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Abstract— Along with urbanization and the deployment of1

GPS sensors in vehicles and mobile phones, massive amounts2

of trajectory data have been generated for city areas. The3

analysis of these data has substantially contributed to research4

and advancements of travel time estimation. However, existing5

work focuses on estimating travel time inside a particular6

area, and cross-area travel time estimation has privacy security7

challenges due to data exchange issues among areas. Meanwhile,8

the majority of methods estimate a deterministic travel time for9

a given trajectory, which does not account for complex traffic10

situations and user requirements. To address these problems,11

we propose a cross-area travel time uncertainty estimation12

algorithm for estimating the uncertainty of travel times while13

preserving privacy among different areas. Specifically, we design14

a comprehensive cross-area privacy-preserving solution that15

trains a tailor-made neural network travel time estimator in16

each area by local data, and incorporates federated learning17

for training. Furthermore, we employ Bayesian deep learning18

principles and adopt Monte-Carlo dropout to quantify the19

uncertainty associated with travel time. To evaluate the proposed20

approach, we conduct a series of comprehensive case studies with21

two real-world trajectory datasets. Extensive results demonstrate22

the superiority of the proposed approach compared to baselines23

in the context of the cross-area setting.24

Index Terms— Travel time estimation, federated learning,25

Bayesian deep learning, trajectory analytics, privacy-preserving.26
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I. INTRODUCTION 27

W ITH the popularity of GPS embedded devices and 28

data collection technology, the massive trajectory data 29

provides core support for the advance of intelligent trans- 30

portation systems (ITS) [1]. The analytics of trajectory data 31

has energized the ITS community, prompting a range of 32

emerging applications, such as traffic prediction and travel 33

time estimation (TTE) [2], [3]. Within ITS, accurate travel 34

time estimation can help online taxi-hailing and naviga- 35

tion platforms (e.g., Didi chuxing, Google Maps) determine 36

the optimal travel route and thus improve operational effi- 37

ciency, which in turn can provide a favorable user experience 38

[4], [5], [6]. Therefore, TTE techniques are critical for indi- 39

viduals and transportation service providers. 40

Over recent years, TTE has attracted widespread attention 41

in the ITS community. In this context, the straightforward TTE 42

approach calculates the average travel time from origin to 43

destination with historical data, which has the advantage of 44

easy implementation [7], [8], [9], [10]. However, these meth- 45

ods have a disadvantage in that they ignore external factors 46

(departure time and weather conditions, for some examples) 47

and spatio-temporal information about the road network that 48

significantly impacts travel time, resulting in poor estimation 49

accuracy [11]. Furthermore, the route planning objectives are 50

not addressed by using only origin and destination, e.g., 51

in the case of multiple routes connecting the same origin and 52

destination. 53

In response to this issue, the research community is turning 54

its attention to trajectory-based TTE studies, which aim to 55

conduct spatio-temporal modeling of trajectory data to extract 56

fine-grained features for estimating travel time [4], [12], [13]. 57

Therefore, the majority of existing TTE work is designed 58

to provide accurate and deterministic travel times for routes 59

inside the transportation network. However, the deterministic 60

trajectory travel time is influenced by a variety of factors that 61

are difficult to represent uniformly, such as human behavior 62

patterns and traffic conditions [6], [14]. As a result, deter- 63

ministic travel time estimators ignore the traffic uncertainty 64

and are insufficient to provide a reliable estimation. From the 65

perspective of users, they may benefit from the reachable time 66

confidence of their trips to help them plan their departure times 67

and select routes. Uncertainty models that estimate auxiliary 68
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Fig. 1. Overview of the cross-area federated travel time uncertainty estimation algorithm. In the training stage (a), the area servers collect data from each area
and then collaboratively train a travel time estimator through the central server based on its local data. In the test stage (b), the user application first divides a
TTE query into corresponding segments according to areas and sends them to the central server. The central server sends segments to the corresponding area
server, which returns a travel time distribution respectively. Finally, sums these distributions as the estimated value.

arrival probability can serve users better than deterministic69

TTE models [15].70

Furthermore, existing industry solutions and research efforts71

for TTE mainly focus on estimating travel time based on72

trajectory data within a single administrative area (e.g., a cen-73

tral city). In fact, with the decentralization and area-based74

deployment of traffic management systems, a travel trajectory75

will likely cover multiple administrative areas within a city.76

Therefore, it is necessary to consider the cross-area issue77

when conducting TTE research. Fig. 1(a) presents an example78

of the cross-area TTE system, where different areas hold79

a local dataset. Intuitively, the center server can aggregate80

data from all areas and estimate travel time. However, strict81

privacy regulations (e.g., the General Data Protection Regula-82

tion [16]) prohibit service providers from exchanging data with83

other third-party entities to build predictive models involving84

massive amounts of data. For this reason, when performing85

cross-area TTE, we should legitimately rethink how to acquire86

data for travel time estimation modeling without comprising87

privacy.88

To summarize, a satisfactory trajectory-based TTE system89

should be designed to meet the following challenges:90

• Spatio-temporal modeling: As trajectory data con-91

tain abundant spatio-temporal information, a proper92

travel time estimator should be able to capture the93

spatio-temporal correlation of trajectory to extract fine-94

grained features, subsequently enabling accurate and95

efficient travel time estimation.96

• Uncertainty Estimation: The travel time is affected by97

various factors that are difficult to record (e.g., traffic98

conditions and human behavior). Therefore, a reliable99

travel time estimator needs to provide the distribution and100

uncertainty of the travel time.101

• Cross-area Estimation: Since trip trajectory is likely to102

traverse multiple areas and data cannot be shared owing103

to privacy concerns, a satisfactory TTE algorithm should104

take into account the problem of cross-area travel time 105

estimation. 106

To jointly tackle the above challenges, we design a 107

cross-area federated travel time uncertainty estimation algo- 108

rithm for trajectory data, which can provide a scheme for train- 109

ing and testing travel time estimators while preserving privacy. 110

In addition, the proposed scheme is capable of estimating the 111

travel time distribution and uncertainty of a trajectory. The 112

main contributions of this paper are summarized as follows: 113

• We propose a novel travel time estimation model, which 114

uses manually extracted trajectory features and external 115

attributes as inputs and employs a deep neural network 116

to extract fine-grained features to estimate travel time. 117

• We adopt a Bayesian deep learning approach to improve 118

the robustness of the proposed model, thereby providing 119

uncertainty estimates of travel time. 120

• We design a well-established solution for a cross-area 121

travel time uncertainty estimation algorithm, which 122

enables training and testing of models while preserving 123

privacy. 124

• We validate the effectiveness of the proposed scheme on 125

two real-world datasets. The empirical results demon- 126

strate the significance and scalability of the proposed 127

approach. 128

The remainder of this paper is organized as follows. We first 129

review the background of cross-area travel time uncertainty 130

estimation issues in Sec. II. Then, we present the problem 131

definitions and the cross-area training scheme in Sec. III. Next, 132

we elaborate the proposed algorithm and trajectory analytics in 133

Sec. IV. Subsequently, we conduct a series of case studies on 134

two real-world trajectory datasets and analyze the simulation 135

results in Sec. V Finally, we conclude this paper in Sec. VI. 136

II. RELATED WORK 137

A. Trajectory-Based Travel Time Estimation 138

With the massive deployment of GPS sensors on vehi- 139

cles, researchers used GPS trajectories and combined them 140
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with advanced neural network techniques for TTE [17]. For141

example, Wang et al. proposed an error feedback recurrent142

convolutional neural network to estimate the travel time and143

velocity on sequential GPS points, then inferred the estimated144

time based on the velocity of each trajectory segment [18]. But145

the simple accumulation of travel times for each trajectory seg-146

ment does not eventually produce highly accurate results. As a147

result, several studies improved this deficiency by constructing148

a spatio-temporal learning component to estimate the travel149

time of the complete trip [5], [19]. Regarding the challenge of150

predicting future trajectory information, a number of studies151

mapped trajectories to road networks and used a series of152

interconnected road segments traversed by trajectories for153

TTE [12], [20], [21], [22]. Wang et al. proposed a Wide-Deep-154

Recurrent learning model, which combined the advantages155

of wide linear models, deep neural networks, and recurrent156

neural networks. This scheme improved estimation accuracy157

by integrating external factors (weather, departure time, driver158

ID, etc.). Based on this concept, [21] improved the model159

inference speed for this scheme, and [20], [22] introduced aux-160

iliary learning tasks to improve the model accuracy. Besides,161

there are a number of schemes that combined trajectory and162

graph neural networks to estimate travel times [11], [13], [23],163

which are not the main study focus of this paper and not be164

detailed here.165

To summarize, a number of methods have been proposed for166

TTE. Nevertheless, few studies focused on modeling and data167

uncertainty learning, which is significant as traffic systems are168

complex and dramatically changing. In addition, the existing169

spatio-temporal modeling neural network models designed for170

solving TTE still have substantial potential for improvement.171

Therefore, we propose a novel neural network model for TTE172

that has superiority over existing methods.173

B. Traffic Uncertainty Estimation174

Due to the dynamic nature of human activities and traffic175

status, uncertainty estimation is also increasingly important176

in ITS. Markos et al. [24] proposed a Bayesian deep learning177

method for unsupervised GPS trajectory segmentation, which178

used the mean and variance of the prediction distribution179

to classify each input trajectory and estimate its prediction180

uncertainty. Reference [25] designed a Bayesian deep learning181

model for traffic speed prediction that can provide reliable182

results in transfer learning and learn favorable feature repre-183

sentations in scenarios with missing traffic data or insufficient184

data. These methods are representative of the literature on pre-185

dicting traffic uncertainty through Bayesian deep learning. For186

specific TTE studies, Liu et al. [15] proposed a scheme for187

predicting travel time uncertainty based on a geographically188

indistinguishable approach, but modifying the raw trajectory189

data inevitably degrades the model performance. Furthermore,190

Yu et al. proposed a Bayesian and geometric deep learning191

method to estimate citywide travel time distribution [6].192

The evaluation shows that the probabilistic distribution can193

describe the TTE better than the deterministic model.194

Although the above methods have made long-term progress195

in traffic uncertainty estimation, they are still not considering196

cross-area TTE issues, while it has evoked substantial con- 197

cerns. In this paper, we apply a Bayesian deep learning 198

approach to provide travel time uncertainty estimates to 199

improve the robustness of the proposed model. 200

C. Cross-Area Issues in Intelligent Transportation Systems 201

For contemporary ITS research, cross-area issues are 202

inevitable due to the area-based deployment of management 203

systems. However, since GPS point is closely related to 204

personal location, the analytics of GPS trajectory data may 205

reveal privacy information. On the other hand, with the 206

enforcement of data privacy regulations [16], service providers 207

or third-party organizations are strictly prohibited in exchang- 208

ing users’ private data. Therefore, a well-established cross- 209

area travel time estimation method should not consider data 210

sharing. Traditional solutions to address this problem typically 211

use transfer learning, applying a model trained in one area to 212

another [26], [27]. Nonetheless, these methods are unsuitable 213

for areas with different traffic conditions and are not effective 214

for areas with limited data. Fortunately, federated learning 215

presents a new paradigm for cross-area collaborative training 216

with privacy-preserving. For example, Liu et al. introduced 217

federated learning to ITS, allowing it to predict traffic flow 218

without sharing data [28]. Zhu et al. proposed supervised 219

and semi-supervised federated learning schemes for travel 220

mode identification, which enable accurate identification while 221

preserving the trajectory data of each local device [29], [30]. 222

With the rising of the internet of vehicles technology, the 223

enhanced computing and communication capabilities make it 224

possible to create collaborative federated learning applications. 225

Ng et al. proposed to use unmanned aerial vehicles (UAVs) as 226

communication relays between a central server and vehicles, 227

and designed an auction-coalition formation framework for 228

solving the allocation problem of UAVs [31]. Furthermore, 229

Lim et al. considered the privacy concerns of UAVs when 230

serving data for the Internet of Vehicles. They implemented a 231

privacy-preserving collaborative machine learning task using 232

a FL approach and multi-dimensional contract. In view of 233

the heterogeneous sources of data, they used Gale-Shapley 234

algorithm to assign areas to UAVs and achieved cross-areas 235

federated learning training [32]. 236

Inspired by the above work, this paper considers the 237

problem of travel time uncertainty estimation in a cross-area 238

context. We propose a method based on federated learning and 239

Bayesian deep learning to accomplish the task and solve the 240

above challenges, enabling cross-area travel time uncertainty 241

estimation with privacy-preserving. 242

III. PRELIMINARIES 243

In this section, we first formalize the cross-area travel time 244

estimation problem and then present the training scheme of 245

the proposed method. 246

A. Problem Formulation 247

Given a trajectory P , it is denoted by a sequence of con- 248

secutively sampled GPS points, i.e., P = {p1, p2, . . . , pn}. 249
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Each GPS point pi = [lati , lngi , ti ] contains the latitude, lon-250

gitude, and timestamp, representing the device’s (and user’s)251

private location at time ti . In practice, this trajectory may252

traverse multiple areas, and we can separate it into multiple253

sub-trajectories according to the boundaries of areas. There-254

fore, a private local dataset Dk =
{
xi , yi

}nk

i=1 is preserved255

for each area, where xi = {
P i

k, Attri
} ∈ Dk is the input256

of the estimator. The Attri denotes additional attributes (e.g.,257

departure time, day of week date, and corresponding order),258

and yi is the corresponding travel time.259

Based on the above description, for a given trajectory P ,260

it can be divided into multiple sub-trajectories Pk according261

to the area boundaries P = P1 ⊕ P2 ⊕ . . .⊕ Pk . The goal of262

the cross-area TTE problem is to estimate the overall time T263

based on each sub-trajectory Pk . This process is formulated264

as follows:265

T =
k∑

i=1

fk(xk, w), (1)266

where fk(·, ·) is the area travel time estimator, and w is267

the corresponding estimator parameter. Note that in our case268

studies, we project the trip trajectory onto the road network,269

then train and estimate based on it.270

B. Cross-Area Training Scheme271

In our cross-area setting, there is a set of area servers272

{S1, . . . , Sk}, and a central server Sc. With privacy and273

security concerns, local dataset Dk cannot be shared between274

different area servers. As a privacy-preserving paradigm,275

federated learning (FL) can be used to collaboratively train276

a shared deep learning model without compromising privacy277

between different areas [33]. Therefore, we incorporate the FL278

framework for assist training in this paper. In the cross-area279

scenario described in this paper, there are K area servers used280

to jointly train the global shared model F(x;w), and a central281

server Sc is used for communication and parameter aggrega-282

tion among the areas. Through this approach, it is possible283

to train cross-area models together without sharing their raw284

private data [34], [35]. We now introduce the FL-based cross-285

area training scheme organized into the following steps:286

Phase 1 (Initialization) First, the central server initializes287

the global model F(x;w) parameters w0 and broadcasts them288

to all area servers. Then area servers initialize the local model289

according to the received parameters, i.e., w0
k ← w0.290

Phase 2 (Local training) For each round of training t , the291

central server randomly selects a fraction of all area servers292

to participate in the FL training task and sends global model293

parameters wt to them. Each selected area server trains the294

local model fk(xk; wt
k) based on their dataset Dk . The goal of295

local training is to minimize the following objective function:296

arg min
wk

Lk(wk) = 1

nk

nk∑
i

�(yi , fk(xi ; wk)), (2)297

where �(·, ·) denotes a local loss function (e.g.,298

�(y, fk(x;w)) = 1
2 (xT w − y)). Then, they send the299

updated model parameters wt+1
k back to the central server.300

Phase 3 (Aggregation) After receiving wt+1
k from area 301

servers, the central server updates the global parameters by 302

using an aggregation algorithm such as Federated averaging 303

(FedAvg [34]): 304

wt+1 = 1

|Kt |
∑
k∈Kt

wt+1
k , (3) 305

where |Kt | denotes number of selected area servers. Specifi- 306

cally, the global minimizing objective is formulated as: 307

arg min
w

L(w) =
K∑

k=1

|Kt |
|K | Lk(w). (4) 308

Note that the aforementioned phases 2 and 3 repeat until 309

the global model reaches convergence. 310

IV. METHODOLOGY 311

In this section, we introduce the proposed solution for 312

cross-area travel time uncertainty estimation. We first describe 313

trajectory data analytics techniques for manual feature extrac- 314

tion, including map matching and road network speed dis- 315

tribution recovery. Second, we elaborate on the architecture 316

of the proposed travel time estimator. Then, we present the 317

Bayesian deep learning method for estimating uncertainty 318

by Monte-Carlo dropout [36]. Finally, we provide a detailed 319

description of the cross-area travel time uncertainty estimation 320

algorithm. 321

A. Trajectory Analytics 322

1) Map Matching for Trajectory Data: Before delving into 323

the details of each module that constitutes the travel time 324

estimator, we first explain the map matching technique used 325

for processing the trajectories. We do not directly utilize the 326

original trajectories for time estimation as in [4] and [5] 327

for two main reasons: 1) In terms of origin and destination, 328

projecting trajectories onto the road network instead of using 329

original GPS points can obscure the user’s precise location and 330

alleviate concerns about privacy leakage. 2) For the practical 331

deployment of TTE applications, it is difficult or infeasible 332

to predict users’ trajectories as they have different behavioral 333

habits. 334

In real-world scenarios, the GPS points collected are not 335

always accurate due to signal blockage or time delays. 336

As depicted in the upper part of Fig. 2(a), points in red 337

dashed circles are not on any road segment, which requires 338

us to regularize the trajectory to the road network before 339

processing it. Map matching algorithms that project trajec- 340

tories points on the road network are well-studied [37], [38]. 341

In this work, we used a map matching algorithm based on 342

the hidden Markov model [37] that is commonly applied in 343

related trajectory studies [39], [40]. For a GPS point pi , each 344

candidate road segment is represented as a hidden state h 345

in the Markov chain with an observation probability P(pi |h) 346

that depends on the distance between the trajectory point and 347

the segment. Given a trajectory P = {p1, p2, . . . , pn}, the 348
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Fig. 2. (a) Illustration of map matching. Upper: Original trajectory points;
Lower: Map-matched trajectory points. (b) Heatmap of trajectory points in
Chengdu (The deeper color indicates a more dense distribution of trajectories).

objective of map matching is to find a sequence of hidden349

states S = {s1, s2, . . . , sn} with maximum likelihood Vh,n ,350

Sn = arg max
h∈Hn

Vh,n351

Vh,i = P(pi |h) max
s∈Hi−1

{
f (s, h)Vs,i−1

}
(5)352

where Hi is the set of hidden state at i and f (·, ·) is the353

transition probability between two hidden state.354

With the regularized trajectories (see the lower part of355

Fig. 2(a)), a trajectory is represented by a sequence of road356

segments:357

P = {p1, p2, . . . , pn} map−−−−−→
matching

R = {r1, r2, . . . , rm} , (6)358

where R is the set of road segments traversed by the trajectory.359

2) Recovery Speed Distribution: After obtaining a collec-360

tion of map-matched road segments, a number of motion361

features can be exploited, among which real-time speed is362

the most important one. This can be easily calculated by363

the distance between consecutive GPS points and sampling364

interval. In particular, for two continuous sampling points365

pi and p j on the same road, the sampling time interval is366

denoted as �t . The speed of these two point can be calculated367

by distance(pi , p j )/�t . Based on this, the speed of a road368

segment can be approximated as the average speed of all369

neighboring sampling points.370

However, GPS trajectories are unevenly distributed on the371

road network, i.e., concentrated in the city center and scattered372

at the edge areas. Fig. 2(b) presents a heat map with GPS373

trajectories in Chengdu projected onto the map, where the374

area in deeper color indicates a more dense distribution of GPS375

points. Similarly, there are more trajectories in the daytime and376

fewer trajectories in the nighttime. The uneven distribution of377

trajectories in temporal and spatial dimensions leads to mas-378

sive missingness in the historical speed of each road segment.379

Therefore, we need to recover the speed distribution of the380

road network throughout. As this problem has been exten-381

sively studied in traffic data imputation methods [41], [42],382

we utilize Bayesian Gaussian CP tensor decomposition to383

recover speed distribution of the road network [41].384

3) Static Features: In addition to the average speed of road385

segments, there are also a number of attributes that have a386

significant impact on travel time [11], [12]. In this study,387

we selected static attributes such as road sequence length, 388

distance, week time, and departure time. We also extracted 389

an important statistical feature from the road segments, i.e., 390

“trip-avg”. This feature represents the average travel time for 391

each road, obtained from the distance of road divided by the 392

speed recovered in Sec. IV-A2. 393

B. Travel Time Estimator 394

In this subsection, we introduce the architecture of the 395

proposed travel time estimator. As shown in Fig. 3, the pro- 396

posed model is firstly divided into two parts: namely, attribute 397

learning module and temporal learning module. Following 398

these two modules, we concatenate the latent representa- 399

tions to estimate travel time. We start by introducing the 400

attribute learning module, which aims to learn static attributes 401

mentioned in Sec. IV-A3. For better learning these features, 402

we embed categorical features, i.e., weekID and timeID, into 403

low-dimensional vectors R
3 and R

8, respectively. Specifically, 404

categorical features are embedded by linear layers y = Ax T + 405

b, where x is the one-hot encoded vector and A ∈ R
D×V

406

is the weight matrix, V is the vocabulary size and D is the 407

embedding dimension. Subsequently, z-score normalization is 408

adopted on the trip distance, and the number of road segments 409

traversed. The historical average travel time mentioned in Sec. 410

IV-A3 is concatenated as well. After obtaining the attribute 411

embedding, the embedded attribute features are concatenated 412

and fed into three consecutive fully connect layers (FCLs), 413

each of which is mathematically represented as follows: 414

y = Act(w · x + b), (7) 415

where w and b are trainable parameters, and Act(·) denotes 416

the activation function, respectively. 417

The second key component in the travel time estimator 418

is a fundamental operation for fine-grained temporal feature 419

extraction, i.e., the long short-term memory (LSTM) network. 420

LSTM is a common neural network architecture proposed 421

in [43], which is widely used in spatio-temporal data mining 422

and time dependency acquisition tasks thanks to its design of 423

state propagation over time. Specifically, LSTM contains four 424

components: input gate it , output gate ot , forget gate ft , and 425

intermediate cell state ct . Given a sequence of road segments 426

as input x = {xi }1≤i≤N ∈ R
F×N (F is the feature dimension 427

for xi ), the output latent vector h = {hi }1≤i≤N ∈ R
R×N can 428

be calculated by the following formulation: 429

it = σ
(
wi ·

[
ht−1, xt

]+ bi , (8a) 430

ft = σ
(
w f ·

[
ht−1, xt

]+ b f , (8b) 431

ot = σ
(
wo ·

[
ht−1, xt

]+ bo , (8c) 432

ct = ft � ct−1 + it � tanh
(
wc ·

[
ht−1, xt

]+ bc , (8d) 433

ht = ot � tanh (ct ) , (8e) 434

where σ(·) is the sigmoid function, and the symbol � rep- 435

resents Hadamard product, respectively. All w ∈ R
R×F and 436

b ∈ R
R denote the trainable weights and bias parameters 437

in the network, respectively. In addition, we incorporate the 438

embedded static attributes with road segments features to 439

further help temporal learning. From the above formulation, 440
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Fig. 3. The architecture of the proposed travel time estimator. The proposed model captures high-dimensional features using the attribute learning module
(green part) and the temporal learning module (yellow part), respectively. The potential representations are then concatenated to estimate travel times. Finally,
estimating the travel time distribution by multiple Monte Carlo sampling.

it can be observed that the calculation of the current time441

output ht involves the integrated calculation of the previous442

output ht−1 and the cell state ct−1, and the total amount of443

information passed from the previous to the current time is444

controlled by it , ft , ot . Through this information flow design,445

temporal correlation can be extracted from the input data,446

which is among the core factors for predicting travel times [5].447

In this paper, we adopt a two-layer stacked LSTM structure448

where the hidden size of LSTM cells is set as 128. To extract449

fine-grained spatio-temporal information, we concatenate the450

road segment features and attribute embeddings as the input to451

the LSTM. Similar to the attribute learning module, we attach452

three FCLs after LSTM layers to extract hidden features.453

Finally, the latent representations from the attribute learning454

module and temporal learning module are concatenated and455

subsequently fed into two FCLs for the estimation. To sum-456

marize, we can formulate the proposed travel time estimator457

as:458

ha = MLP(Ewid ⊕ Edt ⊕ Edis ⊕ Elen ⊕ Eavg),459

hr = MLP(LSTM(xroad ⊕ Eattr)),460

ŷ = MLP(ha ⊕ hr ), (9)461

where E denotes the embedded attributes, and MLP represents462

a continuous sequence of FCL layers, respectively. ha and463

hr denote the high-dimensional features extracted by the464

attribute learning module and the temporal learning module,465

respectively. Except for the last output layer, we use the466

Rectified Linear Unit (ReLU), i.e., f (x) = max(0, x) as the467

activation function and apply dropout to all FCLs.468

C. Bayesian Uncertainty Estimation469

With the previous neural network components, we can build470

a deep learning model to capture latent features and estimate471

a deterministic travel time. However, considering the short-472

comings of the deterministic model we discussed in Sec. I,473

uncertainty estimation can better satisfy in a fluctuating traffic 474

environment. Bayesian deep learning is a solution to this 475

problem. In general, a neural network model can be considered 476

as a conditional probability model P(y | x, w), where w 477

is the weights in the neural network (including the weights 478

and biases we introduced in Eq. (8) and Eq. (7). For a 479

given training dataset D, the learning objective of a neural 480

network can be regarded as a maximum likelihood estimation 481

accordingly: 482

wMLE = arg max
w

logP(D | w). (10) 483

From a Bayesian probability theory point of view, the Bayesian 484

neural network assumes that the parameters all follow a 485

posteriori probability distribution P(w | D) over the dataset. 486

Therefore, the objective of Bayesian deep learning is formu- 487

lated as: 488

P (y | x,D) = p (y | x, w) p(w | D)dw. (11) 489

Nevertheless, this posterior probability is intractable according 490

to Bayes theorem: 491

P(w | D) = P(D | w)P(w)

P(D)
. (12) 492

In practical analysis, we often utilize variational inference 493

methods [44] to approximate P(w | D) by a distribution q(w | 494

θ) parameterized by θ . The optimal variational distribution 495

with parameter θ∗ can be found by minimizing the Kullback- 496

Leibler (KL) divergence as follows: 497

θ∗ = arg min
θ

KL[q(w | θ)	P(w | D)] 498

= arg min
θ

q(w | θ) log
q(w | θ)

P(w)P(w | D)
499

= arg min
θ

KL[q(w | θ)	P(w)] − Eq(w|θ)[log P(w | D)]. 500

(13) 501
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Therefore, given the optimal distribution q(w | θ∗), the502

predictive distribution Eq. (11) is calculated approximately by:503

P (y | x,D) = p (y | x, w) q(w | θ∗)dw = q(y | x, θ∗).504

(14)505

In summary, Bayesian deep learning replaces deterministic506

parameters in a neural network with a distribution of para-507

meters q(w | θ). Since each parameter sample can generate a508

deterministic inference, we can obtain a posterior distribution509

by multiple inference, i.e., travel time uncertainty.510

In this paper, we adopt Monte-Carlo dropout to obtain511

probabilistic estimation uncertainty, which is easy to imple-512

ment and computationally efficient [36], [45]. The core idea is513

assume that the parameters of each layer in the neural network514

satisfy the Bernoulli (p) distribution and use the parameter p515

to control the probability of hidden neurons being dropped516

out. This is also a widely adopted manner in related research,517

see [24], [46] for some examples.518

Specifically, we sample the binary variables of the hidden519

units in each network layer of the network (except the last520

layer). The variables of each hidden cell are taken to be 0 with521

probability p, i.e., for a given input, the cell is dropped. For522

example, if we apply M samples and collect the output of523

the network at test time, we can approximate the prediction524

uncertainty, i.e.:525

Var (y | x) = Var [E (y | x, w)]+ E [Var (y | x, w)]526

= Var( f (x, w))+ σ 2
527

≈ 1

M

M∑
i=1

(
ŷ(i) − ŷ

)2 + σ 2, (15)528

where f (x, w) is the neural network model, ŷ(i) denotes the529

prediction of i−th sample, and ŷ is the mean of all sample530

prediction. σ 2 is the data uncertainty and refers to the inherent531

noise for the data generating process, which can be estimated532

on an independent validation dataset [47].533

With the above theoretical basis of Bayesian neural net-534

work, we can construct a travel time uncertainty estimator535

by Monte-Carlo dropout method. As illustrated in Fig. 3, the536

proposed neural network model employs the dropout technique537

after each FCL (except for the last one). Accordingly, we apply538

Monte-Carlo sampling with p = 0.1 during the estimation.539

D. Cross-Area Travel Time Estimation Scheme540

In the previous subsection, we present a deep neural541

network-based travel time uncertainty estimator, which542

extracts spatio-temporal features from trajectories and incor-543

porates a Bayesian deep learning approach to estimate uncer-544

tainty. Nevertheless, we still need to consider training and545

testing this estimator in the context of cross-area scenarios.546

This section will introduce the training and inferring processes547

of the proposed cross-area travel time estimation scheme548

separately. As described in Sec. I, in such a setting, we need to549

focus on the collaboration of different areas while protecting550

privacy. Therefore, we present the training scheme of the551

proposed method and the workflow for performing cross-area552

uncertainty estimation in the sequel.553

Algorithm 1 Cross-Area Travel Time Uncertainty Estima-
tion Algorithm

Input:
Order ID O, travel trajectory P .
Center server Sc, Area server set {S1, . . . ,Sm}.

Output:
Estimated travel time distribution T .

User:
1: Split the trajectory P into n (n < m) segments
{P1, . . . , Pn} based on the local map

2: Encrypt the order ID
{O1, . . . , On} ← Encrypt(O).

3: Send trajectory segments and encrypted order pairs
{(P1, O1), . . . , (Pi , Oi )} to the central server.

Center Server:
1: Receives the segment and order pairs.
2: Send pairs to the corresponding area server {S1, . . . ,Sn}.

Area Server:
1: for area server Sa ∈ {S1, . . . ,Sn}, in parallel do
2: for Monte-Carlo sample i = 1, . . . , M do
3: ti ← AreaModel(Pi , w)
4: add ti to the set of estimated values Ta .
5: end for
6: send Ta = {t1, . . . , tM } and encrypted

order ID Oi to the center server.
7: end for

Center Server:
1: Receives all estimated {T1, . . . ,Tn} of areas and

encrypted order ID.
2: Cross-merge and sum the estimates from different

segment
T ← sum({T1, . . . ,Tn})

3: Reconstruct the order ID
O ← Decrypt({O1, . . . , On})

4: Send estimated travel time distribution T back to
the user according to the order ID O

1) Model Training: The Fig. 1(a) shows the training scheme 554

of the proposed algorithm, consisting of three main com- 555

ponents: the central server, the area server, and the local 556

dataset. The area servers utilize their respective local datasets 557

for training, and the central server is responsible for para- 558

meters aggregation. For raw trajectories, the map matching 559

method first projects the trajectories to a collection of road 560

segments. Then, according to the area boundaries, the tra- 561

jectories are partitioned into corresponding areas to arrange 562

training datasets. The area-specific dataset is denoted by 563

Dk =
{

xi , yi
}nk

i=1, where k denotes the area number, xi
564

represents the trajectory segments, and yi is the ground truth 565

trip time. Based on the local dataset of each area, we can 566

follow the scheme introduced in Sec. III-B. In addition, due 567

to the different spatio-temporal traffic characteristics among 568

areas, after obtaining the global shared model by FL training, 569

each area server still needs to carry out personalized training 570

based on it. It can also be explained that the area server does 571
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not share and update the model with other servers during the572

last round of federated training.573

2) Model Inference: With the personalized estimating574

model for each area, we can use it for cross-area travel time575

uncertainty estimation. As summarized in the Algorithm 1,576

there are three crucial participants in this algorithm, namely,577

the user, the area server, and the central server. The user578

is the requester of the travel time prediction in the algo-579

rithm, determining the trip trajectory based on the local map580

and generating a collection of map-matched road segments.581

Subsequently, the user server divides the trajectory P into582

subsets {P1, . . . , Pn} according to the boundaries of areas.583

Then encrypt the subsets order ID and sends these road584

segments and encrypted order pairs to central servers with585

corresponding order IDs. The central server is the coordinator586

in the algorithm who sends the road segments that need to be587

predicted to each area server. After receiving the estimation Ti588

of the road segment from each area server, the central server589

calculates the sum time T ← sum({T1, . . . ,Tn}). Finally, the590

estimated time is returned to the corresponding user based on591

the decrypted order ID. Please note that in order to prevent592

each area server from colliding with each other to recover593

the trip information based on the order ID, the central server594

will send the order ID by encrypting it and then decrypting595

it after receiving the result (See the Fig. 1(b) for details).596

The area server is the executor in the algorithm who receives597

the prediction task and estimates it using the local model,598

then returns the travel time distribution Ti for this trip. With599

the above three roles presented in the Algorithm 1, we can600

estimate the travel time uncertainty for a cross-area trajectory601

while preserving privacy.602

V. CASE STUDIES603

In this section, we evaluate the proposed algorithm by604

performing comprehensive case studies on two real-world605

trajectory datasets. We first introduce the datasets and sim-606

ulation settings. Then, we compare the estimation accuracy607

with centralized and decentralized baselines and analyze the608

uncertainty of estimation. Finally, we investigate the scalability609

of the proposed model by inductive learning.610

A. Data and Configuration611

In this study, we conduct case studies on two real-world612

trajectory datasets, which are collected by taxi-hailing vehicles613

of two major cities in China, namely, Chengdu and Xi’an.1614

Specifically, both datasets are collected from Nov 1st, 2016 to615

Nov 30th, 2016, with a sampling interval of 2s to 4s. The sta-616

tistics of both datasets are shown in Table I. The road network617

topology is obtained from OpenStreeMap.2 Subsequently, GPS618

trajectories are mapped to road segments as discussed in619

Sec. IV-A. Since the proposed model is for cross-area travel620

time estimation, but the dataset does not have a specific area621

partition. We need manually partition the road network into622

different areas and arrange training datasets before starting623

1These datasets can be downloaded (following approval of access request)
at https://outreach.didichuxing.com/app-vue/

2https://www.openstreetmap.org/

TABLE I

STATISTICS OF TWO REAL-WORLD TRAJECTORY DATASETS

Fig. 4. The partition of road network. Road segments are clustered into
different areas based on their latitude and longitude. Different colors indicate
different areas.

the simulation. For a specific number of partition areas, the 624

partition is performed based on the latitude and longitude 625

of the road segment using K-means clustering. The partition 626

will not change in the training and testing. Fig. 4 shows 627

the partition of road network in Chengdu and Xi’an with 628

the default setting (We divide the network into 8 areas by 629

default and conduct simulations on different number of areas 630

in Sec. V-C). 631

For validation, we select trajectory recorded in the last week 632

for testing, and the rest of the dataset is sequentially divided 633

into training set and validation set with a ratio of 3 : 1. 634

By default, the model is trained for a total of 30 rounds, 635

with half of the clients randomly selected for each training 636

round and parameter aggregation. For each training round, the 637

selected client trains 10 epochs on its local dataset, and the 638

batch size is set to 1024. The model parameters are updated 639

by the Adam optimizer [48] with an initial learning rate of 640

0.001. All models are developed by PyTorch, and we perform 641

all case studies are on a server with NVIDIA GeForce RTX 642

2080Ti GPUs. All experiments in this paper are simulated by 643

serial training on a single server environment as described 644

above. In the default case (8 area servers, half of the areas 645

are selected for training in each round), the average training 646

time per round is 17.4 min, i.e., the average training time 647

per area is 4.4 min (disregarding the communication time 648

between servers). Considering the real situation where the user 649

device only needs to interact with the central server during 650

the inference phase without additional inference computation. 651

We can assume that a complete TTE request can be completed 652

in an acceptable time. 653

For performance evaluation, we employ three commonly 654

used metrics, including Mean Absolute Percentage Error 655

(MAPE), Root Mean Square Error (RMSE), and Mean 656

Absolute Error (MAE). These three metrics are widely used 657

in contemporary TTE studies [5], [12], [13], [19], and can be 658
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TABLE II

PERFORMANCE COMPARISON OF DIFFERENT APPROACHES. MAPE IS REPORTED IN PERCENTAGE (%)

defined as follows:659

MAPE(y, ŷ) = 1

N

N∑
i

∣∣∣∣ y(i) − ŷ(i)

y(i)

∣∣∣× 100%,660

RMSE(y, ŷ) =
√√√√ 1

N

N∑
i

(
y(i) − ŷ(i) 2

,661

MAE(y, ŷ) = 1

N

N∑
i

∣∣∣y(i) − ŷ(i)
∣
, (16)662

where ŷ(i) is the estimated travel time of trip i , y(i) denotes663

the ground truth, and N is the number of trips, respectively.664

B. Baseline Methods665

This section presents the baseline methods adopt in the case666

studies for comparison under the decentralized and centralized667

cases, respectively.668

Decentralized: In this scenario, we follow the training and669

inference scheme in Sec. III-B and evaluate the performance670

of the cross-area algorithm.671

• NoFed: We train the proposed model in each area672

independently by its local dataset without parameter673

aggregation, i.e., we do not use federated learning for674

model training.675

• FedAvg: We train the model using the standard federated676

learning process and aggregate the model parameters by677

FedAvg.678

• FedProx: Fedprox [49] is a modification of the FedAvg679

algorithm, who rewrites the loss function in Eq. (2) by680

adding the proximal term:681

arg min
wk∈Rd

h(w,wk) = Lk(wk)+ μ

2
	w −wk	2 , (17)682

The purpose of this design is to encourage local updates683

that are not too far from the initial global model and684

to reduce the impact of data heterogeneity distribution.685

In this paper, we use FedProx to test the performance of686

proposed method with different optimization algorithms.687

Centralized: In this scenario, instead of partitioning the688

dataset by area, we treat the entire dataset as a single area689

for training and testing. By experimenting with this scenario,690

we can examine the capability of the proposed travel time 691

estimator to model spatio-temporal information. Note that 692

centralized approaches occupy unfair advantages on that they 693

have only one area and do not require collaborative training 694

of the model, violating the privacy preservation presumption. 695

• Historical Average (HA): HA estimates travel time by 696

calculating the average speed of trips with the same 697

departure time. 698

• TEMP: TEMP [8] is a route-free method that estimates 699

travel time by querying and averaging the trips with 700

neighboring origin and destination. 701

• XGBoost: XGBoost [50] is an established ensembling 702

method. We aggregate the road segment sequences to 703

keep each trip with the same feature dimension. 704

• WDR: WDR [12] is a widely deployed trajectory-based 705

TTE method that combines wide, deep, and recurrent 706

neural networks, achieving highly competitive prediction 707

accuracy. 708

• Ours: We used the proposed travel time estimator intro- 709

ducted in Sec. IV-B, and we set the same training round 710

in an identical environment as baseline methods for 711

consistency evaluation. 712

C. Estimation Performance 713

Table II summarizes the three evaluation metrics of the 714

proposed method and baseline approaches on the two datasets. 715

From the simulation results, it can be observed that the pro- 716

posed model outperforms all competing baselines in achieving 717

the lowest MAPE, RMSE, and MAE on all datasets. For 718

centralized scenarios, our approach (15.82%) significantly 719

outperforms other methods, especially for WDR (17.81%), 720

which is also based on deep neural networks. This result 721

can also be verified in the decentralized scenario, where our 722

method is able to achieve optimal results with the same 723

aggregation algorithm. These results strongly suggest that our 724

model has powerful spatio-temporal feature extraction and 725

modeling capabilities in any scenario. 726

In addition, we can observe that using the FedAvg aggre- 727

gation scheme is better than the one without aggregation. 728

The reason is that the parameter aggregation can convey 729

localization information of models between different areas, 730
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Fig. 5. Performance comparison of each area on Chengdu Dataset. The line graphs indicate the number of trajectories in different areas, and the bar graphs
indicate the performance change of the model with/without the use of FedAvg algorithm.

TABLE III

COMPARISON OF ESTIMATION ACCURACY WITH DIFFERENT

NUMBER OF AREAS ON CHENGDU DATASET

allowing global models to be more general, together with731

personalized training can be better adapted to cross-area732

models. The advantage of FedAvg is also supported by the733

results in Fig. 5. In this case study, we compare the per-734

formance of each individual area model after using FedAvg735

for parameter aggregation. We can observe that parameter736

aggregation using FedAvg can improve the performance of737

almost all area models, thus improving the overall perfor-738

mance. In particular, for areas with small amounts of data (e.g.,739

area 1 and area 6), parameter aggregation can significantly740

improve the performance of individual models. One may note741

that the FedProx algorithm does not work as well as FedAvg.742

The reason is that FedProx adds a proximal term (see Eq. (17))743

that makes the local model not too far from the global model.744

Such a design slows down the convergence of the model,745

which makes it perform inferior to FedAvg.746

Furthermore, we also examine the performance of the model747

for various sizes of manually defined areas, and the results748

are reported in Table III. We can clearly observe that the749

model performance decreases as the number of partition areas750

increases. This is explained by the fact that for the same751

size dataset, increasing the number of partition areas reduces752

the amount of local dataset accordingly, thereby affecting the753

model performance. On the other hand, the convergence speed754

of the global model can also be affected by too many decen-755

tralized models. Consequently, for the proposed cross-area756

TTE algorithm, smaller areas allow for better area-based traffic757

management as well as the protection of individual privacy.758

While too small areas will result in an increase in the number759

of local models, which will affect the performance.760

D. Travel Time Uncertainty761

As mentioned previously, besides deterministic estima-762

tion, the proposed method also provides the uncertainty763

Fig. 6. Arrival probability of trip examples that traverse different number of
areas. Although the predicted average time may be greater or less than the true
time, the accuracy of the reachable time probability increases as the number
of Monte Carlo samples increases. It is shown that performing multiple Monte
Carlo sampling can estimate the uncertainty of TTE to the best extent.

quantification of travel time estimation. In this section, we uti- 764

lize the Monte-Carlo sampling method in Sec. IV-C to estimate 765

the predictive distribution of trips and analyze the arrival 766

uncertainty. We randomly select trip examples that traverse 767

a different number of areas and present the corresponding 768

arrival probability in Fig. 6, where the red dashed vertical 769

line indicates the ground truth trip time and the blue is the 770

average estimated value. We can observe that although the 771

overall MAPE is acceptable, the model’s estimated values 772

can be greater or less than the ground truth. In practical 773

applications, such a deterministic value may confuse user’s 774

trip planning. Therefore, a more favorable approach is to 775

predict the time distribution (i.e., uncertainty) of this trip 776

and provide reachable time confidence. Fig. 6 also presents 777

the cumulative density function (CDF) curves, which is the 778

cumulative distribution of travel time estimations, indicating 779
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Fig. 7. Box plots of trips with different departure time on Chengdu dataset.
Daytime (approximately 8:00 - 20:00) trips have a larger IQR (interquartile
range) and maximum-minimum difference than nighttime trips, indicating
more complex traffic activity and greater uncertainty in the estimates during
the day.

how long a trip will take with a certain level of confidence.780

Taking the trip in the first figure as an example, we can choose781

different probability thresholds with different demands, e.g.,782

the trip will arrive in 8minute with about 80% probability.783

Besides, we can observe that for short (covering fewer areas)784

trips, the uncertainty of the model changes more drastically,785

requiring multiple Monte-Carlo sampling. The reason is that786

short trips are more significantly influenced by road conditions787

and human factors, while long trips can take the changes788

into account when performing long-distance spatio-temporal789

modeling.790

As the traffic state fluctuates during the day and night,791

we further divide the departure time into 2 h windows and792

investigate the estimation in different periods. For better793

visualization, we select trips that have similar travel time794

(about 10 min) and different departure time in Fig. 7. We can795

observe from the box plots that all the ground truth trip times796

are within the estimated distribution. Daytime (approximately797

8:00–20:00) trips have larger interquartile ranges than night-798

time trips, indicating greater uncertainty in the estimates due to799

instability associated with more traffic activity during the day.800

The model has a greater bias in the prediction of nighttime801

trips (The ground truth trip times are outside the interquartile802

range), probably due to less training data for nighttime trips.803

E. Scalability by Inductive Learning804

For a cross-area algorithm, in addition to accurate prediction805

and estimation with uncertainty, scalability to unseen areas806

also needs to be investigated. In this section, we examine807

this property by an inductive learning approach. Specifically,808

we assume that only some areas of the city are visible and809

can be used to train cross-area models. For those unseen areas,810

we directly deploy the trained model for testing. As illustrated811

in Fig. 8, from left to right, we set the number of visible areas812

to 1, 2, 4, 8 in training, respectively. Those visible areas are813

trained by FL training as mentioned in Sec. IV-D1, and unseen814

areas utilize the global shared model as the local model in the815

testing stage. Table IV summarizes the result with a different816

Fig. 8. Visualization of different number of visible areas in training. Areas in
grey are unseen in the training stage, while other areas participate FL training.

TABLE IV

ESTIMATION ACCURACY WITH DIFFERENT NUMBER OF

VISIBLE AREAS IN TRAINING ON CHENGDU DATASET

number of visible areas in training on Chengdu Dataset. The 817

simulation results are consistent with the intuition that the 818

accuracy of the prediction increases as the number of visible 819

areas increases. It is worth noting that when only half of the 820

city areas participate in the cross-area travel time prediction 821

training, the MAPE is able to reach 18.76%, which is a mere 822

drop of 2.47% compared to the scenario where all areas are 823

engaged (16.29%). Consequently, the above results show that 824

our algorithm can easily scale to unknown areas and achieve 825

promising performance. 826

VI. CONCLUSION 827

In this paper, we propose a novel cross-area travel time 828

uncertainty estimation algorithm. This method integrates 829

Bayesian neural networks to extract fine-grained spatio- 830

temporal features to predict the uncertainty of travel times with 831

the ability of privacy preservation. Particularly, the trajectory 832

data is firstly mapped to the road network and reconstructs the 833

speed distribution of the road network. The proposed model 834

uses map-matched road segment features together with other 835

external features as inputs to a novel travel time estimator. 836

To further estimate the travel time uncertainty, we adopt 837

Monte-Carlo dropout methods to obtain the travel time distrib- 838

ution. Finally, federated learning is incorporated to protect data 839

privacy across different areas. The proposed scheme is among 840

the pioneering works in estimating the cross-area travel time 841

uncertainty with federated learning technology. It addresses a 842

few crucial challenges of TTE, namely, cross-area travel time 843

uncertainty estimation. 844

To evaluate the performance of the proposed method, 845

we conducted a series of comprehensive case studies on two 846

real-world trajectory datasets, whose results demonstrate the 847

superiority of the proposed method. In addition, we test the 848

uncertainty estimation performance of the model to reveal 849

the robustness of the algorithm for complex traffic scenarios 850

and user requirements. Finally, we perform a hyperparameter 851

test and a scalability test, revealing that the proposed method 852

is capable of scaling to unknwon areas without data and multi- 853

area deployment. 854
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In the future, we will focus on area data sparsity issues,855

e.g., the distribution and the total amount of data are856

non-independently and identically distributed among different857

areas. In addition, we also plan to study the scalability of858

the algorithm to cope with the deployment of ultra-large scale859

urban scenarios.860
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