation
algorithm for estimating the uncertainty of travel times while
preserving privacy among different areas. Specifically, we design
a comprehensive cross-area privacy-preserving solution that
trains a tailor-made neural network travel time estimator in
each area by local data, and incorporates federated learning
for training. Furthermore, we employ Bayesian deep learning
principles and adopt Monte-Carlo dropout to quantify the
uncertainty associated with travel time. To evaluate the proposed
approach, we conduct a series of comprehensive case studies with
two real-world trajectory datasets. Extensive results demonstrate
the superiority of the proposed approach compared to baselines
in the context of the cross-area setting.

Index Terms—Travel time estimation, federated learning,
Bayesian deep learning, trajectory analytics, privacy-preserving.

Manuscript received 30 March 2022; revised 13 June 2022;
accepted 24 August 2022. This work was supported in part by the Stable
Support Plan Program of Shenzhen Natural Science Fund under Grant
20200925155105002 and in part by the Guangdong Provincial Key Laboratory
of Brain-Inspired Intelligent Computation under Grant 2020B121201001.
The Associate Editor for this article was M. Mesbah. (Yuanshao Zhu and
Yongchao Ye contributed equally to this work.) (Corresponding author:
James J. Q. Yu.)

Yuanshao Zhu is with the Guangdong Provincial Key Laboratory of
Brain-Inspired Intelligent Computation, Department of Computer Science
and Engineering, Southern University of Science and Technology, Shenzhen
518055, China (e-mail: zhuys2019 @mail.sustech.edu.cn).

Yongchao Ye and James J. Q. Yu are with the Guangdong Provincial
Key Laboratory of Brain-Inspired Intelligent Computation, Department of
Computer Science and Engineering, Southern University of Science and Tech-
nology, Shenzhen 518055, China (e-mail: 12032868 @mail.sustech.edu.cn;
yujq3 @sustech.edu.cn).

Yi Liu was with the Guangdong Provincial Key Laboratory of
Brain-Inspired Intelligent Computation, Department of Computer Sci-
ence and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China. He is now with the Department of Computer
Science, City University of Hong Kong, Hong Kong, SAR, China (e-mail:
97liuyi @ieee.org).

Digital Object Identifier 10.1109/T1TS.2022.3203457

, Member, IEEE, Yongchao Ye", Student Member, IEEE,
, Graduate Student Member, IEEE, and James J. Q. Yu

, Senior Member, IEEE

I. INTRODUCTION

ITH the popularity of GPS embedded devices and

data collection technology, the massive trajectory data
provides core support for the advance of intelligent trans-
portation systems (ITS) [1]. The analytics of trajectory data
has energized the ITS community, prompting a range of
emerging applications, such as traffic prediction and travel
time estimation (TTE) [2], [3]. Within ITS, accurate travel
time estimation can help online taxi-hailing and naviga-
tion platforms (e.g., Didi chuxing, Google Maps) determine
the optimal travel route and thus improve operational effi-
ciency, which in turn can provide a favorable user experience
[4], [5], [6]. Therefore, TTE techniques are critical for indi-
viduals and transportation service providers.

Over recent years, TTE has attracted widespread attention
in the ITS community. In this context, the straightforward TTE
approach calculates the average travel time from origin to
destination with historical data, which has the advantage of
easy implementation [7], [8], [9], [10]. However, these meth-
ods have a disadvantage in that they ignore external factors
(departure time and weather conditions, for some examples)
and spatio-temporal information about the road network that
significantly impacts travel time, resulting in poor estimation
accuracy [11]. Furthermore, the route planning objectives are
not addressed by using only origin and destination, e.g.,
in the case of multiple routes connecting the same origin and
destination.

In response to this issue, the research community is turning
its attention to trajectory-based TTE studies, which aim to
conduct spatio-temporal modeling of trajectory data to extract
fine-grained features for estimating travel time [4], [12], [13].
Therefore, the majority of existing TTE work is designed
to provide accurate and deterministic travel times for routes
inside the transportation network. However, the deterministic
trajectory travel time is influenced by a variety of factors that
are difficult to represent uniformly, such as human behavior
patterns and traffic conditions [6], [14]. As a result, deter-
ministic travel time estimators ignore the traffic uncertainty
and are insufficient to provide a reliable estimation. From the
perspective of users, they may benefit from the reachable time
confidence of their trips to help them plan their departure times
and select routes. Uncertainty models that estimate auxiliary

1558-0016 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-5657-181X
https://orcid.org/0000-0001-9782-218X
https://orcid.org/0000-0002-0811-6150
https://orcid.org/0000-0002-6392-6711

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Center server
and sharing model

Lo

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

o2 ~
Model training Q\‘—
and updating e -
l CIEEAN

Area server -
and model User App

— (D TTE request @ &\L\/ @@

—— i Y ~
Local dataset - (@ Send query to area server with encrypted order ID =) &

(a) Training scheme for cross-area TTE system.

Fig. 1.

(3 Return estimated travel time distribution _/ N0\
@ Back the whole trajectory travel time distribution AN

(b) Inference scheme for cross-area TTE system.

Overview of the cross-area federated travel time uncertainty estimation algorithm. In the training stage (a), the area servers collect data from each area

and then collaboratively train a travel time estimator through the central server based on its local data. In the test stage (b), the user application first divides a
TTE query into corresponding segments according to areas and sends them to the central server. The central server sends segments to the corresponding area
server, which returns a travel time distribution respectively. Finally, sums these distributions as the estimated value.

arrival probability can serve users better than deterministic
TTE models [15].

Furthermore, existing industry solutions and research efforts
for TTE mainly focus on estimating travel time based on
trajectory data within a single administrative area (e.g., a cen-
tral city). In fact, with the decentralization and area-based
deployment of traffic management systems, a travel trajectory
will likely cover multiple administrative areas within a city.
Therefore, it is necessary to consider the cross-area issue
when conducting TTE research. Fig. 1(a) presents an example
of the cross-area TTE system, where different areas hold
a local dataset. Intuitively, the center server can aggregate
data from all areas and estimate travel time. However, strict
privacy regulations (e.g., the General Data Protection Regula-
tion [16]) prohibit service providers from exchanging data with
other third-party entities to build predictive models involving
massive amounts of data. For this reason, when performing
cross-area TTE, we should legitimately rethink how to acquire
data for travel time estimation modeling without comprising
privacy.

To summarize, a satisfactory trajectory-based TTE system
should be designed to meet the following challenges:

« Spatio-temporal modeling: As trajectory data con-
tain abundant spatio-temporal information, a proper
travel time estimator should be able to capture the
spatio-temporal correlation of trajectory to extract fine-
grained features, subsequently enabling accurate and
efficient travel time estimation.

o Uncertainty Estimation: The travel time is affected by
various factors that are difficult to record (e.g., traffic
conditions and human behavior). Therefore, a reliable
travel time estimator needs to provide the distribution and
uncertainty of the travel time.

o Cross-area Estimation: Since trip trajectory is likely to
traverse multiple areas and data cannot be shared owing
to privacy concerns, a satisfactory TTE algorithm should

take into account the problem of cross-area travel time

estimation.
To jointly tackle the above challenges, we design a

cross-area federated travel time uncertainty estimation algo-
rithm for trajectory data, which can provide a scheme for train-
ing and testing travel time estimators while preserving privacy.
In addition, the proposed scheme is capable of estimating the
travel time distribution and uncertainty of a trajectory. The

main contributions of this paper are summarized as follows:
« We propose a novel travel time estimation model, which

uses manually extracted trajectory features and external
attributes as inputs and employs a deep neural network
to extract fine-grained features to estimate travel time.

« We adopt a Bayesian deep learning approach to improve
the robustness of the proposed model, thereby providing
uncertainty estimates of travel time.

o« We design a well-established solution for a cross-area
travel time uncertainty estimation algorithm, which
enables training and testing of models while preserving
privacy.

« We validate the effectiveness of the proposed scheme on
two real-world datasets. The empirical results demon-
strate the significance and scalability of the proposed

approach.
The remainder of this paper is organized as follows. We first

review the background of cross-area travel time uncertainty
estimation issues in Sec. II. Then, we present the problem
definitions and the cross-area training scheme in Sec. III. Next,
we elaborate the proposed algorithm and trajectory analytics in
Sec. IV. Subsequently, we conduct a series of case studies on
two real-world trajectory datasets and analyze the simulation
results in Sec. V Finally, we conclude this paper in Sec. VL.

II. RELATED WORK
A. Trajectory-Based Travel Time Estimation

With the massive deployment of GPS sensors on vehi-
cles, researchers used GPS trajectories and combined them

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHU et al.: CROSS-AREA TRAVEL TIME UNCERTAINTY ESTIMATION FROM TRAJECTORY DATA: A FEDERATED LEARNING APPROACH 3

with advanced neural network techniques for TTE [17]. For
example, Wang et al. proposed an error feedback recurrent
convolutional neural network to estimate the travel time and
velocity on sequential GPS points, then inferred the estimated
time based on the velocity of each trajectory segment [18]. But
the simple accumulation of travel times for each trajectory seg-
ment does not eventually produce highly accurate results. As a
result, several studies improved this deficiency by constructing
a spatio-temporal learning component to estimate the travel
time of the complete trip [5], [19]. Regarding the challenge of
predicting future trajectory information, a number of studies
mapped trajectories to road networks and used a series of
interconnected road segments traversed by trajectories for
TTE [12], [20], [21], [22]. Wang et al. proposed a Wide-Deep-
Recurrent learning model, which combined the advantages
of wide linear models, deep neural networks, and recurrent
neural networks. This scheme improved estimation accuracy
by integrating external factors (weather, departure time, driver
ID, etc.). Based on this concept, [21] improved the model
inference speed for this scheme, and [20], [22] introduced aux-
iliary learning tasks to improve the model accuracy. Besides,
there are a number of schemes that combined trajectory and
graph neural networks to estimate travel times [11], [13], [23],
which are not the main study focus of this paper and not be
detailed here.

To summarize, a number of methods have been proposed for
TTE. Nevertheless, few studies focused on modeling and data
uncertainty learning, which is significant as traffic systems are
complex and dramatically changing. In addition, the existing
spatio-temporal modeling neural network models designed for
solving TTE still have substantial potential for improvement.
Therefore, we propose a novel neural network model for TTE
that has superiority over existing methods.

B. Traffic Uncertainty Estimation

Due to the dynamic nature of human activities and traffic
status, uncertainty estimation is also increasingly important
in ITS. Markos et al. [24] proposed a Bayesian deep learning
method for unsupervised GPS trajectory segmentation, which
used the mean and variance of the prediction distribution
to classify each input trajectory and estimate its prediction
uncertainty. Reference [25] designed a Bayesian deep learning
model for traffic speed prediction that can provide reliable
results in transfer learning and learn favorable feature repre-
sentations in scenarios with missing traffic data or insufficient
data. These methods are representative of the literature on pre-
dicting traffic uncertainty through Bayesian deep learning. For
specific TTE studies, Liu et al. [15] proposed a scheme for
predicting travel time uncertainty based on a geographically
indistinguishable approach, but modifying the raw trajectory
data inevitably degrades the model performance. Furthermore,
Yu et al. proposed a Bayesian and geometric deep learning
method to estimate citywide travel time distribution [6].
The evaluation shows that the probabilistic distribution can
describe the TTE better than the deterministic model.

Although the above methods have made long-term progress
in traffic uncertainty estimation, they are still not considering

cross-area TTE issues, while it has evoked substantial con-
cerns. In this paper, we apply a Bayesian deep learning
approach to provide travel time uncertainty estimates to
improve the robustness of the proposed model.

C. Cross-Area Issues in Intelligent Transportation Systems

For contemporary ITS research, cross-area issues are
inevitable due to the area-based deployment of management
systems. However, since GPS point is closely related to
personal location, the analytics of GPS trajectory data may
reveal privacy information. On the other hand, with the
enforcement of data privacy regulations [16], service providers
or third-party organizations are strictly prohibited in exchang-
ing users’ private data. Therefore, a well-established cross-
area travel time estimation method should not consider data
sharing. Traditional solutions to address this problem typically
use transfer learning, applying a model trained in one area to
another [26], [27]. Nonetheless, these methods are unsuitable
for areas with different traffic conditions and are not effective
for areas with limited data. Fortunately, federated learning
presents a new paradigm for cross-area collaborative training
with privacy-preserving. For example, Liu et al. introduced
federated learning to ITS, allowing it to predict traffic flow
without sharing data [28]. Zhu et al. proposed supervised
and semi-supervised federated learning schemes for travel
mode identification, which enable accurate identification while
preserving the trajectory data of each local device [29], [30].
With the rising of the internet of vehicles technology, the
enhanced computing and communication capabilities make it
possible to create collaborative federated learning applications.
Ng et al. proposed to use unmanned aerial vehicles (UAVs) as
communication relays between a central server and vehicles,
and designed an auction-coalition formation framework for
solving the allocation problem of UAVs [31]. Furthermore,
Lim et al. considered the privacy concerns of UAVs when
serving data for the Internet of Vehicles. They implemented a
privacy-preserving collaborative machine learning task using
a FL approach and multi-dimensional contract. In view of
the heterogeneous sources of data, they used Gale-Shapley
algorithm to assign areas to UAVs and achieved cross-areas
federated learning training [32].

Inspired by the above work, this paper considers the
problem of travel time uncertainty estimation in a cross-area
context. We propose a method based on federated learning and
Bayesian deep learning to accomplish the task and solve the
above challenges, enabling cross-area travel time uncertainty
estimation with privacy-preserving.

III. PRELIMINARIES

In this section, we first formalize the cross-area travel time
estimation problem and then present the training scheme of
the proposed method.

A. Problem Formulation

Given a trajectory P, it is denoted by a sequence of con-
secutively sampled GPS points, i.e., P = {p1, p2, ..., Pn}-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Each GPS point p; = [lat;, Ing;, t;] contains the latitude, lon-
gitude, and timestamp, representing the device’s (and user’s)
private location at time #;. In practice, this trajectory may
traverse multiple areas, and we can separate it into multiple
sub-trajectories according to the boundaries of areas. There-
fore, a private local dataset Dy = {x’, y'}"* is preserved
for each area, where x! = {P,i, Attri} € Dy is the input
of the estimator. The Attr' denotes additional attributes (e.g.,
departure time, day of week date, and corresponding order),
and y' is the corresponding travel time.

Based on the above description, for a given trajectory P,
it can be divided into multiple sub-trajectories P, according
to the area boundaries P = P1 ® P> @ ... ® Px. The goal of
the cross-area TTE problem is to estimate the overall time T
based on each sub-trajectory Px. This process is formulated
as follows:

k
T=>" fulxk, w), (1)
i=1
where fi(-,-) is the area travel time estimator, and w is
the corresponding estimator parameter. Note that in our case
studies, we project the trip trajectory onto the road network,
then train and estimate based on it.

B. Cross-Area Training Scheme

In our cross-area setting, there is a set of area servers
{S1, ..., Sk}, and a central server S.. With privacy and
security concerns, local dataset Dy cannot be shared between
different area servers. As a privacy-preserving paradigm,
federated learning (FL) can be used to collaboratively train
a shared deep learning model without compromising privacy
between different areas [33]. Therefore, we incorporate the FL
framework for assist training in this paper. In the cross-area
scenario described in this paper, there are K area servers used
to jointly train the global shared model F(x; w), and a central
server S, is used for communication and parameter aggrega-
tion among the areas. Through this approach, it is possible
to train cross-area models together without sharing their raw
private data [34], [35]. We now introduce the FL-based cross-
area training scheme organized into the following steps:

Phase 1 (Initialization) First, the central server initializes
the global model F(x; w) parameters w” and broadcasts them
to all area servers. Then area servers initialize the local model
according to the received parameters, i.e., w,? PR

Phase 2 (Local training) For each round of training ¢, the
central server randomly selects a fraction of all area servers
to participate in the FL training task and sends global model
parameters w’ to them. Each selected area server trains the
local model f (xg; w,’() based on their dataset Dy. The goal of
local training is to minimize the following objective function:

: 1<
argmin Ly (wg) = —Zf(yi, Sy wy)), 2

Wi ni -
where €(-,-) denotes a local loss function (e.g.,
€y, fib;w)) = 2(xTw — y)). Then, they send the

updated model parameters w,’(+1 back to the central server.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Phase 3 (Aggregation) After receiving w,tfl from area
servers, the central server updates the global parameters by
using an aggregation algorithm such as Federated averaging
(FedAvg [34]):

1
. wit, 3)

T K
| ’|ke1<,

where |K;| denotes number of selected area servers. Specifi-
cally, the global minimizing objective is formulated as:

K
|K:|

arg mui)n L(w) = Z mﬁk (w). 4)
k=1

Note that the aforementioned phases 2 and 3 repeat until
the global model reaches convergence.

IV. METHODOLOGY

In this section, we introduce the proposed solution for
cross-area travel time uncertainty estimation. We first describe
trajectory data analytics techniques for manual feature extrac-
tion, including map matching and road network speed dis-
tribution recovery. Second, we elaborate on the architecture
of the proposed travel time estimator. Then, we present the
Bayesian deep learning method for estimating uncertainty
by Monte-Carlo dropout [36]. Finally, we provide a detailed
description of the cross-area travel time uncertainty estimation
algorithm.

A. Trajectory Analytics

1) Map Matching for Trajectory Data: Before delving into
the details of each module that constitutes the travel time
estimator, we first explain the map matching technique used
for processing the trajectories. We do not directly utilize the
original trajectories for time estimation as in [4] and [5]
for two main reasons: 1) In terms of origin and destination,
projecting trajectories onto the road network instead of using
original GPS points can obscure the user’s precise location and
alleviate concerns about privacy leakage. 2) For the practical
deployment of TTE applications, it is difficult or infeasible
to predict users’ trajectories as they have different behavioral
habits.

In real-world scenarios, the GPS points collected are not
always accurate due to signal blockage or time delays.
As depicted in the upper part of Fig. 2(a), points in red
dashed circles are not on any road segment, which requires
us to regularize the trajectory to the road network before
processing it. Map matching algorithms that project trajec-
tories points on the road network are well-studied [37], [38].
In this work, we used a map matching algorithm based on
the hidden Markov model [37] that is commonly applied in
related trajectory studies [39], [40]. For a GPS point p;, each
candidate road segment is represented as a hidden state &
in the Markov chain with an observation probability P (p;|h)
that depends on the distance between the trajectory point and
the segment. Given a trajectory P = {p1, p2, .» Dn}, the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHU et al.: CROSS-AREA TRAVEL TIME UNCERTAINTY ESTIMATION FROM TRAJECTORY DATA: A FEDERATED LEARNING APPROACH 5

(a)

Fig. 2. (a) Illustration of map matching. Upper: Original trajectory points;
Lower: Map-matched trajectory points. (b) Heatmap of trajectory points in
Chengdu (The deeper color indicates a more dense distribution of trajectories).

objective of map matching is to find a sequence of hidden
states S = {s1, s2, ., Sp} with maximum likelihood V} ,,

Sy = arg max Vj,
heHy

Vii = P(pilh) max {f(s,h)Vsi-1} (5)

where H; is the set of hidden state at i and f(-,-) is the
transition probability between two hidden state.

With the regularized trajectories (see the lower part of
Fig. 2(a)), a trajectory is represented by a sequence of road
segments:
map

. pl’l}—A>R={rla r29'-'9rm}’ (6)
matching

P ={p1, p2,

where R is the set of road segments traversed by the trajectory.

2) Recovery Speed Distribution: After obtaining a collec-
tion of map-matched road segments, a number of motion
features can be exploited, among which real-time speed is
the most important one. This can be easily calculated by
the distance between consecutive GPS points and sampling
interval. In particular, for two continuous sampling points
pi and p; on the same road, the sampling time interval is
denoted as At. The speed of these two point can be calculated
by distance(p;, pj)/At. Based on this, the speed of a road
segment can be approximated as the average speed of all
neighboring sampling points.

However, GPS trajectories are unevenly distributed on the
road network, i.e., concentrated in the city center and scattered
at the edge areas. Fig. 2(b) presents a heat map with GPS
trajectories in Chengdu projected onto the map, where the
area in deeper color indicates a more dense distribution of GPS
points. Similarly, there are more trajectories in the daytime and
fewer trajectories in the nighttime. The uneven distribution of
trajectories in temporal and spatial dimensions leads to mas-
sive missingness in the historical speed of each road segment.
Therefore, we need to recover the speed distribution of the
road network throughout. As this problem has been exten-
sively studied in traffic data imputation methods [41], [42],
we utilize Bayesian Gaussian CP tensor decomposition to
recover speed distribution of the road network [41].

3) Static Features: In addition to the average speed of road
segments, there are also a number of attributes that have a
significant impact on travel time [11], [12]. In this study,

we selected static attributes such as road sequence length,
distance, week time, and departure time. We also extracted
an important statistical feature from the road segments, i.e.,
“trip-avg”. This feature represents the average travel time for
each road, obtained from the distance of road divided by the
speed recovered in Sec. IV-A2.

B. Travel Time Estimator

In this subsection, we introduce the architecture of the
proposed travel time estimator. As shown in Fig. 3, the pro-
posed model is firstly divided into two parts: namely, attribute
learning module and temporal learning module. Following
these two modules, we concatenate the latent representa-
tions to estimate travel time. We start by introducing the
attribute learning module, which aims to learn static attributes
mentioned in Sec. IV-A3. For better learning these features,
we embed categorical features, i.e., weekID and timelD, into
low-dimensional vectors R and R®, respectively. Specifically,
categorical features are embedded by linear layers y = Ax” +
b, where x is the one-hot encoded vector and A € RP*V
is the weight matrix, V is the vocabulary size and D is the
embedding dimension. Subsequently, z-score normalization is
adopted on the trip distance, and the number of road segments
traversed. The historical average travel time mentioned in Sec.
IV-A3 is concatenated as well. After obtaining the attribute
embedding, the embedded attribute features are concatenated
and fed into three consecutive fully connect layers (FCLs),
each of which is mathematically represented as follows:

y = Act(w - x + b), 7

where w and b are trainable parameters, and Act(-) denotes
the activation function, respectively.

The second key component in the travel time estimator
is a fundamental operation for fine-grained temporal feature
extraction, i.e., the long short-term memory (LSTM) network.
LSTM is a common neural network architecture proposed
in [43], which is widely used in spatio-temporal data mining
and time dependency acquisition tasks thanks to its design of
state propagation over time. Specifically, LSTM contains four
components: input gate i,;, output gate o, forget gate f;, and
intermediate cell state ¢;. Given a sequence of road segments
as input X = {x;};<;<y € RF*N (F is the feature dimension
for x;), the output latent vector h = {h;};<;<y € RF*N can
be calculated by the following formulation:

ir =0 (wi : [htfla-xt] +b; , (8a)
fi=o(ws-[hi—r, x|+ b5 , (8b)
op =0 (U)o : [ht—l»xt] +bo , (8c)

¢ = ft © ¢i—1 +i; O tanh (wc : [htfl,xt] +0bc , (8d)
ht =0, © tanh (Ct) . (Se)

where o (+) is the sigmoid function, and the symbol © rep-
resents Hadamard product, respectively. All w € RE*F and
b € RR denote the trainable weights and bias parameters
in the network, respectively. In addition, we incorporate the
embedded static attributes with road segments features to
further help temporal learning. From the above formulation,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS
r—— r——
) |
PR Lo
! I I I
I I
Bl L PolD)
B ylx,
1 @ BRI R EHELE
s | O e O s
] : | : I @ glal |=la [=|A glal |2|Aa
¥ | |
S I
CHR it
I I |
: ! I l MC Sampling
- | R2XN RI6XN J | Temporal Learning Module
Output
7777777
;
; £ S/5| %5 %E
@5 SRLIELE
g glal (Ela| |28 0 TToTTmAY o
R4 Attribute Learning Module
Fig. 3. The architecture of the proposed travel time estimator. The proposed model captures high-dimensional features using the attribute learning module

(green part) and the temporal learning module (yellow part), respectively. The potential representations are then concatenated to estimate travel times. Finally,

estimating the travel time distribution by multiple Monte Carlo sampling.

it can be observed that the calculation of the current time
output /; involves the integrated calculation of the previous
output /1,1 and the cell state ¢;_j, and the total amount of
information passed from the previous to the current time is
controlled by i;, f;, o;. Through this information flow design,
temporal correlation can be extracted from the input data,
which is among the core factors for predicting travel times [5].
In this paper, we adopt a two-layer stacked LSTM structure
where the hidden size of LSTM cells is set as 128. To extract
fine-grained spatio-temporal information, we concatenate the
road segment features and attribute embeddings as the input to
the LSTM. Similar to the attribute learning module, we attach
three FCLs after LSTM layers to extract hidden features.

Finally, the latent representations from the attribute learning
module and temporal learning module are concatenated and
subsequently fed into two FCLs for the estimation. To sum-
marize, we can formulate the proposed travel time estimator
as:

hqa = MLP(Ewia @ Eat ® Edis © Eien © Eavg),
hy = MLP(LSTM (X10ad ® Eattr)),

y = MLP(ha @ hy), ©)

where E denotes the embedded attributes, and MLP represents
a continuous sequence of FCL layers, respectively. i, and
h, denote the high-dimensional features extracted by the
attribute learning module and the temporal learning module,
respectively. Except for the last output layer, we use the
Rectified Linear Unit (ReLU), i.e., f(x) = max(0, x) as the
activation function and apply dropout to all FCLs.

C. Bayesian Uncertainty Estimation

With the previous neural network components, we can build
a deep learning model to capture latent features and estimate
a deterministic travel time. However, considering the short-
comings of the deterministic model we discussed in Sec. I,

uncertainty estimation can better satisfy in a fluctuating traffic
environment. Bayesian deep learning is a solution to this
problem. In general, a neural network model can be considered
as a conditional probability model P(y | x,w), where w
is the weights in the neural network (including the weights
and biases we introduced in Eq. (8) and Eq. (7). For a
given training dataset D, the learning objective of a neural
network can be regarded as a maximum likelihood estimation
accordingly:

WML

E— argmax logP (D | w). (10)
w
From a Bayesian probability theory point of view, the Bayesian
neural network assumes that the parameters all follow a
posteriori probability distribution P(w | D) over the dataset.
Therefore, the objective of Bayesian deep learning is formu-
lated as:
P(ylx,D)y= pQlx,w)pw|D)duw. (11
Nevertheless, this posterior probability is intractable according
to Bayes theorem:

_ P(D|w)P(w)

Pw | D)= =

(12)
In practical analysis, we often utilize variational inference
methods [44] to approximate P(w | D) by a distribution g (w |
0) parameterized by 6. The optimal variational distribution
with parameter 6* can be found by minimizing the Kullback-
Leibler (KL) divergence as follows:

9*

arg min KL[g(w | 0)IIP(w | D)]

q(w | 0)
q(w | 0)log P(w)P(w | D)
argmin KL[g (w |)| P (w)] — Eq(wio)[log P(w | D)1.

13)

arg min
& 6

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHU et al.: CROSS-AREA TRAVEL TIME UNCERTAINTY ESTIMATION FROM TRAJECTORY DATA: A FEDERATED LEARNING APPROACH 7

Therefore, given the optimal distribution g(w | 6%*), the
predictive distribution Eq. (11) is calculated approximately by:

P(y|lx,Dy= pQlx,w)gw|0%)dw =q(y|x,0%).

(14)

In summary, Bayesian deep learning replaces deterministic
parameters in a neural network with a distribution of para-
meters g(w |). Since each parameter sample can generate a
deterministic inference, we can obtain a posterior distribution
by multiple inference, i.e., travel time uncertainty.

In this paper, we adopt Monte-Carlo dropout to obtain
probabilistic estimation uncertainty, which is easy to imple-
ment and computationally efficient [36], [45]. The core idea is
assume that the parameters of each layer in the neural network
satisfy the Bernoulli (p) distribution and use the parameter p
to control the probability of hidden neurons being dropped
out. This is also a widely adopted manner in related research,
see [24], [46] for some examples.

Specifically, we sample the binary variables of the hidden
units in each network layer of the network (except the last
layer). The variables of each hidden cell are taken to be 0 with
probability p, i.e., for a given input, the cell is dropped. For
example, if we apply M samples and collect the output of
the network at test time, we can approximate the prediction
uncertainty, i.e.:

Var (y | x) = Var[E (y | x, w)] + E[Var (y | x,)]
= Var(f (x,) + o
1 J 2
v > (9(:‘) - 9) +0°,

i=1

15)

where f(x, w) is the neural network model, ;) denotes the
prediction of i —th sample, and y is the mean of all sample
prediction. o2 is the data uncertainty and refers to the inherent
noise for the data generating process, which can be estimated
on an independent validation dataset [47].

With the above theoretical basis of Bayesian neural net-
work, we can construct a travel time uncertainty estimator
by Monte-Carlo dropout method. As illustrated in Fig. 3, the
proposed neural network model employs the dropout technique
after each FCL (except for the last one). Accordingly, we apply
Monte-Carlo sampling with p = 0.1 during the estimation.

D. Cross-Area Travel Time Estimation Scheme

In the previous subsection, we present a deep neural
network-based travel time uncertainty estimator, which
extracts spatio-temporal features from trajectories and incor-
porates a Bayesian deep learning approach to estimate uncer-
tainty. Nevertheless, we still need to consider training and
testing this estimator in the context of cross-area scenarios.
This section will introduce the training and inferring processes
of the proposed cross-area travel time estimation scheme
separately. As described in Sec. I, in such a setting, we need to
focus on the collaboration of different areas while protecting
privacy. Therefore, we present the training scheme of the
proposed method and the workflow for performing cross-area
uncertainty estimation in the sequel.

Algorithm 1 Cross-Area Travel Time Uncertainty Estima-
tion Algorithm

Input:
Order ID O, travel trajectory P.
Center server S, Area server set {Sy, ...

Output:
Estimated travel time distribution 7.

User:

1: Split the trajectory P into n (n < m) segments
{P1,..., P,} based on the local map

2: Encrypt the order ID
{01, ..., 0,} < Encrypt(O).

3: Send trajectory segments and encrypted order pairs
{(P1, O1),...,(P;, O;)} to the central server.

Center Server:

9Sm}

1: Receives the segment and order pairs.
2: Send pairs to the corresponding area server {Sy, . . .

Area Server:
1: for area server S, € {Si, ..

’ Sn}

., Sy}, in parallel do

2: for Monte-Carlo sample i = 1,..., M do

3 t; < AreaModel(P;, w)

4: add 1; to the set of estimated values 7.

5: end for

6: send 7, = {t1,..., 1y} and encrypted
order ID O; to the center server.

7. end for

Center Server:

1: Receives all estimated {77, ..
encrypted order ID.

2: Cross-merge and sum the estimates from different
segment
T < sum({7y,...,7,})

3: Reconstruct the order ID
O <« Decrypt({Oy, ..., 0}

4: Send estimated travel time distribution 7 back to
the user according to the order ID O

., T,} of areas and

1) Model Training: The Fig. 1(a) shows the training scheme
of the proposed algorithm, consisting of three main com-
ponents: the central server, the area server, and the local
dataset. The area servers utilize their respective local datasets
for training, and the central server is responsible for para-
meters aggregation. For raw trajectories, the map matching
method first projects the trajectories to a collection of road
segments. Then, according to the area boundaries, the tra-
jectories are partitioned into corresponding areas to arrange
training datasets. The area-specific dataset is denoted by
Dy = {x', yi}?i |» where k denotes the area number, x'
represents the trajectory segments, and y' is the ground truth
trip time. Based on the local dataset of each area, we can
follow the scheme introduced in Sec. III-B. In addition, due
to the different spatio-temporal traffic characteristics among
areas, after obtaining the global shared model by FL training,
each area server still needs to carry out personalized training
based on it. It can also be explained that the area server does

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

not share and update the model with other servers during the
last round of federated training.

2) Model Inference: With the personalized estimating
model for each area, we can use it for cross-area travel time
uncertainty estimation. As summarized in the Algorithm 1,
there are three crucial participants in this algorithm, namely,
the user, the area server, and the central server. The user
is the requester of the travel time prediction in the algo-
rithm, determining the trip trajectory based on the local map
and generating a collection of map-matched road segments.
Subsequently, the user server divides the trajectory P into
subsets {Pi,..., P,} according to the boundaries of areas.
Then encrypt the subsets order ID and sends these road
segments and encrypted order pairs to central servers with
corresponding order IDs. The central server is the coordinator
in the algorithm who sends the road segments that need to be
predicted to each area server. After receiving the estimation 7;
of the road segment from each area server, the central server
calculates the sum time 7 < sum({71, ..., 7,}). Finally, the
estimated time is returned to the corresponding user based on
the decrypted order ID. Please note that in order to prevent
each area server from colliding with each other to recover
the trip information based on the order ID, the central server
will send the order ID by encrypting it and then decrypting
it after receiving the result (See the Fig. 1(b) for details).
The area server is the executor in the algorithm who receives
the prediction task and estimates it using the local model,
then returns the travel time distribution 7; for this trip. With
the above three roles presented in the Algorithm 1, we can
estimate the travel time uncertainty for a cross-area trajectory
while preserving privacy.

V. CASE STUDIES

In this section, we evaluate the proposed algorithm by
performing comprehensive case studies on two real-world
trajectory datasets. We first introduce the datasets and sim-
ulation settings. Then, we compare the estimation accuracy
with centralized and decentralized baselines and analyze the
uncertainty of estimation. Finally, we investigate the scalability
of the proposed model by inductive learning.

A. Data and Configuration

In this study, we conduct case studies on two real-world
trajectory datasets, which are collected by taxi-hailing vehicles
of two major cities in China, namely, Chengdu and Xi’an.!
Specifically, both datasets are collected from Nov 1Ist, 2016 to
Nov 30th, 2016, with a sampling interval of 2s to 4s. The sta-
tistics of both datasets are shown in Table I. The road network
topology is obtained from OpenStreeMap.? Subsequently, GPS
trajectories are mapped to road segments as discussed in
Sec. IV-A. Since the proposed model is for cross-area travel
time estimation, but the dataset does not have a specific area
partition. We need manually partition the road network into
different areas and arrange training datasets before starting

I These datasets can be downloaded (following approval of access request)
at https://outreach.didichuxing.com/app-vue/
2https://www.openstreetmap‘org/

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

TABLE I
STATISTICS OF TWO REAL-WORLD TRAJECTORY DATASETS

Dataset Trajetory Number Average Time Average Distance
Chengdu 3493918 11.42 min 7.42km
Xian 2180348 12.58 min 5.73km

34.28°N
i
iSmiEE
P
i
[T (1

4

30.72°N

34.24°N

30.68°N

104.06°E

(a) Chengdu

104.12°E 108.92°E

(b) Xian

108.98°E

Fig. 4. The partition of road network. Road segments are clustered into
different areas based on their latitude and longitude. Different colors indicate
different areas.

the simulation. For a specific number of partition areas, the
partition is performed based on the latitude and longitude
of the road segment using K-means clustering. The partition
will not change in the training and testing. Fig. 4 shows
the partition of road network in Chengdu and Xi’an with
the default setting (We divide the network into 8 areas by
default and conduct simulations on different number of areas
in Sec. V-C).

For validation, we select trajectory recorded in the last week
for testing, and the rest of the dataset is sequentially divided
into training set and validation set with a ratio of 3 : 1.
By default, the model is trained for a total of 30 rounds,
with half of the clients randomly selected for each training
round and parameter aggregation. For each training round, the
selected client trains 10 epochs on its local dataset, and the
batch size is set to 1024. The model parameters are updated
by the Adam optimizer [48] with an initial learning rate of
0.001. All models are developed by PyTorch, and we perform
all case studies are on a server with NVIDIA GeForce RTX
2080Ti GPUs. All experiments in this paper are simulated by
serial training on a single server environment as described
above. In the default case (8 area servers, half of the areas
are selected for training in each round), the average training
time per round is 17.4min, i.e., the average training time
per area is 4.4min (disregarding the communication time
between servers). Considering the real situation where the user
device only needs to interact with the central server during
the inference phase without additional inference computation.
We can assume that a complete TTE request can be completed
in an acceptable time.

For performance evaluation, we employ three commonly
used metrics, including Mean Absolute Percentage Error
(MAPE), Root Mean Square Error (RMSE), and Mean
Absolute Error (MAE). These three metrics are widely used
in contemporary TTE studies [5], [12], [13], [19], and can be

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHU et al.: CROSS-AREA TRAVEL TIME UNCERTAINTY ESTIMATION FROM TRAJECTORY DATA: A FEDERATED LEARNING APPROACH 9

TABLE 1I
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES. MAPE IS REPORTED IN PERCENTAGE (%)

Chengdu Xian
Privacy Approach

MAPE RMSE MAE MAPE RMSE MAE

HA 26.62 280.14 191.74 24.46 411.93 199.25

TEMP 22.36 190.70 133.13 24.87 237.68 161.18

Centralized ~ XGBoost 21.26 174.32 12630 17.02 169.71 115.48

WDR 17.81 171.11 116.30 16.06 199.22 121.82

Ours 15.82 144.18 98.43 14.73 154.66 103.27

WDR-FedProx ~ 21.82 221.94 130.25 17.90 220.30 136.76

WDR-NoFed 21.23 226.01 125.67 17.84 219.49 136.90

Decentralized WPR-FedAvg 2072 21544 124.66 17.10 213.82 130.64

Ours-FedProx ~ 16.85 168.57 107.03 15.23 181.30 109.19

Ours-NoFed 17.02 168.78 108.22 1577 182.68 112.42

Ours-FedAvg 16.29 160.03 101.93 15.20 177.14 108.32
defined as follows: we can examine the capability of the proposed travel time
N | G) _ o) estimator to model spatio-temporal information. Note that
MAPE(y, §) = — z y -y y x 100%, centralized approaches occupy unfair advantages on that they
N have only one area and do not require collaborative training
N of the model, violating the privacy preservation presumption.
RMSE(y, §) = 1 z (YO — 5O 2 o Historical Average (HA): HA estimates travel time by
N ; calculating the average speed of trips with the same

! departure time.
MAE(y, §) = — Z ’y(i) _ y(i)| , (16) « TEMP: TEMP [8] is a route-free method that estimates
N <
1

where $@ is the estimated travel time of trip i, y\) denotes
the ground truth, and N is the number of trips, respectively.

B. Baseline Methods

This section presents the baseline methods adopt in the case
studies for comparison under the decentralized and centralized
cases, respectively.

Decentralized: In this scenario, we follow the training and
inference scheme in Sec. III-B and evaluate the performance
of the cross-area algorithm.

o NoFed: We train the proposed model in each area
independently by its local dataset without parameter
aggregation, i.e., we do not use federated learning for
model training.

o FedAvg: We train the model using the standard federated
learning process and aggregate the model parameters by
FedAvg.

o FedProx: Fedprox [49] is a modification of the FedAvg
algorithm, who rewrites the loss function in Eq. (2) by
adding the proximal term:

arg min h(w, wy) = Li(wy) + 5 o — wrll?, (17)

Wk E]R
The purpose of this design is to encourage local updates
that are not too far from the initial global model and
to reduce the impact of data heterogeneity distribution.
In this paper, we use FedProx to test the performance of
proposed method with different optimization algorithms.
Centralized: In this scenario, instead of partitioning the
dataset by area, we treat the entire dataset as a single area
for training and testing. By experimenting with this scenario,

travel time by querying and averaging the trips with
neighboring origin and destination.

o XGBoost: XGBoost [50] is an established ensembling
method. We aggregate the road segment sequences to
keep each trip with the same feature dimension.

« WDR: WDR [12] is a widely deployed trajectory-based
TTE method that combines wide, deep, and recurrent
neural networks, achieving highly competitive prediction
accuracy.

o Ours: We used the proposed travel time estimator intro-
ducted in Sec. IV-B, and we set the same training round
in an identical environment as baseline methods for
consistency evaluation.

C. Estimation Performance

Table II summarizes the three evaluation metrics of the
proposed method and baseline approaches on the two datasets.
From the simulation results, it can be observed that the pro-
posed model outperforms all competing baselines in achieving
the lowest MAPE, RMSE, and MAE on all datasets. For
centralized scenarios, our approach (15.82%) significantly
outperforms other methods, especially for WDR (17.81%),
which is also based on deep neural networks. This result
can also be verified in the decentralized scenario, where our
method is able to achieve optimal results with the same
aggregation algorithm. These results strongly suggest that our
model has powerful spatio-temporal feature extraction and
modeling capabilities in any scenario.

In addition, we can observe that using the FedAvg aggre-
gation scheme is better than the one without aggregation.
The reason is that the parameter aggregation can convey
localization information of models between different areas,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

B FedAvg mm NoFedAvg —— Trip Count
120
25 F8etl 100 8ell 601 r8ell
50)
~ 20 2
8 6el0y 80 6et0 t6el0 3
= A L 40 o
w 15 s 60 < o
< o = 30 a
104 4el0 4e10 F4el0 =
= 40 204 =
54 2 4
2el0 0 2el0 10 F2et0
0- 0 0-
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Area

Area

Area

Fig. 5. Performance comparison of each area on Chengdu Dataset. The line graphs indicate the number of trajectories in different areas, and the bar graphs
indicate the performance change of the model with/without the use of FedAvg algorithm.

TABLE III

COMPARISON OF ESTIMATION ACCURACY WITH DIFFERENT
NUMBER OF AREAS ON CHENGDU DATASET

Area MAPE (%) RMSE MAE
1 15.81 144.16 98.40
8 16.29 160.03 101.93
16 16.75 163.96 104.89
32 16.77 162.83 105.10

allowing global models to be more general, together with
personalized training can be better adapted to cross-area
models. The advantage of FedAvg is also supported by the
results in Fig. 5. In this case study, we compare the per-
formance of each individual area model after using FedAvg
for parameter aggregation. We can observe that parameter
aggregation using FedAvg can improve the performance of
almost all area models, thus improving the overall perfor-
mance. In particular, for areas with small amounts of data (e.g.,
area 1 and area 6), parameter aggregation can significantly
improve the performance of individual models. One may note
that the FedProx algorithm does not work as well as FedAvg.
The reason is that FedProx adds a proximal term (see Eq. (17))
that makes the local model not too far from the global model.
Such a design slows down the convergence of the model,
which makes it perform inferior to FedAvg.

Furthermore, we also examine the performance of the model
for various sizes of manually defined areas, and the results
are reported in Table III. We can clearly observe that the
model performance decreases as the number of partition areas
increases. This is explained by the fact that for the same
size dataset, increasing the number of partition areas reduces
the amount of local dataset accordingly, thereby affecting the
model performance. On the other hand, the convergence speed
of the global model can also be affected by too many decen-
tralized models. Consequently, for the proposed cross-area
TTE algorithm, smaller areas allow for better area-based traffic
management as well as the protection of individual privacy.
While too small areas will result in an increase in the number
of local models, which will affect the performance.

D. Travel Time Uncertainty

As mentioned previously, besides deterministic estima-
tion, the proposed method also provides the uncertainty

— MC=5 — MC=10 —— MC=30 -~ Trip Time ----- Avg
@ 1.0
gz
<508 /
~N ©
2906
(o)W
5 = 0.4 /)
0>
8go2
=<o0 = 4
1oe? 74 81 68 71 75 8.0 84 88 58 62 67
3z 7
Z508
m ©
0206
w o
2204
Og
8202 J
2t
=
0037 99 106 76 82 89 47 55 63144 153 162
© > 1.0
o=
fFo08 [
< ©
§§ 0.6
o o
5204
ag 0.2
<o,
Y99 10 115171 110 12.8218 227 235109 110 129
© >1.0
o=
gz, f / /
\n ©
ﬁ“é 0.6
o
5204
8202 /
2t
£
0079 265 282146 54 163119 13.1 142405 438 45.0

Travel Time (min) Travel Time (min) Travel Time (min) Travel Time (min)

Fig. 6. Arrival probability of trip examples that traverse different number of
areas. Although the predicted average time may be greater or less than the true
time, the accuracy of the reachable time probability increases as the number
of Monte Carlo samples increases. It is shown that performing multiple Monte
Carlo sampling can estimate the uncertainty of TTE to the best extent.

quantification of travel time estimation. In this section, we uti-
lize the Monte-Carlo sampling method in Sec. IV-C to estimate
the predictive distribution of trips and analyze the arrival
uncertainty. We randomly select trip examples that traverse
a different number of areas and present the corresponding
arrival probability in Fig. 6, where the red dashed vertical
line indicates the ground truth trip time and the blue is the
average estimated value. We can observe that although the
overall MAPE is acceptable, the model’s estimated values
can be greater or less than the ground truth. In practical
applications, such a deterministic value may confuse user’s
trip planning. Therefore, a more favorable approach is to
predict the time distribution (i.e., uncertainty) of this trip
and provide reachable time confidence. Fig. 6 also presents
the cumulative density function (CDF) curves, which is the
cumulative distribution of travel time estimations, indicating

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHU et al.: CROSS-AREA TRAVEL TIME UNCERTAINTY ESTIMATION FROM TRAJECTORY DATA: A FEDERATED LEARNING APPROACH 11
11.0
e Trip Time
~10.5
£
£
£ 10.0
[Fig. 8. Visualization of different number of visible areas in training. Areas in
o grey are unseen in the training stage, while other areas participate FL training.
Z 9.5
—
[
TABLE IV
9.0 ESTIMATION ACCURACY WITH DIFFERENT NUMBER OF
VISIBLE AREAS IN TRAINING ON CHENGDU DATASET

0 2 4 6 8 10 12 14 16
Departure Time (h)

18 20 22

Fig. 7. Box plots of trips with different departure time on Chengdu dataset.
Daytime (approximately 8:00 - 20:00) trips have a larger IQR (interquartile
range) and maximum-minimum difference than nighttime trips, indicating
more complex traffic activity and greater uncertainty in the estimates during
the day.

how long a trip will take with a certain level of confidence.
Taking the trip in the first figure as an example, we can choose
different probability thresholds with different demands, e.g.,
the trip will arrive in 8minute with about 80% probability.
Besides, we can observe that for short (covering fewer areas)
trips, the uncertainty of the model changes more drastically,
requiring multiple Monte-Carlo sampling. The reason is that
short trips are more significantly influenced by road conditions
and human factors, while long trips can take the changes
into account when performing long-distance spatio-temporal
modeling.

As the traffic state fluctuates during the day and night,
we further divide the departure time into 2h windows and
investigate the estimation in different periods. For better
visualization, we select trips that have similar travel time
(about 10 min) and different departure time in Fig. 7. We can
observe from the box plots that all the ground truth trip times
are within the estimated distribution. Daytime (approximately
8:00-20:00) trips have larger interquartile ranges than night-
time trips, indicating greater uncertainty in the estimates due to
instability associated with more traffic activity during the day.
The model has a greater bias in the prediction of nighttime
trips (The ground truth trip times are outside the interquartile
range), probably due to less training data for nighttime trips.

E. Scalability by Inductive Learning

For a cross-area algorithm, in addition to accurate prediction
and estimation with uncertainty, scalability to unseen areas
also needs to be investigated. In this section, we examine
this property by an inductive learning approach. Specifically,
we assume that only some areas of the city are visible and
can be used to train cross-area models. For those unseen areas,
we directly deploy the trained model for testing. As illustrated
in Fig. 8, from left to right, we set the number of visible areas
to 1, 2, 4, 8 in training, respectively. Those visible areas are
trained by FL training as mentioned in Sec. IV-D1, and unseen
areas utilize the global shared model as the local model in the
testing stage. Table IV summarizes the result with a different

Visible Areas MAPE (%) RMSE MAE
1 21.48 208.43 136.43
2 21.50 207.39 138.39
4 18.76 184.41 119.42
8 16.29 160.03 101.93

number of visible areas in training on Chengdu Dataset. The
simulation results are consistent with the intuition that the
accuracy of the prediction increases as the number of visible
areas increases. It is worth noting that when only half of the
city areas participate in the cross-area travel time prediction
training, the MAPE is able to reach 18.76%, which is a mere
drop of 2.47% compared to the scenario where all areas are
engaged (16.29%). Consequently, the above results show that
our algorithm can easily scale to unknown areas and achieve
promising performance.

VI. CONCLUSION

In this paper, we propose a novel cross-area travel time
uncertainty estimation algorithm. This method integrates
Bayesian neural networks to extract fine-grained spatio-
temporal features to predict the uncertainty of travel times with
the ability of privacy preservation. Particularly, the trajectory
data is firstly mapped to the road network and reconstructs the
speed distribution of the road network. The proposed model
uses map-matched road segment features together with other
external features as inputs to a novel travel time estimator.
To further estimate the travel time uncertainty, we adopt
Monte-Carlo dropout methods to obtain the travel time distrib-
ution. Finally, federated learning is incorporated to protect data
privacy across different areas. The proposed scheme is among
the pioneering works in estimating the cross-area travel time
uncertainty with federated learning technology. It addresses a
few crucial challenges of TTE, namely, cross-area travel time
uncertainty estimation.

To evaluate the performance of the proposed method,
we conducted a series of comprehensive case studies on two
real-world trajectory datasets, whose results demonstrate the
superiority of the proposed method. In addition, we test the
uncertainty estimation performance of the model to reveal
the robustness of the algorithm for complex traffic scenarios
and user requirements. Finally, we perform a hyperparameter
test and a scalability test, revealing that the proposed method
is capable of scaling to unknwon areas without data and multi-
area deployment.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

In the future, we will focus on area data sparsity issues,

e.g.

the distribution and the total amount of data are

non-independently and identically distributed among different
areas. In addition, we also plan to study the scalability of
the algorithm to cope with the deployment of ultra-large scale
urban scenarios.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

REFERENCES

A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of Things for smart cities,” IEEE Internet Things J., vol. 1, no. 1,
pp. 22-32, Feb. 2014.

F.-Y. Wang, “Parallel control and management for intelligent transporta-
tion systems: Concepts, architectures, and applications,” IEEE Trans.
Intell. Transp. Syst., vol. 11, no. 3, pp. 630-638, Sep. 2010.

J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-
driven intelligent transportation systems: A survey,” IEEE Trans. Intell.
Transp. Syst., vol. 12, no. 4, pp. 1624-1639, Dec. 2011.

Y. Wang, Y. Zheng, and Y. Xue, “Travel time estimation of a path
using sparse trajectories,” in Proc. 20th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining. New York, NY, USA: Association for
Computing Machinery, Aug. 2014, pp. 25-34.

W. Dong, J. Zhang, W. Cao, J. Li, and Y. Zheng, “When will you arrive?
Estimating travel time based on deep neural networks,” in Proc. 32nd
AAAI Conf. Artif. Intell. New Orleans, LA, USA: AAAI Press, 2018,
pp- 2500-2507.

J. J. Q. Yu, “Citywide estimation of travel time distributions with
Bayesian deep graph learning,” IEEE Trans. Knowl. Data Eng., early
access, Oct. 6, 2021, doi: 10.1109/TKDE.2021.3117986.

S. Maiti, A. Pal, A. Pal, T. Chattopadhyay, and A. Mukherjee, “Historical
data based real time prediction of vehicle arrival time,” in Proc. 17th
Int. IEEE Conf. Intell. Transp. Syst. (ITSC), Qingdao, China, Oct. 2014,
pp. 1837-1842.

H. Wang, X. Tang, Y.-H. Kuo, D. Kifer, and Z. Li, “A simple baseline
for travel time estimation using large-scale trip data,” ACM Trans. Intell.
Syst. Technol., vol. 10, no. 2, pp. 1-22, Mar. 2019.

W.-C. Lee, W. Si, L.-J. Chen, and M. C. Chen, “HTTP: A new
framework for bus travel time prediction based on historical trajectories,”
in Proc. 20th Int. Conf. Adv. Geograph. Inf. Syst. (SIGSPATIAL).
Redondo Beach, CA, USA: Association for Computing Machinery,
2012, pp. 279-288.

C. de Fabritiis, R. Ragona, and G. Valenti, “Traffic estimation and
prediction based on real time floating car data,” in Proc. 11th Int. IEEE
Conf. Intell. Transp. Syst., Beijing, China, Oct. 2008, pp. 197-203.

Y. Li, K. Fu, Z. Wang, C. Shahabi, J. Ye, and Y. Liu, “Multi-task
representation learning for travel time estimation,” in Proc. 24th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining. London, U.K.:
Association for Computing Machinery, Jul. 2018, pp. 1695-1704.

Z. Wang, K. Fu, and J. Ye, “Learning to estimate the travel time,”
in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Min-
ing. London, U.K.: Association for Computing Machinery, Jul. 2018,
pp. 858-866.

Y. Shen, C. Jin, J. Hua, and D. Huang, “TTPNet: A neural network for
travel time prediction based on tensor decomposition and graph embed-
ding,” IEEE Trans. Knowl. Data Eng., vol. 34, no. 9, pp. 4514-4526,
Sep. 2022.

S. Susilawati, M. A. Taylor, and S. V. C. Somenahalli, “Distributions of
travel time variability on urban roads,” J. Adv. Transp., vol. 47, no. 8,
pp- 720-736, Dec. 2013.

F. Liu, D. Wang, and Z.-Q. Xu, “Privacy-preserving travel time pre-
diction with uncertainty using GPS trace data,” IEEE Trans. Mobile
Comput., early access, Apr. 24, 2021, doi: 10.1109/TMC.2021.3074865.
Council of European Union. (2016). Regulation (EU) 2016/679 of the
European Parliament and of the Council on the Protection of Natural
Persons With Regard to the Processing of Personal Data and on
the Free Movement of Such Data, and Repealing Directive 95/46/EC
(General Data Protection Regulation). European Commission. [Online].
Available: https://gdpr-info.eu/

Y. Zheng, L. Capra, O. Wolfson, and H. Yang, “Urban computing:
Concepts, methodologies, and applications,” ACM Trans. Intell. Syst.
Technol., vol. 5, no. 3, pp. 1-55, Sep. 2014.

J. Wang, Q. Gu, J. Wu, G. Liu, and Z. Xiong, “Traffic speed predic-
tion and congestion source exploration: A deep learning method,” in
Proc. IEEE 16th Int. Conf. Data Mining (ICDM). Barcelona, Spanish,
Dec. 2016, pp. 499-508.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

H. Zhang, H. Wu, W. Sun, and B. Zheng, “DeepTravel: A neural
network based travel time estimation model with auxiliary supervision,”
in Proc. 27th Int. Joint Conf. Artif. Intell., Stockholm, Sweden, Jul. 2018,
pp. 3655-3661.

Y. Sun et al., “CoDriver ETA: Combine driver information in estimated
time of arrival by driving style learning auxiliary task,” IEEE Trans.
Intell. Transp. Syst., vol. 23, no. 5, pp. 1-12, Dec. 2020.

K. Fu, F. Meng, J. Ye, and Z. Wang, CompactETA: A Fast Inference
System for Travel Time Prediction. Virtual Event, CA, USA: Association
for Computing Machinery, 2020, pp. 3337-3345.

Y. Sun, K. Fu, Z. Wang, C. Zhang, and J. Ye, “Road network metric
learning for estimated time of arrival,” in Proc. 25th Int. Conf. Pattern
Recognit. (ICPR), Milan, Italy, Jan. 2021, pp. 1820-1827.

H. Hong et al., “HETETA: Heterogeneous information network embed-
ding for estimating time of arrival,” in Proc. 26th ACM SIGKDD
Int. Conf. Knowl. Discovery Data Mining. Virtual Event, CA, USA:
Association for Computing Machinery, Aug. 2020, pp. 2444-2454.

C. Markos, J. J. Q. Yu, and R. Y. D. Xu, “Capturing uncertainty
in unsupervised GPS trajectory segmentation using Bayesian deep
learning,” in Proc. 35th AAAI Conf. Artif. Intell., May 2021, vol. 35,
no. 1, pp. 390-398.

Y. Wu and J. J. Q. Yu, “A Bayesian learning network for traffic speed
forecasting with uncertainty quantification,” in Proc. Int. Joint Conf.
Neural Netw. (IJCNN), Jul. 2021, pp. 1-7.

T. Mallick, P. Balaprakash, E. Rask, and J. Macfarlane, “Transfer
learning with graph neural networks for short-term highway traffic fore-
casting,” in Proc. 25th Int. Conf. Pattern Recognit. (ICPR), Jan. 2021,
pp. 10367-10374.

S. Di, H. Zhang, C.-G. Li, X. Mei, D. Prokhorov, and H. Ling,
“Cross-domain traffic scene understanding: A dense correspondence-
based transfer learning approach,” IEEE Trans. Intell. Transp. Syst.,
vol. 19, no. 3, pp. 745757, Mar. 2018.

Y. Liu, J. J. Q. Yu, J. Kang, D. Niyato, and S. Zhang, “Privacy-preserving
traffic flow prediction: A federated learning approach,” IEEE Internet
Things J., vol. 7, no. 8, pp. 7751-7763, Aug. 2020.

Y. Zhu, Y. Liu, J. J. Q. Yu, and X. Yuan, “Semi-supervised federated
learning for travel mode identification from GPS trajectories,” [EEE
Trans. Intell. Transp. Syst., vol. 23, no. 3, pp. 1-12, Aug. 2021.

Y. Zhu, S. Zhang, Y. Liu, D. Niyato, and J. J. Q. Yu, “Robust
federated learning approach for travel mode identification from non-
IID GPS trajectories,” in Proc. IEEE 26th Int. Conf. Parallel Distrib.
Syst. (ICPADS), Dec. 2020, pp. 585-592.

J. S. Ng et al, “Joint auction-coalition formation framework for
communication-efficient federated learning in UAV-enabled Internet
of Vehicles,” IEEE Trans. Intell. Transp. Syst., vol. 22, no. 4,
pp. 2326-2344, Apr. 2021.

W.Y.B. Lim et al., “Towards federated learning in UAV-enabled Internet
of Vehicles: A multi-dimensional contract-matching approach,” IEEE
Trans. Intell. Transp. Syst., vol. 22, no. 8, pp. 5140-5154, Aug. 2021.

J. Kang, Z. Xiong, D. Niyato, S. Xie, and J. Zhang, “Incentive
mechanism for reliable federated learning: A joint optimization approach
to combining reputation and contract theory,” IEEE Internet Things J.,
vol. 6, no. 6, pp. 10700-10714, Dec. 2019.

B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. Y. Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Proc. 20th Int. Conf. Artif. Intell. Statist., vol. 54, A. Singh and
J. Zhu, Eds., Apr. 2017, pp. 1273-1282.

J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, and M. Guizani, “Reli-
able federated learning for mobile networks,” IEEE Wireless Commun.,
vol. 27, no. 2, pp. 72-80, Feb. 2020.

Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in Proc. Int. Conf.
Mach. Learn., 2016, pp. 1050-1059.

C. Yang and G. Gidéfalvi, “Fast map matching, an algorithm integrating
hidden Markov model with precomputation,” Int. J. Geograph. Inf. Sci.,
vol. 32, no. 3, pp. 547-570, 2018.

C. Goh, J. Dauwels, N. Mitrovic, M. T. Asif, A. Oran, and P. Jaillet,
“Online map-matching based on hidden Markov model for real-time
traffic sensing applications,” in Proc. 15th Int. IEEE Conf. Intell. Transp.
Syst., Anchorage, AK, USA, Sep. 2012, pp. 776-781.

X. Song, C. Zhang, and J. J. Q. Yu, “Learn travel time distribution with
graph deep learning and generative adversarial network,” in Proc. [EEE
Int. Intell. Transp. Syst. Conf. (ITSC), Indianapolis, IN, USA, Sep. 2021,
pp. 1385-1390.

http://dx.doi.org/10.1109/TKDE.2021.3117986
http://dx.doi.org/10.1109/TMC.2021.3074865

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHU et al.: CROSS-AREA TRAVEL TIME UNCERTAINTY ESTIMATION FROM TRAJECTORY DATA: A FEDERATED LEARNING APPROACH 13

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

(48]

[49]

[50]

A. Prokhorchuk, J. Dauwels, and P. Jaillet, “Estimating travel time
distributions by Bayesian network inference,” IEEE Trans. Intell. Transp.
Syst., vol. 21, no. 5, pp. 1867-1876, May 2020.

X. Chen, Z. He, and L. Sun, “A Bayesian tensor decomposition approach
for spatiotemporal traffic data imputation,” Transp. Res. C, Emerg.
Technol., vol. 98, pp. 73-84, Jan. 2019.

X. Chen and L. Sun, “Bayesian temporal factorization for multidimen-
sional time series prediction,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 44, no. 9, pp. 4659-4673, Mar. 2021.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” in
Proc. 2nd Int. Conf. Learn. Represent. (ICLR), Banff, AB, Canada, 2014,
pp. 1-14.

D. P. Kingma, T. Salimans, and M. Welling, “Variational dropout and
the local reparameterization trick,” in Proc. Adv. Neural Inf. Process.
Syst., vol. 28, 2015, pp. 1-9.

Y. Gal, J. Hron, and A. Kendall, “Concrete dropout,” in Proc. Adv.
Neural Inf. Process. Syst., vol. 30, 2017, pp. 1-10.

K. Chen, K. Chen, Q. Wang, Z. He, J. Hu, and J. He, “Short-term
load forecasting with deep residual networks,” IEEE Trans. Smart Grid,
vol. 10, no. 4, pp. 3943-3952, Jul. 2019.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. 3rd Int. Conf. Learn. Represent. (ICLR), San Diego, CA, USA,
2015, pp. 1-15.

T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” in Proc. Mach.
Learn. Syst., vol. 2, 2020, pp. 429-450.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Min-
ing, San Francisco, CA, USA: Association for Computing Machinery,
Aug. 2016, pp. 785-794.

Yuanshao Zhu (Member, IEEE) received the
B.Eng. degree in communication engineering from
Shandong University, Weihai, China, in 2019, and
the M.S. degree in electrical science and tech-
nology from the Southern University of Science
and Technology, Shenzhen, China, in 2022. He is
currently pursuing the Ph.D. degree with the South-
ern University of Science and Technology and the
City University of Hong Kong joint program. His
research interests include deep learning in smart
city, intelligent transportation systems, and federated
learning.

Yongchao Ye (Student Member, IEEE) received the
B.Eng. degree in computer science and technology
from Ningbo University, Ningbo, China, in 2020.
He is currently pursuing the master’s degree with the
Department of Computer Science and Engineering,
Southern University of Science and Technology,
Shenzhen, China. His research interests include
spatio-temporal data mining in smart city, intelligent
transportation systems, and federated learning.

Yi Liu (Graduate Student Member, IEEE) received
the B.Eng. degree from Heilongjiang University,
China, in 2019. His research interests include secu-
rity and privacy in smart city and edge computing,
deep learning, intelligent transportation systems, and
federated learning.

James J. Q. Yu (Senior Member, IEEE) received the
B.Eng. and Ph.D. degrees in electrical and electronic
engineering from The University of Hong Kong,
Pokfulam, Hong Kong, in 2011 and 2015, respec-
tively. He is currently an Assistant Professor at the
Department of Computer Science and Engineering,
Southern University of Science and Technology,
Shenzhen, China, and an Honorary Assistant Pro-
fessor at the Department of Electrical and Electronic
Engineering, The University of Hong Kong, where
he was a Post-Doctoral Fellow, from 2015 to 2018.
His general research interests are in smart city and urban computing, deep
learning, intelligent transportation systems, and smart energy systems. His
work is now mainly on forecasting and decision making of future trans-
portation systems and basic artificial intelligence techniques for industrial
applications. He was ranked World’s Top 2% Scientists of 2019 and 2020 by
Stanford University. He is an Editor of the IET Smart Cities journal.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

