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Abstract— Travel time estimation is a crucial component of
intelligent transportation systems, affecting various applications
such as navigation, ride-hailing, and route planning. Tradi-
tional methods for travel time estimation rely on subjective
judgments, limited data sources, and straightforward modeling
techniques. Owing to recent advances in data mining and
machine learning, numerous data-driven methods are adopted
to address the problem that occurred in traditional schemes,
which demonstrate exceptional performance. In this paper,
we present a comprehensive survey of data-driven methods
for travel time estimation, encompassing application scenarios,
spatial-temporal modeling approaches, and data representation
learning techniques. To support and promote further research
in this field, we provide a valuable list of open data sources and
source codes, offering researchers a solid foundation for their
future endeavors. Furthermore, this survey discusses emerging
trends and key challenges faced by the research community,
such as the integration of real-time data streams and the use
of uncertainty estimation. We also explore the potential impact
of these advancements on transportation systems, highlighting
opportunities for improvement and innovation. To the best
of our knowledge, this work is among the first to offer a
comprehensive, in-depth review of data-driven methods for
travel time estimation, providing researchers and practitioners
with a valuable reference in the field.

I. INTRODUCTION

Travel time estimation (TTE) is a critical component of
intelligent transportation systems (ITS), which plays a pivotal
role in many location-based services, including navigation,
ride-hailing, and route planning. Particularly, the prolifera-
tion of sharing economy, online ride-hailing, and car-sharing
mobile apps has dramatically amplified the demand for
accurate travel time estimates. This information allows indi-
viduals to create effective schedules, circumvent congested
routes, and save time. Additionally, traffic management can
leverage specific travel time data to evaluate road planning
and enforce traffic control measures, thereby enhancing
transportation efficiency.

Nevertheless, considering the complex spatio-temporal in-
formation and numerous factors that subtly influence travel
time, TTE is a challenging task. A multitude of latent factors,
such as meteorology, points of interest (POI), and personal-
ized driving styles, can affect the accuracy of these estimates.
Since the pioneering work in this field was published in
1973 [1], TTE has garnered considerable attention from the
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intelligent transport community, resulting in the development
of an array of predictive methods from multiple perspectives
over the years.

One straightforward solution is to utilize speed detectors,
like loop sensors, to provide information on the travel speed
of each road segment, thereby allowing for the calculation of
travel time for each segment. However, the adoption rate of
loop sensors in many cities is limited, and their large-scale
installation is impractical due to high costs. In addition, the
entire travel time cannot be simply derived by summing up
the travel times of each individual road segment as it neglects
the time to pass intersections.

Thanks to the abundant crowd-sourced trajectory data
sourced from vehicles, numerous data-driven methods have
been proposed over the past decades to address the challenge
presented by static speed detectors. For instance, a method
proposed in [2] relies on the weighted average travel time of
neighboring trips, defined as those originating and ending in
geographically similar locations. Despite its ability to provide
quick estimations, this method struggles with predicting both
longer and shorter trips. Longer trips suffer from a lack
of sufficient neighboring trip data, while shorter trips are
heavily influenced by dynamic traffic factors such as traffic
lights. The absence of detailed route information further
complicates this method, leading to significant errors, while
its performance is also hindered by potential issues such as
data sparsity [3].

The above heuristic-based solutions rely heavily on human
knowledge to model the problem explicitly, not fully utilizing
the wealth of information in the massive data. To address this
challenge, an increasing number of end-to-end models have
emerged, driven by advances in deep learning techniques.
Empirical studies have confirmed the superiority of deep
learning methods for their better performance in capturing
latent features and modeling realistic traffic environments
with dynamic changes. For instance, Wang et al. [4] propose
a DeepTTE model, which independently captures spatial
and temporal dependencies and outperforms contemporary
baseline methods.

In recent years, the advancement of tensor decomposi-
tion algorithms and deep neural networks has significantly
improved the accuracy of TTE. However, despite these im-
provements, TTE still faces numerous unresolved challenges.
While there are existing reviews on bus travel time estimation
[5] and deep learning methods for other noteworthy issues
in ITS (e.g., traffic flow prediction [6]), to the best of
our knowledge, this work is one of the first efforts to
comprehensively review data-driven methods for travel time



estimation for general vehicles. The primary aim of this work
is to review TTE methods from multiple perspectives and
bridge the existing gap in this field. We also provide our
insights on current challenges and potential future research
directions.

The rest of this paper is organized as follows. Section
II introduces the formulation and basic definitions of TTE.
Section III presents a categorization of the TTE problem
based on the application scenario and route representation.
Section IV provides a classification of TTE models based on
the adopted data-driven techniques. Experimental data and
resources are outlined in Section V. Section VI offers our
insights on the current challenges and future directions.

II. PROBLEM FORMULATION

Pang et al. [7] consider travel time estimation as a multi-
step-ahead prediction problem for time series, whereas the
prevailing perspective in current research regards it as a
spatial-temporal regression problem. In deep learning-based
methods, the goal of travel time estimation is to train a
model that extracts influential features from the given data,
and subsequently use this model to estimate the travel time,
denoted as T , for a given path, denoted as P , during the test
phase. This process can be formulated as follows:

T = F(X ,W), (1)

where F(·) represents the travel time estimator, X denote the
input of the estimator, and W represents the corresponding
estimator parameter.

In real-world scenarios, travel time estimation service
providers often only know the start and end points of
the trip when they receive a query. Furthermore, privacy-
preserving policies may restrict access to complete trajectory
information, leaving only the origin and destination points
available for analysis. For example, the largest public taxi
data released by New York City [8] does not include inter-
mediate GPS points. To overcome this challenge, researchers
have developed methods for estimating travel time based
solely on the origin-destination (OD) pair information, a
process known as OD Travel Time Estimation. The goal of
OD travel time estimation is to estimate travel time using the
trip dataset, given the origin location, destination location,
and departure time.

This work proposes several fundamental definitions related
to the task of travel time estimation:

Definition 1 (Road Network): The definition of a road
network can be broadly classified into two categories ac-
cording to prevailing research on the issues mentioned above.
A road network can be defined as a set of connected road
segments, each represented as a directed edge [9]. When road
intersections are treated as links, as in [10], it seems more
reasonable. Alternatively, road networks can be defined using
directed [11]–[13] or undirected graphs G(V, E) [14], where
the vertex set V denotes all the road intersections and the
edge set E refers to all road segments.

Definition 2 (Trajectory): A trajectory is a sequence of
spatio-temporal sample points generated by the movement

of vehicles, including location (longitude and latitude) and
time information.

Definition 3 (Path/Route): A path or route is a sequence
of connected road segments on the corresponding road
network, leading from the origin to the destination.

Definition 4 (Trip): A trip is defined as a tuple xi =
(oi, di, ti) with three key components: the origin location
(oi), the destination location (di), and the departure time
(ti). Additional optional components may represent external
features that could influence the estimation.

III. TRAVEL TIME ESTIMATION

A. Application Scenario

In this section, we divide the related works of this problem
into two parts according to their application scenarios, which
are car travel time estimation and bus travel time estimation.

1) Car Travel Time Estimation: Apart from the external
factors considered at a macroscopic level (e.g., meteorol-
ogy), the incorporation of personalized information (e.g.,
individual driving patterns) has shown promise in improving
estimation accuracy for individualized (customized) travel
time. Gao et al. [10] harnessed the inertial data collected
from smartphones to identify aggressive driving events and
fused them within a deep recurrent neural network for per-
sonalized travel time estimation. Reference [15] captured the
similarity among drivers who share close driving preferences
(i.e., possess similar driving styles) to transfer knowledge
from the drivers with dense trajectory data to others with
sparse data and, as a result, effectively alleviated the driver
data sparsity problem.

Existing travel time estimation methods primarily rely on
historical trajectory data, which may fail to make prompt
responses to stochastic events, such as traffic accidents, road
maintenance, and traffic controls. As an important source of
accurate and reliable traffic information, urban surveillance
systems can be leveraged to infer the real-time traffic state,
which benefits a more precise travel time estimation. Build-
ing upon this concept, [12] proposed RTTE, a novel real-time
travel time estimation framework with sparse surveillance
information, showcasing its potential as a practical solution
to real-time traffic monitoring and estimation in urban areas.

2) Bus Travel Time Estimation: Bus travel time estimation
differs from that of cars due to the nature of fixed routes
and designated stops, which has different travel patterns,
more complex bus network representation reflecting impor-
tant travel locations (e.g., stops, intersections), and fewer
datasets. In the domain of public transport systems, the
estimation of travel time for buses is widely recognized
as a crucial yet challenging task. As noted previously, [4]
constituted a commonly acknowledged baseline approach,
displaying noteworthy performance results. Reference [16],
on the other hand, integrated traffic forecasting information
into [4], resulting in a proposed model which achieves
a 21% improvement in accuracy when compared to the
existing method without traffic predictions for bus travel time
estimation.



Petersen et al. [17] utilized deep neural networks, specif-
ically a combination of convolutional and long short-term
memory (LSTM) layers, to effectively capture the non-
static spatio-temporal correlations for bus travel time es-
timation. Pang et al. [7] approached the problem as a
Multi-Step-Ahead Prediction (MSAP) task and offered a
framework consisting of Recurrent Neural Network (RNN)
with LSTM to leverage the long-range dependencies for
prediction. Nonetheless, the methods mentioned above are
not sufficiently comprehensive to learn from the spatial-
temporal relationships. To be specific, [17] focuses on cap-
turing temporal dependencies alone and neglects the spatial
factors. Besides, in [7] only spatial dependencies between
stops or intersections on a single route are considered. The
interdependence of buses with similar routes is ignored. To
address this issue, Ma et al. [18] proposed MAGTTE, an end-
to-end multi-attention graph neural network-based model that
demonstrates exceptional robustness when estimating bus
travel times with highly sparse travel records.

Despite the promising domain of bus travel time estima-
tion, this work places greater emphasis on estimating travel
time for cars in the subsequent sections, which provides more
generality to the context.

B. Route Representation

As an important part of TTE modeling, an appropriate
route representation helps to mitigate errors and enhance
the precision of predictions. Existing efforts on estimating
travel time generally fall into three categories from the route
representation perspective: segment-based, path-based, and
OD-based methods.

1) Segment-based: The principle of “divide and conquer”
forms the basis for segment-based methods, wherein a given
path is decomposed into a sequential arrangement of road
segments. The overall travel time is then calculated as the
sum of each segment’s time. Early results that rely on
static sensors (e.g., loop detectors [19], [20]) are regarded
as typical segment-based methods which possess the merit
of low computation cost and high comprehensibility in line
with intuition. However, such approaches suffer from the
apparent drawbacks of disregarding delays from complex
traffic conditions such as intersections and traffic lights.
Additionally, they fail to uncover correlations among road
segments; for instance, congestion on one particular segment
may impact the travel times of adjacent ones.

To address the aforementioned challenges, authors in [9]
utilized dynamic programming to estimate the travel time of
an entire path, i.e., to search for the optimal combination
of sub-path comprised of multiple road segments, each with
pre-determined travel times. Despite that time delays can be
incorporated into the estimation, there remains residual time
spent at sub-path junctions overlooked.

Tang et al. [21] proposed a tensor-based spatial-temporal
model to estimate the travel time of all road segments on a
city scale under varying traffic conditions at different times
of the day. This approach incorporates the spatial correlation
between road segments and latent regularity captured from

traffic condition fluctuation. Zygouras et al. [22] predicted
the travel time for each individual road segment by utilizing
information obtained from other segments with similar traffic
characteristics, which is then summed up to calculate the
travel time for a given query path. Qiu et al. [23] devel-
oped an innovative neighbor-based deep learning method to
leverage the historical data at fine-grained time intervals and
the features of adjacent segments, leading to improved TTE
precision for each road segment.

In summary, segment-based methods exhibit several in-
herent shortcomings: a) The dynamic and uncertain nature
of transportation systems makes it challenging to accurately
predict road segment traffic conditions. As a result, estima-
tion accuracy for each segment is partially affected. b) The
errors stemming from the earlier-mentioned matter tend to
amass, thereby resulting in a considerable estimation bias.
Besides, ignoring intersection and traffic light delays also
results in inaccurate time prediction of the entire path. c)
Impact of personalized driving on travel time is neglected
when considering paths as sequences of road segments.
For instance, drivers residing nearby typically drive faster
within the local region than those visiting an unfamiliar area.
Thus, explicit differences exist between the travel times. d)
Trajectory data must be projected onto the road network,
which entails computationally heavy map-matching.

2) Path-based: Owing to the impressive ability to distill
valid information and intrinsic connections of deep learn-
ing techniques, deficits of segment-based methods can be
partially resolved by path-based end-to-end models. These
models enable the capturing of complex traffic conditions
and correlations implicitly [4], [24], [25]. Moreover, taking
into consideration the path level data instead of relying
on sequences of segments acquired through map-matching
algorithms results in a reduction in computational expenses
and eradication of errors arising from the algorithms.

DeepTTE [4] takes the raw GPS sequence as input and
estimates the travel time of the whole path directly. Specif-
ically, it employs sliding windows, each containing several
consecutive sampled points, to transform a path into a se-
quence of windows. However, the performance of DeepTTE
highly relies on both the accuracy and sampling frequency of
raw GPS data. When intermediate points between the origin
and the destination are unavailable, its performance rapidly
declines.

Zhang et al. [24] took further steps to partition the road
network into equal-sized grids before converting a trajec-
tory composed of GPS-sampled points into a sequence of
grids that it passes through. Nonetheless, the difficulty of
defining the appropriate granularity of grid cells limits its
further performance. Coarse-grained cells aggregate multiple
sampled points within a cell, losing the precise movement
information. Overly small cell sizes, on the other hand, result
in a large number of grids with few or almost no points
falling in. Under the circumstances, the correlation between
similar trajectories is diluted, which in turn leads to severe
data sparsity problems.

Drawing inspiration from natural language processing



(NLP), Wide-Deep-Recurrent (WDR) [25] was proposed as
an innovative deep learning framework that simultaneously
trains wide linear models, deep neural networks, and recur-
rent neural networks. In this model, each route is treated as a
sentence and each road segment, along with its corresponding
interaction, is considered as a word. By leveraging both
the wide and the deep models to capture overall statistical
properties of routes along with the use of recurrent models
to capture detailed characteristics of road segments, both
route- and segment-level features are utilized for accurate
predictions.

Furthermore, Fu et al. [26] employed a sliding window
over a given path to plot sub-paths in each window as images,
treating paths as sequences of images to seamlessly capture
spatial and temporal patterns.

It is worth noting that the prevalence of data-driven
methods and machine learning tools has resulted in a blurring
of boundaries between segment-based and path/sub-path-
based approaches. Han et al. [27] exploited the advantages of
different route representations and proposed a multi-semantic
model for travel time estimation (STTE) to construct multiple
informative representations for a path. This is achieved by
considering the path both as a sequence of segments and as
a sequence of intersections.

Additionally, there is also a growing trend to introduce
multi-task learning frameworks during the training phase in
some learning-based models [11], [13], [26], which aims
to balance the trade-off between individual segment time
estimation and overall path time estimation.

3) OD-based: In many real-world online services, only
the origin and destination of a trip are provided, rather than
the actual route before making a travel time estimation and
it’s time-consuming and error-prone to infer the likely route
in advance. Furthermore, due to privacy preservation policies
and tracking costs, access to entire trajectory information is
often limited. Given these considerations, performing effec-
tive origin-destination (OD) travel time estimation assumes
significant importance.

A nearest neighbor based method was proposed in [2]
wherein the authors estimated OD travel time with the
utilization of historical trips with similar origin, destination,
and time of day. This approach avoids expensive route
computation and achieves outstanding performance in terms
of running speed (i.e., up to 40 times faster than other route-
based methods at the time), which is essential for online
services. However, as trip length increases, there may not
be sufficient neighboring trips available (i.e., it is faced with
severe data sparsity), thereby reducing confidence in travel
time estimates.

In addition to the heuristic design, recent advances in
addressing the OD travel time estimation problem have
employed deep learning-based techniques. For instance, MU-
RAT [14] is a multi-task representation learning model
that leverages topological structure and spatio-temporal prior
knowledge of road networks for OD travel time estimation.
The proposed multi-task learning framework enhances learn-
ing performance by capturing meaningful path information

from historical trips as an auxiliary task. Yuan et al. [28]
proposed an effective encoding model that first generates
spatio-temporal representations for historical trajectories and
then binds the OD input to its affiliated trajectory during
training phases. During prediction phases, only the OD input
is used to generate its representation akin to generating a
proper trajectory, resulting in improved estimations.

IV. DATA-DRIVEN TECHNIQUES PERSPECTIVE

A. Tensor-based Models

A tensor is a high-dimensional generalization of vectors
and matrices in the form of multi-dimensional arrays of
numerical data. Tensors can be used to represent the mul-
tivariate relationship between heterogeneous data, making
them a natural choice for modeling variables in transportation
systems with high-order tensors for the problem of TTE.
For example, [9] constructs a third-order tensor where each
element denotes the travel time of a particular driver on a
specific road at a certain time. However, many road segments
are not traversed during a non-negligible amount of time slots
rendering a large volume of values in the tensor missing.
To address this issue, tensor decomposition, an effective
and versatile technique for dimension reduction, sparse data
filling, and implicit relationship mining, is widely used to
alleviate data sparsity in tensor-based TTE methods.

Specifically, authors in [9] extracted three categories of
features, consisting of geospatial, temporal, and historical
contexts. Then extracted features were fused with tensor
decomposition to infer the missing values in tensors, namely
the context-aware tensor decomposition approach. Similarly,
Tang et al. [21] proposed a novel algorithm named Prob-
abilistic Traffic Condition Clustering, which models travel
time and its corresponding occurrence probability based on
traffic conditions using two three-order tensors. They also
introduced a context-aware tensor decomposition approach
named wCPr, which accurately estimates missing entries.
Huang et al. [29] took congestion level into consideration and
incorporated it into their tensor model as a third dimension.
Additionally, they proposed a coupled tensor decomposition
algorithm that utilizes POI features to enhance the accuracy
of missing data recovery.

In addition to the aforementioned tensor-based models,
there are also studies that combine tensors with learning-
based models to contribute towards feature extraction. For
instance, Shen et al. [3] leveraged non-negative tensor
decomposition to restore travel speed distributions within
the Travel Speed Features Layer of their model where a
Convolutional Neural Network (CNN)-RNN model is also
integrated to extract both long-term and short-term travel
speed features.

B. Learning-based Models

1) Deep Neural Network Models:
a) CNNs & RNNs: Due to their powerful ability for

image processing, CNNs have a wide application on face
recognition, object detection, and medical image analysis.
For TTE, paths can also be projected into Euclidean space,



thereby images. Inspired by this idea, CNNs are introduced
for travel time estimation to exploit its outstanding power by
capturing spatial correlations from image data.

For instance, Fu et al. [26], as discussed in Section III-
B.2, leveraged a CNN-based approach to extract spatial
motion patterns from sequences of sub-path images. To be
specific, a unique two-dimensional CNN architecture, named
PathCNN, was introduced to incorporate diverse pooling
techniques for handling heterogeneous information within
the images. Moreover, its convolution was also regulated for
better capturing spatial features of lines instead of image
textures as classical CNN models do. It is noteworthy
that temporal dependency was also captured by the one-
dimensional CNN model, which exhibits novelty compared
with the prevailing usage of RNN and its variants for
extracting temporal features. In [30], Lan et al. first divided
the high-resolution map into a number of equal-sized grids
and integrated trajectory data with it. A deep CNN was
then employed to recognize patterns from morphological
layout images of traversed grids and generate an effective
representation for subsequent predictions.

RNNs are highly suitable for modeling temporal data
owing to their memorization capability. Their variants, such
as Long Short-Term Memory (LSTM) [18], [31], [32] and
Gate Recurrent Unit (GRU) [13], find extensive applica-
tion in capturing long-term temporal dependencies for TTE.
Moreover, bidirectional LSTM (BiLSTM) is also adopted to
enhance the LSTM by utilizing backward information [24],
[30], [33]. Zhang et al. [24] designed a dual interval loss
mechanism in the prediction layer for auxiliary supervision
to further optimize the BiLSTM model’s performance, which
aligns perfectly with the characteristics of BiLSTMs and
leads to better predictions.

b) GNN: Graph Neural Networks (GNNs) are a type
of neural network that directly perform spectral convolution
operations or apply spatial attention on graph structures with
the ability to capture complex spatial dependencies between
nodes and links. GNNs are currently regarded as state-of-the-
art techniques for traffic forecasting problems including TTE
and are ideally suited to these problems, as a road network
is naturally a graph. For instance, Google Maps deployed
a GNN-based estimator for TTE in production, resulting
in significant reductions in negative results across different
regions worldwide (e.g., 40+% reduction in Sydney) [34].

A heterogeneous information network (HIN) was intro-
duced to the TTE task in HetETA [35]. A double-stuffed
sandwich structure was designed wherein two GNNs are
placed between three CNNs. GNNs were employed to en-
code spatially diverse information from HINs, while CNNs
were utilized to process temporal information. Moreover,
empirical findings validated that the learned representations
by HetETA can be integrated as additional features into
WDR, a meticulously designed feature system for TTE on
Didi Chuxing’s platform, leading to enhanced performance.
Jin et al. [36] proposed STGNN-TTE based on the core
architecture of ST-GCN [37], a deep learning framework
based on Graph Convolutional Networks (GCNs) and tem-

poral CNNs, which was initially proposed for traffic flow
prediction. By consolidating the output of the designed multi-
scale ST-GCN and extended temporal dynamics extracted by
the Transformer layer, real-time traffic condition representa-
tion was learned, leading to a more refined estimation.

Also, the Graph Attention Network (GAT), a novel graph
neural network architecture with an attention mechanism, is
employed to spatial-temporal tasks. Fang et al. [11] pointed
out that the majority of studies adopting spatial-temporal
graph neural networks make use of spatial and temporal
information separately, which neglects their joint relations.
To address this issue, an elaborate spatial-temporal graph
attention network, 3DGAT, was proposed in [11] to fully
exploit the joint relations of spatial and temporal information
and exhibited potential applications to other spatial-temporal
problems as well. Fu et al. [38] focused on improving the
inference speed of TTE and developed a learning system
called CompactETA. In this approach, a GAT is applied
to the road network graph to learn the spatial dependency
between roads, while positional encoding techniques [39]
are utilized to embed temporal dependencies. Specifically,
it provides an accurate travel time prediction within 100ms
reducing the inference time by more than 100 times over
other algorithms.

2) Learning Techniques:
a) Federated learning: In light of growing concerns re-

garding data security, conventional centralized-training mod-
els that necessitate the collection of trajectory data closely
linked to the personal location of all individuals are increas-
ingly vulnerable to privacy breaches. Consequently, there is a
pressing need for novel TTE methods that do not require data
sharing and prioritize protecting privacy. Federated learning
is a distributed machine learning technique with a decen-
tralized architecture that enables client-side data retention
while facilitating collective model training on the server side,
which is well-suited for TTE with privacy-preserving.

Given the decentralized and area-based deployment of traf-
fic management systems, it is imperative to consider privacy-
preserving data exchange when conducting TTE research
that involves trajectory data covering multiple administrative
areas within a city. To this end, Zhu et al. [40] designed a
comprehensive cross-area privacy-preserving solution incor-
porating federated learning, which enables them to train a
tailor-made travel time estimator in each area by local data
while maintaining strict privacy protections.

In traditional federated learning schemes, all participants
ultimately utilize the same model, thereby limiting its per-
formance across different clients. To address this problem,
Zhang et al. [41] proposed a federated learning system,
GOF-TTE, compromising both a base global model and a
fine-tuned personalized model. Benefiting from personalized
tweaks and its real-time perception of the global traffic state,
it makes more accurate predictions with the consideration of
privacy issues.

b) Meta-Learning: Meta-learning is a learning
paradigm that aims to acquire general knowledge across
diverse tasks and subsequently transfer this knowledge to



TABLE I
OPEN DATA OF TTE

Dataset Name Article

Porto Taxi1 [24] [26] [30] [22] [23] [13] [36] [27] [43] [44]
Chengdu Taxi [4] [26] [13] [36] [27] [41] [40] [44]

NYC Taxi2 [2] [14]
T-Drive trajectory3 [33]

Beijing taxi4 [9] [21]

novel tasks, thereby achieving swift adaptation with minimal
training data. Meta-learning algorithms are particularly
well-suited for scenarios where data is scarce or rapidly
changing, as they can learn from data without requiring
extensive manual engineering. Notably, recent meta-learning
algorithms employed in TTE can be classified into two
categories: model-based [42] and optimization-based [43],
[44].

Drawing on prior research conducted on Baidu Maps [11],
Fang et al. [42] made notable advancements in the realm of
prediction accuracy by incorporating the traveled route (i.e.,
the route already traversed from the origin to the driver’s
current location) into their analysis. This enables them to
model driving preferences more effectively and address a
novel task, namely en route travel time estimation (ER-TTE).
To overcome the challenge of few-shot learning inherent in
ER-TTE, a model-based meta-learning approach known as
SSML was proposed, which leverages the limited observed
driving behaviors to acquire meta-knowledge that enables
rapid adaptation to a user’s driving preference.

Nonetheless, it is widely acknowledged that model-based
methods generally exhibit weaker generalization capabilities
than their optimization-based counterparts. Specifically, Fan
et al. [43] pointed out that trajectories with different con-
textual information tend to have different characteristics in
ER-TTE so that directly using the same model for all tra-
jectories is prone to incur inaccuracy as SSML does. Hence,
they proposed a novel framework based on MAML [45],
one of the most successful optimization-based meta-learning
algorithms to date. Their approach offers personalized initial
parameters and learning rates for each trajectory based on
its specific contextual information. Also, Wang et al. [44]
introduced optimization-based meta-learning techniques into
the proposed MetaTTE framework to overcome challenges
arising from dynamic temporal dependencies and changing
road networks. This innovation opens up new avenues for
providing continuously accurate travel time estimations over
time for multi-city scenarios.

V. EXPERIMENTAL DATA AND RESOURCES

In this section, we present a summary of the experimental
data and source code utilized in the surveyed papers in
Tables I and II. The data presented herein are particularly
well-suited for conducting studies related to TTE, while the
accompanying code resources serve as valuable tools for
replicating previous TTE solutions as baselines in subsequent
research endeavors.

TABLE II
SOURCE CODE OF TTE ALGORITHMS

Model Name Year Link

PTTE [9] 2014 http://research.microsoft.
com/apps/pubs/?id=217493

DeepTTE [4] 2018 https://github.com/UrbComp/
DeepTTE

ConSTGAT [11] 2020 https://github.com/
PaddlePaddle/Research/
tree/master/ST_DM/KDD2020-
ConSTGAT/

HetETA [35] 2020 https://github.com/didi/
heteta

TTPNet [3] 2020 https://github.com/
YibinShen/TTPNet

SSML [42] 2021 https://github.com/
PaddlePaddle/Research/tree/
master/ST_DM/KDD2021-SSML/

MVSTM [31] 2021 https://github.com/
775269512/SIGSPATIAL-2021-
GISCUP-4th-Solution

MetaTTE [44] 2022 https://github.com/
morningstarwang/MetaTTE

VI. CHALLENGES AND FUTURE DIRECTIONS

Despite notable advancements in existing studies, achiev-
ing even greater levels of accuracy in travel time estimation
remains a significant goal for future research. In addition to
this objective, this section also addresses four key challenges
associated with TTE and presents several potential directions
for future inquiry.

A. Heterogeneous Data

Achieving precise travel time estimation necessitates the
incorporation of both spatio-temporal data and latent factors,
such as weather conditions, driving styles, and points of
interest (POI), among others. Consequently, heterogeneous
data fusion represents a pervasive challenge in TTE research.
Although significant progress has been made in fusing un-
derlying graph structures with other information via GNNs,
effectively generating appropriate representations for diverse
types of heterogeneous data from disparate sources remains
an unresolved issue. Early attempts have been made in this
regard [10], [12], wherein inertial data collected from smart-
phones and surveillance information obtained from cameras
are utilized respectively.

Furthermore, it should be noted that the current approaches
are predominantly developed on trajectory datasets extracted
from a single source. The reliability and precision of these
techniques hinge heavily upon the availability of extensive
data samples. However, this presents significant difficulties
when dealing with certain categories of vehicles, such as
public buses or ambulances, where obtaining large-scale
data sets may prove to be an arduous task. In light of this

1https://www.kaggle.com/datasets/crailtap/taxi-
trajectory

2https://chriswhong.com/open-data/foil_nyc_taxi/
3https://www.microsoft.com/en-us/research/

publication/t-drive-trajectory-data-sample/
4http://research.microsoft.com/apps/pubs/?id=

217493
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challenge, authors in [32] proposed an alternative approach
that utilizes trajectory data collected from heterogeneous
vehicle sources in the same geographical region, which offers
a promising solution to mitigate the aforementioned issue and
unlock valuable insights for enhancing estimation accuracy.

B. Privacy-preserving

Given that trajectory data is inherently linked to location
information, there exists a significant risk of exposing per-
sonal private information. In particular, the findings from de
Montjoye et al. [46], who analyzed 15 months’ worth of
location data from 1.5 million individuals, revealed that as
few as four space-time points are sufficient to uniquely iden-
tify up to 95% of these subjects. As such, with the growing
recognition of data privacy concerns in contemporary society,
it is imperative to address the challenge of preserving privacy
during TTE estimation procedures.

In contemporary times, the acquisition of large-scale traffic
data poses significant challenges. In many cases, released
datasets may lack complete trajectory information and ex-
clude intermediate GPS points. Moreover, stringent privacy
regulations such as the General Data Protection Regulation
[47] restrict service providers from sharing data with third-
party entities to develop predictive models that require mas-
sive amounts of data, which limits the data acquisition when
performing cross-area TTE as discussed in Section IV-B.2.a.

Therefore, advanced learning schemes, for instance, fed-
erated learning [40], [41], may be used to preserve users’
data locally without data sharing in order to reduce the
risk of privacy leakage. Moreover, various privacy-preserving
techniques (e.g., Laplace differential private randomization
mechanism [41] and geo-indistinguishability [48]) may be
employed during data collection and publishing stages to
safeguard against potential attacks and mitigate the risks
posed by adversaries who have access to original datasets.
Furthermore, there is a need for continuous research into de-
veloping robust estimator models that are capable of learning
from limited information while preserving user privacy.

C. Uncertainty Estimation

The majority of existing TTE research endeavors are pri-
marily focused on providing accurate and deterministic travel
time estimations for given routes. However, the reliability of
these estimations is often impacted by a multitude of dy-
namic factors (e.g., traffic conditions and human behaviors)
that are difficult to record accurately. Therefore, uncertainty
quantification should be incorporated into TTE models to
predict the time uncertainties of trips and provide users with
reachable time confidence estimates, which is crucial for
making informed decisions regarding schedule planning and
route selection. Notably, as demonstrated in [40], uncertainty
models that estimate auxiliary arrival probabilistic distribu-
tion can describe TTE better than deterministic ones. To
address the challenge, the Bayesian deep learning approach
may be adopted, which can be viewed as a probabilistic ex-
tension to standard deep learning that enables quantification
of both model and input uncertainty [49].

D. Different Travel Mode

The available trajectory datasets for TTE research are
mostly collected from ride-hailing cars or buses, resulting
in a narrow focus on the heterogeneous type of vehicles
in current TTE research. However, travelers may utilize
various modes of transportation, such as motorcycles and
bicycles. In addition, they are liable to choose mixed-mode
travel trips that entail cycling and public transportation,
thereby necessitating the travel time estimator to recognize
mode changes and adjust accordingly. Therefore, it is vital
to develop adaptive estimators with the capacity to detect
different travel modes from mixed-mode trajectory data,
since it allows for the exploitation of heterogeneity, leading
to more accurate estimations.

VII. CONCLUSION

This paper provides a comprehensive survey of data-
driven methods for travel time estimation. Specifically, two
key aspects of the TTE problem are examined in detail:
application scenarios and route representation approaches.
The data-driven techniques employed in existing results are
also summarized, along with the latest collection of open
datasets and code resources related to this topic. Moreover,
we identify several challenges that must be addressed in
future research endeavors and outline potential directions for
further investigation.
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