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Abstract
As one of the fundamental problems in the field of video understanding, video object seg-
mentation aims at segmenting objects of interest throughout the given video sequence. 
Recently, with the advancements of deep learning techniques, deep neural networks have 
shown outstanding performance improvements in many computer vision applications, with 
video object segmentation being one of the most advocated and intensively investigated. In 
this paper, we present a systematic review of the deep learning-based video segmentation 
literature, highlighting the pros and cons of each category of approaches. Concretely, we 
start by introducing the definition, background concepts and basic ideas of algorithms in 
this field. Subsequently, we summarise the datasets for training and testing a video object 
segmentation algorithm, as well as common challenges and evaluation metrics. Next, 
previous works are grouped and reviewed based on how they extract and use spatial and 
temporal features, where their architectures, contributions and the differences among each 
other are elaborated. At last, the quantitative and qualitative results of several representa-
tive methods on a dataset with many remaining challenges are provided and analysed, fol-
lowed by further discussions on future research directions. This article is expected to serve 
as a tutorial and source of reference for learners intended to quickly grasp the current pro-
gress in this research area and practitioners interested in applying the video object segmen-
tation methods to their problems. A public website is built to collect and track the related 
works in this field: https://​github.​com/​gaomi​ngqi/​VOS-​Review.

Keywords  Video object segmentation · Deep learning · Convolutional neural network

1  Introduction

Video Object Segmentation (VOS) is the task of separating foreground regions from 
backgrounds in video sequences (Cucchiara et  al. 2003). Similar to object tracking 
(Yilmaz et  al. 2006), VOS methods establish the correspondence of identical objects 
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across frames, but more detailed object representation can be achieved (pixel-level 
masks rather than bounding boxes). Therefore, VOS has played an important role in 
many real-world applications, e.g. visual surveillance, action recognition, video summa-
risation and video editing (Perazzi et al. 2016a). In early VOS methods based on hand-
crafted features, the objectness (Zhang et al. 2013), optical flow (Papazoglou and Fer-
rari 2013; Tsai et al. 2016) and visual saliency (Faktor and Irani 2014; Wang et al. 2015) 
are the frequently used techniques to segment objects from video sequences. Although 
these methods achieved state-of-the-art results at that time, with the development of 
deep learning techniques and high performance computing, deep learning-based VOS 
methods have made great progress in terms of both accuracy and efficiency. Therefore, 
most of the recent VOS methods are implemented based on deep neural networks. The 
statistical data given by two authoritative VOS benchmarks (Perazzi et  al. 2016a; Xu 
et al. 2018b) reveal that the performance of existing VOS approaches is improving year 
by year but has not yet attained saturation. With its potential applications and room for 
improvement in performance, deep learning-based VOS has become an active research 
topic in computer vision.

The existing VOS methods can be mainly grouped into four types: unsupervised, semi-
supervised, interactive, and referring (or language-guided). This paper focuses on the two 
widely studied types among them: unsupervised VOS (UVOS) and semi-supervised VOS 
(SVOS). Note that ‘unsupervised’ and ‘semi-supervised’ in VOS and general machine 
learning tasks have different application scopes. In VOS, these terms indicate the level 
of supervision required during inference instead of training (Perazzi et  al. 2016a). Spe-
cifically, UVOS methods perform segmentation without any ground truth labels or priors 
(unsupervised setting). The objects with prominent motion patterns or visual saliency can 
be segmented. SVOS methods, on the other hand, initiate with the ground truth labels 
available in a few frames (generally the first frame only, semi-supervised setting). These 
labels are manually annotated to indicate the objects to be segmented from the remaining 
frames. To avoid conceptual confusion, it is worth mentioning that some recent works term 
unsupervised/semi-supervised VOS as automatic/semi-automatic VOS or zero-shot/
one-shot VOS.

Figure  1 illustrates the difference between the two VOS methods. It is observed that 
the target objects (the ones to segment) in UVOS and SVOS are defined automatically and 
manually, respectively. Most earlier UVOS methods perform single object segmentation 
since it is hard to discriminate object instances based on motion patterns and visual sali-
ency. With the integration of the instance-level segmentation module, some recent methods 
dedicated to unsupervised multi-object segmentation have been proposed.

Recently, two review papers on video segmentation have appeared. Yao et  al. (2020) 
provided a good survey on the video object segmentation and tracking methods based on 
hand-crafted features and deep learning. Wang et  al. (2021b) comprehensively reviewed 
the deep learning-based techniques for video object segmentation and video semantic seg-
mentation. Unlike their broad scopes, our paper focuses on deep learning-based unsuper-
vised/semi-supervised VOS methods to provide more detailed classification, review, and 
validation experiments on this topic, thus allowing readers to understand better the mecha-
nism, progress and development trends of these methods. Therefore, we recommend read-
ers access the papers by Yao et al. (2020) and Wang et al. (2021b) for the review of inter-
active and referring (or language-guided) VOS and the paper by Wang et  al. (2021b) to 
review video semantic segmentation methods. Our focus is the deep learning-based meth-
ods for unsupervised/semi-supervised VOS.

In summary, the main contributions of our work are as follows:
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•	 We provide a review and analysis of the datasets beneficial to train and evaluate UVOS 
and SVOS methods.

•	 We group the existing UVOS and SVOS methods into six categories according to spa-
tial and temporal feature utilisation and provide an in-depth and organised review of 
their origins, development histories, architectures, pros, cons, and representative meth-
ods.

•	 We discuss the performances of the reviewed methods by analysing the evaluation 
results released on several benchmark datasets and testing some representative tech-
niques on different types of challenging video sequences.

•	 We summarise several developing trends of the reviewed methods and draw some fore-
casts on possible advances in future.

Figure 2 visualises the table of contents of this paper. The remainder of this paper is 
structured as follows. Section  2 describes several background notions related to VOS, 
including semantic segmentation and typical network architectures used in VOS methods. 
Meanwhile, Sect.  3 introduces and summarises existing datasets, challenges and evalua-
tion metrics. Section 4 reviews existing deep learning-based VOS methods, which are first, 
grouped based on their technical properties and then discussed in detail from aspects of 
architectures and contributions. The quantitative and qualitative results of representative 
VOS methods are provided in Sect. 5, where the forecasts for future works are also men-
tioned. In Sect. 6, we summarise this paper.

2 � Background

In Sect. 2.1, we briefly review the historical background in the VOS field. Next, the main 
principle and representative methods in semantic image segmentation are introduced in 
Sect. 2.2. Section 2.3 summarises the basic architecture for the recent VOS methods. The 
milestone works in VOS is shown in Fig. 3.

SVOS 
method

UVOS 
method

2nd Input Frame

Last Input Frame

1st Input Frame

…

2nd Frame and Mask

Last Frame and Mask

1st Frame and Mask

…

2nd Frame and Mask

Last Frame and Mask

1st Frame and Annotation

…

Fig. 1   Diagram of UVOS and SVOS methods, both of which take raw videos as inputs. UVOS methods 
segment the objects with dominant movement or visual saliency. In contrast, the target objects (the ones to 
segment) in SVOS depend on the human annotations in the first frame (highlighted in purple). Therefore, 
SVOS methods have more flexibility in defining target objects
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2.1 � Historical background in VOS

The early attempts (Chien et al. 2002; Kim and Hwang 2002) for VOS mainly focus on 
extracting the moving object from the video sequence, which is a key operation in several 
multimedia applications such as content-based video coding (Sikora 1997). Background 
subtraction is the most frequently used approach in these methods. The major steps can 
be summarised as: (1) build a background model with the difference between succes-
sive frames; (2) extract segmentation results by subtracting backgrounds from the current 

Fig. 2   The visualised table of contents of this paper. Note that the number behind Sect. 3.1 indicates how 
many datasets are discussed in this subsection. Same principle for the Sect. 4 and its subsections (note that 
there is one paper (DyeNet (Li and Change Loy 2018)) appearing twice in Sects. 4.2 and 4.5 because of its 
novelty in both feature matching-based and mask propagation-based VOS)

Fig. 3   A brief chronology of VOS methods, where some milestone works from 2006 to 2021 are high-
lighted. Green marks: upsupervised VOS methods; Red marks: semi-supervised VOS methods. More 
details about the traditional methods are shown in Sect. 2.1, while the deep methods are discussed in Sect. 4
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frame. In early methods, the background model mostly comes from the pixel values or 
filtering results. To further improve the robustness against complex scenes, several statisti-
cal techniques, such as Gaussian mixture model (Zivkovic and Van Der Heijden 2006) and 
neural network (Culibrk et al. 2007), are considered in background modelling.

With the success of the method for object proposal generation (Endres and Hoiem 
2010), the VOS methods based on Object Proposals (Lee et al. 2011; Zhang et al. 2013; 
Ma and Latecki 2012) are developed to segment objects from the video sequence. The 
major steps can be summarised as: (1) generate object proposals for all video frames; 
(2) group and rank the generated proposals to derive the recurring object. In compari-
son, object proposal-based methods can handle more challenging sequences (e.g., com-
plex background, static object) than background subtraction-based methods. However, 
these methods generally run slowly due to inefficient operations for proposal generation 
and grouping. Therefore, the object proposals are rarely used in subsequent methods and 
replaced by the spatial-temporal boundaries (Papazoglou and Ferrari 2013; Wang et  al. 
2015) to estimate salient object locations.

Since the objects mostly move smoothly in the video sequence, temporal continuity 
could be beneficial during segmentation. However, only short-term continuity is explored 
in the early methods. To build the long-term relationships over frames, the Point Trajec-
tory-based methods (Brox and Malik 2010b; Ochs and Brox 2012; Fragkiadaki et al. 2012) 
are developed. The major steps can be summarised as: 1) build point trajectories based 
on the motion information (e.g., optical flow); 2) measure the affinities between the tra-
jectories and cluster them for the segmentation results. In early trajectory-based methods, 
the affinity and clusters are mostly generated upon the local information of trajectories, 
which makes the final results vulnerable to error trajectories. To address the problem, both 
local and global information of trajectories are explored in subsequent methods (Chen et al. 
2015b).

Besides automatic approaches for moving object segmentation, VOS with few annota-
tions (Zhong and Chang 1999; Chockalingam et al. 2009) has also drawn some attention 
in the early stages, which can be seen as the earlier semi-supervised VOS methods. As 
mentioned above, the goal of SVOS is to ‘propagate’ the annotated masks/contours to the 
remaining frames. Before the rise of deep learning-based methods, the research of SVOS 
(Fan et al. 2015; Wang et al. 2017b) is mainly focused on discriminative feature descrip-
tors and reliable temporal correspondences to achieve coherent information propagation 
throughout the sequence.

2.2 � Semantic image segmentation

In most of existing VOS methods, the segmentation process is conducted frame by frame, 
thus the deep learning-based techniques for image analysis are beneficial to VOS. For 
instance, the deep learning-based semantic image segmentation classifies each pixel into a 
predefined semantic category based on encoded features (Garcia-Garcia et al. 2018; Ghosh 
et al. 2019). Likewise, VOS is also a pixel-level classification task, thus it is necessary to 
introduce the main principle and representative methods in image segmentation before dis-
cussing VOS methods.

Recently, Convolutional Neural Networks (CNNs) have shown superior performance in 
many computer vision tasks, e.g., image classification (Krizhevsky et al. 2012; Simonyan 
and Zisserman 2015) and object detection (Girshick et al. 2014; Girshick 2015). To bring 
such success to image segmentation, Long et al. (2015) made a few changes to the CNN 
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originally designed for image classification, in which the last few fully connected layers of 
the CNN are replaced by fully convolutional layers and upsampling modules. In this way, 
the transformed network, named fully convolutional network (FCN), can take the input of 
the arbitrary size and generate the output with the corresponding size. During training, 
FCN is initialised with the weights pre-trained on ImageNet (Russakovsky et al. 2015, a 
dataset for image classification), and then fine-tuned on a segmentation dataset (PASCAL 
(Everingham et al. 2012)). For each pixel in the input image, FCN generates a set of prob-
abilities indicating how likely the pixel belongs to all semantic categories. Intuitively, FCN 
adjusts conventional CNNs to generate category scores for all pixels in the input image, 
rather than the image only.

Due to its superior performance and end-to-end trainability, FCN has been a mainstream 
network architecture in semantic image segmentation. After that, many models have been 
proposed for further improvement, with most efforts focusing on how to restore the reso-
lution of the segmentation map to that of the input image, such as DeconvNet (Noh et al. 
2015), U-Net (Ronneberger et al. 2015), and SegNet (Badrinarayanan et al. 2017). In the 
model family DeepLab proposed by Chen et al. (2015a, 2017a, b, 2018a), the performance 
for semantic image segmentation has been taken to new heights. To reduce the loss in reso-
lution and improve the accuracy of boundary localisation, the early versions of DeepLab 
(Chen et al. 2015a, 2017a) have been combined with dilated convolution (Yu and Koltun 
2016), spatial pyramid pooling (He et  al. 2015) and fully connected conditional random 
field (CRF) (Krähenbühl and Koltun 2011). By integrating image-level feature maps into 
parallel dilated convolutional module, DeepLabv3 (Chen et  al. 2017b) further improves 
the segmentation accuracy, while simultaneously removing the time-consuming CRF from 
the model. In the latest version of DeepLab (‘v3+’) (Chen et al. 2018a), Xception (Chol-
let 2017) is implemented as a backbone network for feature extraction. Also, an encoder-
decoder structure is adopted to achieve more accurate region boundaries. Although many 
new algorithms have been proposed in recent years for semantic image segmentation, Dee-
pLab models are still the most frequently used architectures in VOS (see Tables 3, 4, and 
5) due to the stability of their performance. For more details about deep learning-based 
semantic image segmentation, please refer to the papers written by Garcia-Garcia et  al. 
2018 and Ghosh et al. (2019).

2.3 � Basic architecture for VOS

Existing deep learning-based VOS solutions, including semantic image segmentation, are 
primarily based on the FCN architecture. As shown in Fig. 4, the fundamental architec-
ture for VOS methods consists of two sub-modules: encoder and decoder, which perform 
the tasks of feature extraction and resolution restoration, respectively. In this way, exist-
ing methods formulate VOS as an object segmentation problem frame-by-frame, thus the 
basic architecture of VOS looks similar to that of image segmentation. To derive the object 
masks with semantic consistency and temporal continuity, extra guidance from the video 
sequence is given to the architecture. The concrete form of the guidance depends on the 
used techniques, which will be introduced later.

The network architectures used in discussed VOS methods are listed in Tables 3, 4, and 
5, from which it is observed that several typical classification networks are implemented 
for feature encoding, such as VGGNet (Simonyan and Zisserman 2015), ResNet (He 
et al. 2016) and its variant (Wu et al. 2019), and DenseNet (Huang et al. 2017). In addi-
tion, the DeepLab series (Chen et al. 2015a, 2017a, b, 2018a) are also frequently utilised 
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for semantic feature embedding. As for the decoding process, most of existing methods 
accomplish it by upsampling the encoded feature maps (through bilinear interpolation or 
transposed convolution) and combining low-level features. More details about these archi-
tectures can be found in Sect. 4.

3 � Datasets and challenges

Considering the high demand of deep learning systems for data, this section browses 
the existing datasets for VOS, followed by corresponding evaluation metrics and main 
challenges.

3.1 � Datasets

Table 1 shows 14 video datasets as well as their main properties. Based on these properties, 
the listed datasets are discussed in detail, especially in aspects of challenges and applicable 
settings, to guide the researchers interested in VOS to choose proper datasets for training 
and evaluating their own methods.

3.1.1 � Hopkins‑155

This dataset (Tron and Vidal 2007) was designed for evaluating point-based motion seg-
mentation algorithms, where a set of points (39-550 points) instead of the whole pixels 
in each video frame are annotated. The involved sequences are grouped into three catego-
ries: 1) checkerboard: the moving objects are covered by checkerboard pattern to assure the 
number of tracked points; 2) traffic scenes: consisting of outdoor traffic scenes; 3) articu-
lated/non-rigid objects: consisting of the sequences with the motions of joints, face, and 
people walking. As an earlier benchmark, Hopkins-155 provides the community with a 
chance to evaluate the robustness of the segmentation methods against rotation, transla-
tion, and degenerate motions. Given the sparse annotation and limited challenges, however, 
it is not encouraged to use Hopkins-155 to train and evaluate deep learning-based VOS 
methods.

Fig. 4   The diagram of basic architecture for VOS methods. Enc.: encoder; Dec.: decoder. The green rec-
tangle represents the feature map generated by the encoder. In most VOS methods, the segmentation is 
achieved by performing the target object extraction frame by frame, where each frame is segmented accord-
ing to the spatial-temporal clues provided from other frames in the same sequence. Best viewed in colour
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3.1.2 � BMS (Berkeley Motion Segmentation Dataset) series

This dataset series was designed for moving object segmentation, and is composed of 
two versions of sets: BMS-26 (Brox and Malik 2010b) and FBMS-59 (Ochs et al. 2013, 
Freiburg-BMS). BMS-26 consists of 26 video sequences, where human and car are the 
most frequently used object categories. FBMS-59 extends BMS-26 by increasing the 
number of video sequences to 59 and involving more object categories. In both data-
sets, the challenges such as occlusion and motion pattern variation are covered, thus 
the robustness of VOS methods against them can be evaluated on these datasets. With 
respect to the annotated data for training, however, since parts of video sequences are 
with low spatial resolution and only a sparse subset of frames was annotated, it is dif-
ficult to achieve a robust VOS system from these datasets only.

3.1.3 � SegTrack series

This is a small-scale dataset series, designed for video object segmentation and track-
ing; it consists of 2 versions of sets: SegTrack v1 (Tsai et  al. 2012) and SegTrack v2 
(Li et al. 2013). SegTrack v1 contains only 6 video sequences, but all frames are anno-
tated with pixel-level masks. After adding more video sequences and annotated objects, 
SegTrack v2 extends the previous version. The video sequences in both datasets are 
challenging in the sense that fast motion and object deformation appear frequently. Sim-
ilar to the BMS series, SegTrack also has relatively low spatial resolution. In addition, 
as shown in Table 1, the number of videos, categories and objects in SegTrack series 
are limited. Therefore, training deep learning-based VOS methods on this dataset series 
only is not encouraged.

3.1.4 � YouTube‑Objets

This dataset (Prest et al. 2012) was originally designed for video object detection, where all 
video sequences (containing a total of 570,000 frames) are downloaded from the internet, 
grouped into 10 categories. To make this dataset available for VOS, Jain and Grauman 
(2014) selected a subset of video frames (over 20,000 frames) and annotated pixel-level 
masks in every 10-th frame. The resulting dataset consists of 126 video sequences with 
2,127 annotated frames, and has become the largest VOS dataset at that time. However, 
due to its sparse annotations and uneven category distribution, it is not an appropriate data-
set for VOS method training.

3.1.5 � JumpCut

This dataset (Fan et  al. 2015) consists of 22 video sequences with 6,331 frames, all of 
which are annotated with pixel-level masks. Besides the sequences captured in the real 
world, the dataset includes a small amount of animation frames. Based on the involved 
object categories (mainly human and animals) and challenges (fast motion and static 
objects), the dataset is divided into different groups for better organisation. Owing to its 
challenging settings and long-range dense annotations, JumpCut has been a desirable 
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dataset for VOS evaluation. Also, JumpCut is suitable for model training, especially when 
collaborating with other small-scale datasets.

3.1.6 � DAVIS (Densely Annotated VIdeo Segmentation) series

This high-resolution dataset series has evolved over the years into three versions: DAVIS-
2016 (Perazzi et  al. 2016a), DAVIS-2017 (Pont-Tuset et  al. 2017) and DAVIS-2017-U 
(Caelles et  al. 2019), corresponding to different kinds of VOS tasks, respectively. Com-
pared with the aforementioned datasets, DAVIS datasets have more sequences, annotations 
and challenges, which makes them prevalent for training and evaluation. DAVIS-2016, 
designed for single-object SVOS and UVOS tasks, is the first released dataset among the 
series. By adding more sequences and annotations, DAVIS-2017 is proposed for multi-
object SVOS. With the concept of multi-object UVOS being concerned, DAVIS-2017-U 
(un-supervised version) is released recently, where the video frames in the original DAVIS-
2017 are re-annotated.

Besides datasets, the DAVIS team has organised a yearly challenge1 relating to VOS 
since 2017, which significantly booms the development of VOS methods.

3.1.7 � YouTube‑VOS series

This is a large-scale dataset series for VOS, with long-range video sequences; it contains 
three versions: YouTube-VOS 2018 (Xu et  al. 2018b), YouTube-VOS 2019 (Xu et  al. 
2019b) and YouTube-VIS (Yang et  al. 2019a). The first two versions are designed for 
multi-object SVOS, while the latter one serves for multi-object UVOS. From Table 1, it 
can be found that the number of video sequences in YouTube-VOS is dozens of times as 
many as that in DAVIS, which indicates more diverse objects and context are considered. 
Moreover, each video sequence in the datasets has a greater number of frames than any 
other datasets, allowing VOS methods to model and exploit long-range temporal depend-
ency between frames. Because the amount of the data is huge, the YouTub-VOS team only 
managed to provide the pixel-level object masks for every 5-th frame.

To better validate the generalisation ability of VOS models, YouTube-VOS groups the 
contained object categories into two sets: ‘seen’ and ‘unseen’, where the objects belonging 
to ‘unseen’ categories only residents in the testing set, and the ones belonging to ‘seen’ cat-
egories residents in both training and testing sets. By comparing the segmentation results 
on ‘seen’ and ‘unseen’ objects, the performance of VOS models on generalisation can be 
evaluated. To echo DAVIS, the YouTube-VOS team organises a challenge2 on VOS annu-
ally since 2018.

3.1.8 � SAIL‑VOS (Semantic Amodal Instance Level Video Object Segmentation)

This is a synthetic dataset for VOS (Hu et  al. 2019), where all video frames and corre-
sponding masks are collected from the Grand Theft Auto V, an action-adventure game. The 
pictures in the game are rendered to be as realistic as possible, thus it is useful for training 
and evaluating VOS methods. In addition, since all video sequences are generated by the 

1  https://​davis​chall​enge.​org.
2  https://​youtu​be-​vos.​org.

https://davischallenge.org
https://youtube-vos.org
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game simulator, the obtained object masks are completely credible, even if they are experi-
encing a heavy occlusion.

3.1.9 � Evaluation metrics

In VOS, the commonly used metrics for performance evaluation are Jaccard index J  
(Everingham et al. 2010), F-measure F  (Martin et al. 2004), and the mean of them J&F :

where G and M refer to the ground truth mask and segmented mask, respectively. J  evalu-
ates the region similarity between these two masks. Pc and Rc are precision and recall com-
puted from the points in contours c(M) and c(G). Therefore, F  evaluates the accuracy of 
boundary localisation. J&F  measures the overall VOS performance.

3.1.10 � Summary

Sections  3.1.1–3.1.8 review the datasets for training and evaluating VOS methods. The 
earlier datasets, including Hopkins-155 (Tron and Vidal 2007), BMS series (Brox and 
Malik 2010b; Ochs et al. 2013), and SegTrack series (Tsai et al. 2012; Li et al. 2013), were 
designed originally to evaluate non-deep learning methods. In the deep learning era, these 
datasets can still rate the performance of VOS methods in handling object deformation and 
occlusion. However, they have been rarely employed in more recent methods, limited 
by the data diversity, number of challenges, and video length.

YouTube-Objects (Prest et al. 2012; Jain and Grauman 2014) and JumpCut (Fan et al. 
2015) consists of long-range and high-resolution videos. Therefore, these datasets are 
popular in evaluating the performance of earlier VOS methods in spatial-temporal fea-
ture embedding. However, the limitations in data diversity and challenges remain in these 
datasets. Only a few recent UVOS methods evaluated their performance on YouTube-
Objects and JumpCut.

Unlike other datasets, SAIL-VOS (Hu et al. 2019) consists of synthetic videos. Although 
there are still gaps between the rendered and actual video frames, one character of SAIL-
VOS cannot be ignored: the occlusions are entirely reliable and under control, which, 
therefore, can improve the robustness of VOS methods against occlusions. However, no 
reviewed methods employ SAIL-VOS during training or evaluation.

DAVIS series (Perazzi et  al. 2016a; Pont-Tuset et  al. 2017; Caelles et  al. 2019) and 
YouTube-VOS series (Xu et al. 2018b, 2019b; Yang et al. 2019a) are the most frequently 
used datasets for training and evaluating recent VOS methods (For single-object 
UVOS: DAVIS-2016; For multi-object UVOS: DAVIS-2017-U, YouTube-VIS; For SOVS: 
DAVIS-2016, 2017, YouTube-VOS-2018, 2019). This is because these datasets consider 
large-scale video sequences, diverse object categories, more challenges, and high-quality 

(1)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

J =
�M ∩ G�
�M ∪ G�

F =
2PcRc

Pc + Rc

J&F =
(J + F)

2

,
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annotations. Due to the difference between DAVIS and YouTube series in annotations, dif-
ferent VOS properties could be evaluated on these datasets, respectively. For example, it is 
encouraged to assess the temporal stability of VOS methods on DAVIS (densely annotated 
dataset) instead of YouTube-VOS or VIS (sparsely annotated dataset). Relevant codes are 
available3. As for the generalisation performance in VOS, the YouTube series is preferred 
because the series consists of a large number of videos and part of object categories only 
appear in the validation set. Moreover, the number of long sequences in the YouTube series 
is far more than DAVIS, thus facilitating the evaluation of the robustness and sequential 
modelling of VOS methods.

To further discuss the difference between DAVIS and YouTube series, we measure the 
performance of all the reviewed SVOS methods on these dataset series. UVOS setting is 
not considered since too few relevant methods were tested on YouTube datasets. Table 2 
shows the comparison results, including the average and state-of-the-art performance on 
the DAVIS-2016 validation set, DAVIS-2017 validation set, DAVIS-2017 test-dev set, and 
YouTube-VOS-2018 validation set. It is observed that the performance on DAVIS-2016 
tends to be saturated. This is because each video in the dataset has only one annotated 
object and relatively few challenges. In recent SVOS papers, the DAVIS-2017 test-dev set 
has become increasingly favoured due to more challenging sequences (e.g., more shape 
complexity, occlusions, and dynamic background) than the DAVIS-2017 validation set. It 
is also observed that YouTube-VOS 2018 is the second most challenging dataset in Table 2. 
Unlike DAVIS, YouTube-VOS divides the evaluation metrics into two subsets: seen and 
unseen, to measure the performance of SVOS methods on the objects whose categories 
appear and disappear in the training set, respectively. In general, for each SVOS method, 
the performance on the seen set is higher than that on the unseen set. The gaps between 
them measure the generalisation performance.

3.2 � Common challenging factors

This section introduces several challenges to the UVOS and SVOS fields, including prop-
erty changes, occlusions, the conflict between similar instances, ambiguous backgrounds, 
temporal consistency, and the balance between efficiency and accuracy. These challenges 
motivate most current methods and are visualised in Figs. 5 and 6.

Table 2   The average and 
state-of-the-art (SOTA) SVOS 
performance (measured by 
J&F  in Eq. 1) on 4 benchmark 
datasets. s: seen, u: unseen

Dataset series Subsets Average J&F SOTA J&F

DAVIS 2016 val 81.9 90.7
2017 val 71.4 85.4
2017 test-dev 60.6 78.1

YouTube-VOS 2018 val 72.4 (s) 53.1 (u) 83.0 (s) 79.6 (u)

3  https://​github.​com/​davis​video​chall​enge/​davis-​2017.

https://github.com/davisvideochallenge/davis-2017
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3.2.1 � Object property change

This challenge mainly affects the VOS methods based on visual similarities. During 
inference, these methods segment the regions with similar visual features to the target 
objects annotated (most are SVOS methods) or predicted (most are UVOS methods) in 

Fig. 5   False results raised by the introduced challenges, where each row shows the effect of one challenging 
factor on the existing VOS methods. A Property changes; B occlusions; C discrimination between similar 
objects; D ambiguous backgrounds; E temporally consistent VOS (this row consists of continuous frames 
without fast motion, occlusion, and significant appearance changes). Yellow boxes highlight the false results
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Table 3   Summary of the discussed VOS methods (part 1/3)

Methods Sup. S. techs T. techs Architecture Main contribution(s)

O M G O P L

OSVOS (Caelles 
et al. 2017)

S ✓ VGG-16 First method based on 
online fine-tuning

MaskTrack (Perazzi 
et al. 2017)

S ✓ ✓ ✓ DLv2 First method based on 
mask propagation

VPN (Jampani et al. 
2017)

S ✓ DLv1, BNN BNN-based long-term 
propagation

CTN (Jang and Kim 
2017)

S ✓ ✓ VGG-16 Optical flow-based mask 
refinement

MP-Net (Tokmakov 
et al. 2017a)

U ✓ CNN, Sharp-
Mask

CNN-based motion pat-
terns for UVOS

FusionSeg (Jain et al. 
2017)

U ✓ ResNet-101 Fusion between motion 
and appearance

OnAVOS (Voigt-
laender and Leibe 
2017)

S ✓ ✓ ResNet vari-
ant

Fine-tuning with online 
adaptation

PLM (Yoon et al. 
2017)

S ✓ ✓ ✓ CNN Multi-scale pixel-level 
matching

CCNN (Li et al. 
2017b)

U ✓ VGG-16 Complementary segmen-
tation modules

SegFlow (Cheng et al. 
2017)

B ✓ ✓ ResNet-101, 
FN 1.0

Multi-task for VOS and 
optical flow

VM-VOS (Tokmakov 
et al. 2017b)

U ✓ ✓ DLv1, Con-
vGRU​

Bidirectional GRU-based 
VOS

MaskRNN (Hu et al. 
2017)

S ✓ ✓ ✓ ✓ VGG-16, FN 
2.0

BPTT-based mask propa-
gation

OSVOS-S (Maninis 
et al. 2018)

S ✓ VGG-16, 
Mask-
RCNN

Semantic propagation for 
SVOS

STVOS (Wang et al. 
2018)

S ✓ ✓ – Point trajectory-based 
propagation

CINM (Bao et al. 
2018)

S ✓ ✓ OSVOS, FN 
2.0, DLv2

Spatial-temporal MRF for 
SVOS

PML (Chen et al. 
2018b)

S ✓ DLv2 Pixel-level matching for 
fast SVOS

FAVOS (Cheng et al. 
2018)

S ✓ SiamFC, 
ResNet-101

Tracking object parts for 
SVOS

RCAL-VOS (Han 
et al. 2018)

S ✓ ✓ DenseNet-56 Reinforcement learning 
for SVOS

MGCRN (Hu et al. 
2018a)

B ✓ ✓ ✓ ResNet-101, 
FN 2.0

Motion-based cascade 
refinement

IET-VOS (Li et al. 
2018b)

U ✓ ✓ DLv2, FN 2.0 Formulate UVOS as find-
ing seed tracks

RGMP (Oh et al. 
2018)

S ✓ ✓ ✓ ResNet-50 Combine matching and 
mask propagation

MoNet (Xiao et al. 
2018)

S ✓ ✓ ✓ DLv2, FN 2.0 Feature alignment via 
optical flow

OSMN (Yang et al. 
2018)

S ✓ VGG-16 Introduce network modu-
lation into VOS
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the first frame. However, the properties of the target objects (e.g., appearance, shape, 
scale and location) might change with the progress of video frames. Such variations are 
reflected in visual features, leading to false results on the corresponding regions. Fig-
ure 5A illustrates the effect of the challenge on the qualitative results.

3.2.2 � Occluded by distractors

This challenge mainly affects the propagation-based VOS methods, which consider the 
objects predicted in the previous frame to estimate current frame segmentation. However, 
in actual scenes, the target objects are probably occluded by distractors, leading to partial 
losses on object regions. Such losses provide the incomplete estimation to the subsequent 
frames and make the occluded parts difficult to restore, even if the occlusions stop. Fig-
ure 5B illustrates the effect of the challenge on the qualitative results.

3.2.3 � Distraction from similar objects/backgrounds

This challenge mainly affects the VOS methods based on visual similarities, saliency or 
motion patterns. During inference, these methods segment the objects with specific fea-
tures, e.g., similar visual features to the target objects (most are SVOS methods) or promi-
nent saliency/motion patterns (most are UVOS methods). However, these features are not 
always discriminative throughout video sequences. Taking one target object as an example, 
there are probably some ambiguous regions (might be backgrounds or other target objects) 
in the sequence, which do not belong to the object but have similar features. These regions 
could force the VOS methods to assign the labels of the example object to them, leading to 
false discrimination between similar target objects or over-segmentation. Figures 5C and D 
illustrate the effect of the challenge on the qualitative results.

3.2.4 � Temporally consistent VOS

This challenge mainly affects the VOS methods using less motion information. During 
inference, these methods essentially perform image segmentation for each video frame. 
Therefore, it is difficult to maintain the temporally consistent of the segmented objects, 
i.e., the evolution of object masks predicted from continuous frames is not smooth (in the 

Table 3   (continued)

Methods Sup. S. techs T. techs Architecture Main contribution(s)

O M G O P L

LSE-VOS (Ci et al. 
2018)

S ✓ ✓ ResNet-101 Pseudo labels and loca-
tion embeddings

V-Match (Hu et al. 
2018c)

S ✓ ✓ ResNet-101 Efficient matching via 
soft matching

Sup supervision types, U unsupervised, S semi-supervised; B both of them, S. techs techniques for spatial 
features, O online fine-tuning, M matching, G graph; T. techs techniques for temporal features, O optical 
flow; P mask propagation; L long-term temporal propagation. CNN customised convolutional neural net-
works; DL DeepLab; FN FlowNet, ResNet-V ResNet variant
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Table 4   Summary of the discussed VOS methods (part 2/3)

Methods Sup. S. techs T. techs Architecture Main contribution(s)

O M G O P L

Dye-Net (Li and 
Change Loy 
2018)

S ✓ ✓ ✓ ✓ ✓ ResNet-101, RPN, 
FN 2.0

ROI-matching, bidi-
rectional propaga-
tion

SCO-VOS (Koh 
et al. 2018)

B ✓ FCIS Clique optimisation 
for UVOS

MSGSTP (Hu 
et al. 2018b)

B ✓ ✓ – Saliency diffusion for 
UVOS

MBN-VOS (Li 
et al. 2018c)

U ✓ ✓ ✓ BNN, CNN, FN 2.0 Motion-based BNN & 
graph cut for VOS

S2S (Xu et al. 
2018a)

S ✓ ✓ VGG-16, ConvL-
STM

Build long-term 
dependency over 
frames

PDB (Song 
et al. 2018)

U ✓ ResNet-50, ConvL-
STM

Pyramid dilated, 
bidirectional ConvL-
STM

PReMVOS 
(Luiten et al. 
2018)

S ✓ ✓ ✓ ✓ ResNet-V, Mask 
R-CNN, DLv3+, 
FN 2.0

Proposal generation, 
refinement, merging

LucidTracker 
(Khoreva 
et al. 2019)

S ✓ ✓ ✓ DLv2, FN 2.0 Data augmentation-
based fine-tuning

BubbleNets 
(Griffin and 
Corso 2019)

S ✓ ResNet-50 Determine the optimal 
frame to annotate

FEELVOS 
(Voigtlaender 
et al. 2019)

S ✓ ✓ DLv3 Combine global & 
local feature match-
ing

SiamMask 
(Wang et al. 
2019a)

S ✓ ✓ ResNet-50 Light-weight tracking 
& segmentation

COSNet (Lu 
et al. 2019)

U ✓ DLv3 Use co-attention 
mechanism for 
UVOS

A-GAME 
(Johnander 
et al. 2019)

S ✓ ResNet-101 Gaussian mixture 
model-based SVOS

STCNN (Xu 
et al. 2019a)

S ✓ ✓ ResNet-101, GAN GAN and attention-
based SVOS

MHPVOS (Xu 
et al. 2019c)

S ✓ ✓ ✓ ✓ MR-CNN, DLv3+, 
FN 2.0

Tree structure optimi-
sation for VOS

RVOS (Ventura 
et al. 2019)

B ✓ ResNet-101, ConvL-
STM

Both spatial and tem-
poral propagation

AGSS-VOS 
(Lin et al. 
2019)

S ✓ ✓ ✓ ✓ RGMP + FN 2.0 Efficient multi-object 
matching

RANet (Wang 
et al. 2019d)

S ✓ ✓ ResNet-101 Feature ranking-based 
matching

DTN (Zhang 
et al. 2019)

S ✓ ✓ ✓ ResNet-50, FN 2.0 Local ROI genera-
tion, dynamic seg. 
network
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absence of occlusions, fast motion, or significant property change), which is unacceptable 
in some applications such as video editing. Figure 5E illustrates the effect of the challenge 
on the qualitative results.

3.2.5 � Balance between VOS accuracy and efficiency

This challenge mainly affects the VOS methods serving real-time applications. Generally, 
these methods should perform the segmentation at least 24 FPS (Frames Per Second) while 
achieving high-quality object masks. However, the two goals cause conflict in the design of 
segmentation models. Efficient VOS prefers lightweight architecture. Instead, more sophis-
ticated algorithms and network modules are generally required for accurate VOS. Figure 6 
shows the performance of state-of-the-art methods in both accuracy and efficiency. It is 
observed that the balance between them remains under-explored.

4 � Methods

This section reviews the existing deep learning-based SVOS and UVOS methods. As 
mentioned in Sect. 1, the SVOS methods segment the objects annotated in a few video 
frames (generally the first frame). In contrast, the UVOS methods segment the objects 
with prominent visual saliency or motion patterns. To generalise this discussion, we 
refer to the objects to segment in SVOS and UVOS methods as the “target objects” in 
the rest of the paper.

Generally, existing methods exploit the spatial and temporal features from input 
sequences to solve the SVOS and UVOS problems. The former features help maintain 

Table 4   (continued)

Methods Sup. S. techs T. techs Architecture Main contribution(s)

O M G O P L

DMM-Net 
(Zeng et al. 
2019a)

S ✓ ✓ ✓ Mask R-CNN, Con-
vLSTM

Optimal matching 
module

AD-Net (Yang 
et al. 2019b)

U ✓ DLv3 Global consistency, 
self-attention 
mechanism

AGNN (Wang 
et al. 2019b)

U ✓ GNN, DLv3, Con-
vGRU​

Attentive GNN-based 
VOS

CapsVOS 
(Duarte et al. 
2019)

S ✓ ✓ CapsuleNet, ConvL-
STM

Introduce CapsuleNet 
into SVOS

AGS (Wang 
et al. 2019c)

U ✓ ResNet-101, ConvL-
STM

Prove key role of 
visual attention in 
UVOS

Sup supervision types, U unsupervised, S semi-supervised; B both of them, S. techs techniques for spatial 
features, O online fine-tuning, M matching, G graph; T. techs techniques for temporal features, O optical 
flow; P mask propagation; L long-term temporal propagation. CNN customised convolutional neural net-
works; DL DeepLab; FN FlowNet, ResNet-V ResNet variant
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Table 5   Summary of the discussed VOS methods (part 3/3)

Sup supervision types, U unsupervised, S semi-supervised; B both of them, S. techs techniques for spatial 
features, O online fine-tuning, M matching, G graph; T. techs techniques for temporal features, O optical 
flow; P mask propagation; L long-term temporal propagation. CNN customised convolutional neural net-
works; DL DeepLab; FN FlowNet, ResNet-V ResNet variant

Methods Sup. S. techs T. techs Architecture Main contribution(s)

O M G O P L

STM (Oh et al. 
2019)

S ✓ ✓ ResNet-50 Use intermediate frames 
for matching

TVOS (Zhang 
et al. 2020)

S ✓ ✓ ResNet-50 Apply transductive infer-
ence in SVOS

SAT (Chen 
et al. 2020)

S ✓ ResNet-50 Dynamic tracking for fast 
SVOS

FRTM (Rob-
inson et al. 
2020)

S ✓ ResNet-50 Discriminative target 
model for SVOS

LWL (Bhat 
et al. 2020)

S ✓ ResNet-50 Differentiable and efficient 
few-shot learner

EGMN (Lu 
et al. 2020a)

B ✓ ✓ ✓ ResNet-50, 
ConvGRU​

Graph-based memory for 
SVOS

KMN (Seong 
et al. 2020)

S ✓ ✓ ResNet-50 Mutual matching between 
ref. & target frames

AFB-URR 
(Liang et al. 
2020)

S ✓ ✓ ResNet-50 Adaptive memory & refine 
by uncertainty

UnOVOST 
(Luiten et al. 
2020)

U ✓ ✓ ✓ Mask R-CNN Tracklet-based forest path 
cutting

CFBI+ (Yang 
et al. 2021b)

S ✓ ✓ DLv3+ Discriminative features & 
multi-scale matching

SSTVOS (Duke 
et al. 2021)

S ✓ ✓ ✓ ResNet-101, 
Transformer

Transformer-based VOS & 
sparse attention

SwiftNet (Wang 
et al. 2021a)

S ✓ ✓ ResNet-50 Adaptive memory & light 
architecture

LCM (Hu et al. 
2021)

S ✓ ✓ ResNet-50 Positional encoding & 
object relation

RMNet (Xie 
et al. 2021)

S ✓ ✓ ✓ ResNet-50, Tiny-
FlowNet

Local to local matching

TAODA (Zhou 
et al. 2021)

U ✓ ✓ ResNet-50, Mask 
R-CNN

Discriminative multi-
object UVOS

HMMN (Seong 
et al. 2021)

S ✓ ✓ ResNet-50 Multi-scale memory 
matching

STCN (Cheng 
et al. 2021)

S ✓ ResNet-50 Light architecture & effi-
cient L2 distance

AOT (Yang 
et al. 2021a)

S ✓ ✓ ResNet-50 
/ Swin-
Transformer, 
multi-layer 
transformers

Uniform framework for 
multi-object VOS
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the consistent identities of the predicted objects throughout the video sequence. The 
latter features allow VOS methods to adapt to target object changes over time. Based 
on the existing model architectures, we elaborate on several techniques utilising these 
features. See Tables 3, 4, and 5 for more details.

The remainder of this section is organised as follows: Sects. 4.1, 4.2, and 4.3 intro-
duce the techniques for spatial features, including online fine-tuning, feature matching, 
and graph optimisation, as well as their representative methods. Sections 4.4, 4.5, and 
4.6 introduce the techniques for temporal features, including optical flow, mask propa-
gation, and long-term temporal information, as well as their representative works.

4.1 � Online fine‑tuning‑based methods

Tables  3 and 4 demonstrate that most earlier SVOS methods are implemented with 
online fine-tuning. Given the annotated objects and a network for general object seg-
mentation, this technique fine-tunes the network with the annotated objects. In this way, 
the network can “memorise” the properties of the annotated objects (e.g., appearance, 

Annotated frame Target object mask

Input Frame

Input Frame and Mask

Input Frame and Masks

Enc. Dec.

Dec.Enc.

Online
Fine-tuning

Input Frame

Fine-tuned Parameters

Pre-trained Parameters

Input Frame Input Frame and Masks

O ine
Pre-training

Pre-trained Parameters

Parameters initialised
on ImageNet

Object segmentation 
datasets

Enc. Dec.

Pre-trained Network

Fine-tuned Network

Fig. 7   Diagram of VOS method based on online fine-tuning. There are three main stages to shift the out-
put domain of the segmentation network from general knowledge to the annotated object: (1) Initialise the 
network (coloured in gray) with the parameters pre-trained on ImageNet (Russakovsky et al. 2015; (2) pre-
train the network (coloured in green) on object segmentation datasets (e.g. MS-COCO (Lin et  al. 2014) 
and DAVIS (Perazzi et al. 2016a)); (3) Fine-tune the network (coloured in yellow) on the annotated frame. 
Since pre-training and fine-tuning are performed before and during the inference, we call them “offline” and 
“online” processes, respectively. Best viewed in colour
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shape, and categories) and transfer its output domain from general objects to the anno-
tated objects. The diagram of this technique is shown in Fig.  7, from which the seg-
mentation for an input video sequence can be summarised: (1) fine-tune the pre-trained 
network on the annotated frame; (2) use the fine-tuned network to perform segmentation 
on the rest of the frames. In general, this technique does not apply to UVOS since no 
annotated frame is available in UVOS. However, with the integration of instance-level 
approaches, some UVOS methods perform instance segmentation for the first frame. 
Then, the predicted objects are utilised to fine-tune the segmentation network.

This section discusses several representatives and variants of online fine-tuning-
based methods. In Sect.  4.1.1, we first introduce OSVOS (One-shot VOS), the first 
method for online SVOS fine-tuning. Next, the methods derived from OSVOS are 
reviewed in Sect.  4.1.2. Finally, Sect.  4.1.3 introduces several variants of online fine-
tuning for efficient VOS. Section 4.1.4 summarises the discussed methods, whose devel-
opment roadmap is shown in Fig. 8.

4.1.1 � OSVOS (One shot video object segmentation)

OSVOS, proposed by Caelles et al. (2017), is the earliest SVOS method based on online 
fine-tuning. The pre-training and fine-tuning for the segmentation network are the same as 
shown in Fig. 7. During inference, OSVOS firstly fine-tunes the pre-trained network with 
the first frame annotation. Next, each frame to segment is fed into the fine-tuned network, 
achieving the initial prediction, which is then refined by a contour detection network.

The competitive results achieved on DAVIS-2016 (Perazzi et al. 2016a) and YouTube-
Objects (Prest et al. 2012) prove the effectiveness of online fine-tuning on SVOS. However, 
there are still challenges that OSVOS cannot handle well, for example, the object property 
change and ambiguous regions. Since OSVOS performs fine-tuning under the guidance of 
the first frame annotations only, the fine-tuned network is easy to get overfitting and there-
fore cannot sufficiently adapt to the object changes. In addition, the fine-tuned network is 
prone to be misled by the regions that look similar to the annotated objects.

Fig. 8   Development roadmap of representative online fine-tuning-based methods. OSVOS is the first 
method using online fine-tuning for SVOS. After that, several methods are derived from OSVOS. Their 
main modifications to OSVOS are highlighted by bold words with the prefix “+”. Recently, several variants 
of online fine-tuning are proposed for efficient VOS. Note that the blue and black words indicate the meth-
ods performing UVOS and SVOS, respectively
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4.1.2 � Extensions

On top of OSVOS, several extension works have been developed to sufficiently utilise 
online fine-tuning and handle the challenges above. Table 6 briefly summarises OSVOS 
and the extensions in terms of their properties in fine-tuning.

OnAVOS (Online Adaptive VOS, Voigtlaender and Leibe 2017) improves OSVOS with 
the online adaptive strategy. Unlike OSVOS, OnAVOS fine-tunes the network further with 
the high-confident results and definite backgrounds from the predicted frames. Discussion: 
OnAVOS has more adaptability and can handle the distraction from backgrounds. How-
ever, such refinement is time-consuming since multiple online fine-tuning is required dur-
ing inference.

OSVOS-S (OSVOS-Semantic, Maninis et  al. 2018) improves OSVOS with semantic 
information. The segmentation is achieved by merging the masks predicted by OSVOS and 
Mask R-CNN (He et al. 2017), where the target object categories are inferred from the first 
frame annotation and used to filter out irrelevant objects. Discussion: Masks with fewer 
missing parts can be achieved since the advantage of Mask R-CNN in object mask genera-
tion. However, such improvement is achieved at the cost of high GPU computation due to 
multiple deep networks.

Location-Sensitive Embeddings for VOS (Ci et al. 2018, abbreviated as ‘LSE-VOS’) per-
forms SVOS by segmenting ALL video frames twice. The first round of results serves as 
the training samples for further fine-tuning. In addition, an LSE module distinguishes target 
objects from ambiguous backgrounds. Discussion: Similar to OnAVOS, more training sam-
ples bring better adaptability to the network, and the LSE module improves the robustness 
against clutter backgrounds. However, LSE-VOS is inefficient since twice SVOS is required.

Lucid Data Dreaming (Khoreva et al. 2019, abbreviated as ‘LucidTracker’) enhances the 
data augmentation, where 2,500 video clips are generated from the first frame annotation. 
Each clip contains two temporally continuous image-mask pairs to support temporal learn-
ing. Discussion: Unlike other online fine-tuning-based methods, LucidTrack can generate the 
training data with more diversity, enabling the fine-tuned network to step closer to the target 
domain, even if the network is randomly initialised. However, data generation from only one 
frame is also a burden for LucidTrack since the resulting network adaptability is limited.

Table 6   Summary of OSVOS and the extensions

Frames: Frames used to fine-tune the network; Data augmentation: Strategies used to augment the available 
data, where standard means the commonly used strategy in segmentation tasks; Adaptation: Strategies used 
to adapt the network to the object change

Methods Frames Data augmentation Adaptation

OSVOS 1st Standard NOT considered
OnAVOS ALL Standard Fine-tune on the high-confident results
OSVOS-S 1st Standard Fuse the outputs of the fine-tuned 

network and Mask R-CNN
LSE-VOS ALL Standard Fine-tune on the pre-segmented results
LucidTracker 1st Generate 2,500 pairs of tempo-

ral continuous frames
NOT considered

BubbleNet Optimal standard NOT considered
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BubbleNets (Griffin and Corso 2019) improves the online fine-tuning-based VOS from a 
novel perspective. Until 2018, we found almost all such methods (e.g., OSVOS ( Caelles et al. 
(2017)), OnAVOS (Voigtlaender and Leibe 2017), OSVOS-S (Maninis et al. 2018), LSE-VOS 
(Ci et al. 2018)) fine-tune their networks with the first frame annotation. For offline applica-
tions with all frames available (e.g., video editing), annotating the first frame probably can 
not bring the best fine-tuning results. The authors identified the problem and proposed Bub-
bleNets, predicting the optimal frame to annotate. Discussion: With BubbleNets, the average 
performance of OSVOS and OnAVOS improves by 3.5% and 5.95% on the DAVIS-2016 and 
DAVIS-2017 validation sets. Such improvement shows that BubbleNets can be an incremental 
module for online fine-tuning-based methods.

4.1.3 � Variants

The above extensions improve the VOS results. However, the segmentation is inefficient since 
online fine-tuning is costly in time and computation. To address this issue while shifting the 
network output domain, current methods implement more efficient algorithms to optimise part 
of segmentation networks instead of fine-tuning the whole network via backward propagation. 
Similar to online fine-tuning, these methods also modulate the network parameters according 
to the annotated frames. Therefore, we consider them as variants of online fine-tuning-based 
methods. Table 7 briefly summarises these variants.

OSNM (Object Segmentation via Network Modulation, Yang et  al. 2018) modulates the 
network with a conditional batch normalisation (CBN, De Vries et al. 2017)-based module:

where the intermediate feature � is converted to � under the guidance of the first frame 
annotations � and previous frame masks � . Discussion: The network output domain can be 
shifted with a single forward pass, which is much more efficient than online fine-tuning. 
But limited by the less information modulated, the segmentation accuracy is not as perfect 
as efficiency.

A-GAME (A Generative Appearance Model for End-to-end VOS, Johnander et al. 2019) 
adapts its network to the target object with a Gaussian mixture model:

(2)� = �� + �,

(3)p(zp = k��p,�k,�k) =
p(zp = k) ⋅N(�p��k,�k)∑
k p(zp = k) ⋅N(�p��k,�k)

,

Table 7   Summary of the representative variants of online fine-tuning

Techniques: Techniques used to replace online fine-tuning; Parameters: Parameters to optimise according to 
the annotated frames

Methods Techniques Parameters

OSNM Conditional batch normalisation � and � in Equation 2
A-GAME Gaussian mixture model �k and �k in Equation 3
FRTM Target model (predict coarse mask) Target model parameters
LWL Target model (predict multi-channel mask) Target model parameters
TAODA Target model (predict coarse mask) Target model parameters
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where the probability that a pixel p belongs to the kth component (either target object or 
background) depends on its appearance �p , p(zp = k) = 1∕K (K: number of components), 
�k , and �k . The last two magnitudes are initialised from the first frame annotation and then 
updated with the past frame outputs. Discussion: Unlike OSNM, A-GAME exerts a more 
explicit and continuous influence on the segmentation network, leading to higher-quality 
results.

FRTM (Fast and Robust Target Models for VOS, Robinson et al. 2020) designs a dis-
criminative linear model for generating target-specific predictions, which are then refined 
by a segmentation network. During inference, only the target model requires training, 
achieved by performing the Gauss-Newton-based optimisation (Tjaden et  al. 2018) on 
the first frame annotation and subsequent frame predictions. Discussion: Due to the light-
weight target model and efficient optimisation, FRTM performs SVOS faster than online 
fine-tuning-based methods. In addition, unlike OSMN and A-GAME, FRTM has much 
more target-specific parameters, boosting the discrimination between target objects and 
backgrounds.

LWL (Learn What to Learn, Bhat et al. 2020) designs a similar pipeline to FRTM. How-
ever, the target model in LWL predicts a multi-channel mask for each object and is opti-
mised by a differentiable approach. Specifically, LWL generates the ground truth masks 
and weight matrices (used to balance the target/background regions) from two learnable 
modules rather than the annotation. Discussion: LWL trains these two modules offline, 
enabling them to learn how to generate the optimisation goals (i.e., learn what to learn) 
for the target model, according to the loss of final segmentation results. Therefore, LWL 
achieves more robust results than FRTM while keeping competitive efficiency.

TAODA (Target-Aware Object Discovery and Association for UVOS, Zhou et al. 2021) 
implements a similar target model to FRTM to generate coarse object masks. Differently, 
the target model is initialised with the instances predicted in the first frame due to no 
annotations available in UVOS. Discussion: With the instance-level segmentation mod-
ule, TAODA can perform multi-object UVOS. Unlike other UVOS methods, the target 
model provides a good prior for each object to segment, reducing the efforts for associating 
objects throughout the sequence.

4.1.4 � Summary

This section introduces the online fine-tuning-based VOS methods and their variants. 
These methods originate from OSVOS (Caelles et  al. 2017), which shifts the network 
output domain from general knowledge to the target objects by fine-tuning the network 
parameters with the first frame annotations. The extension works and variants are mainly 
motivated by the following issues in OSVOS: (1) Only the first frame annotations are con-
sidered, limiting the adaptivity of the fine-tuned network and resulting in overfitting; (2) 
Online fine-tuning is time-consuming, limiting the VOS efficiency.

The extension works improve OSVOS in adaptivity and robustness. For example, OnA-
VOS (Voigtlaender and Leibe 2017) and LSE-VOS (Ci et al. 2018) improve the adaptivity 
by incorporating the high-confident results from the past frames. However, multiple online 
fine-tuning is required during inference, reducing the VOS efficiency further. Without extra 
online fine-tuning, OSVOS-S (Maninis et al. 2018) and LucidTracker (Khoreva et al. 2019) 
enhance the segmentation robustness. OSVOS-S incorporates the knowledge from general 
object segmentation to refine the VOS results. In contrast, LucidTracker achieves this by 
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generating far more diverse samples from the annotations. These methods promote the 
VOS performance but still suffer less efficiency since extra computation is required for 
Mask R-CNN or data augmentation. Unlike the above methods, BubbleNets (Griffin and 
Corso 2019) is an incremental method, which can be incorporated into the above methods 
to predict the optimal frame to annotate. Indeed, such an optimal frame is also generated at 
the cost of efficiency. Therefore, the online fine-tuning-based VOS applies to offline appli-
cations that emphasise segmentation accuracy instead of efficiency.

The variants focus more on the VOS efficiency. Without online fine-tuning, the dis-
cussed variants (OSNM (Yang et  al. 2018), A-GAME (Johnander et  al. 2019), FRTM 
(Robinson et  al. 2020), LWL (Bhat et  al. 2020), and TAODA (Zhou et  al. 2021)) have 
developed to shift the network output domain with more efficient algorithms. Although 
achieving better efficiency, the accuracy gaps remain between the earlier variants (OSNM 
and A-GAME) and the extension works. From Tables 16 and 17, it is observed that the tar-
get model-based variants (FRTM and LWL) further improve the SVOS performance. Also, 
such improvement is brought to UVOS (TAODA). Based on Table 7, we find the reason 
for the performance improvement might lie in the number of adjustable parameters during 
inference since the target models in FRTM, LWL, and TAODA have much more adjustable 
parameters than OSNM and A-GAME. In other words, the number might reflect the ability 
to encode discriminative/target-specific features in VOS methods.

4.2 � Matching‑based method

This method performs VOS by measuring the correspondence between the target and ref-
erence frames, as shown in Fig. 9. The “target frame” indicates the video frame to seg-
ment and “reference frame” has different meanings by VOS types. In SVOS, the “reference 
frame” consists of the annotated frame and part/none of past frames. The goal of segmen-
tation methods is to propagate the reference frame masks to the target frame, according to 
the measured correspondence. In contrast, the “reference frame” in UVOS might include 
any past/future frames. UVOS methods locate the objects appearing in both target and ref-
erence frames based on the measured correspondence.

The key to reliable and robust correspondence is discriminative feature embeddings. 
Most existing methods achieve this by training backbone networks on large-scale image/
video datasets or utilising off-the-shelf object detection/segmentation approaches. Since all 

Enc. Dec.

Enc.

Target Frame

Matching
module

Target Frame and Mask

Ref. Frame (Annotation)

Target frame
feature map

Ref. frame
feature map

Resulting
feature map

Fig. 9   Diagram of matching-based VOS methods, which apply to both SVOS and UVOS applications. 
Since there are no annotations available in UVOS, the top branch mainly takes extra inputs (i.e., object 
masks) for SVOS methods
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these works can be completed offline, the matching-based method executes much faster 
than online fine-tuning while achieving better results. Therefore, the most recent VOS 
methods (especially SVOS) are based on feature matching, as shown in Tables 3, 4, and 5.

This section introduces the representative matching-based methods, whose development 
roadmap is shown in Fig. 10. Based on different feature types, the discussed methods are 
grouped into two categories: pixel-level matching and ROI (region of interest)-level match-
ing. The former (Sect.  4.2.1) measures the pixel-level feature correspondence between 
frames. By contrast, the latter (Sect. 4.2.2) only focuses on the ROI-level correspondence. 
Section 4.2.3 summarises the discussed methods.

4.2.1 � Pixel‑level matching

This method performs VOS by measuring the pixel-level correspondence between frames. 
As shown in Fig. 11, there are two schemes to implement the pixel-level matching mod-
ule: implicitly matching and explicitly matching. The former designs a network module 
to predict the cross-frame similarities implicitly, and the latter explicitly matches the fea-
tures between each pair of pixels between frames. Given different implementations, we 
first introduce the methods based on implicit matching, followed by those based on explicit 
matching. Finally, two variants of pixel-level matching are discussed. Table 8 briefly sum-
marises the discussed methods.

Fig. 10   Development roadmap of representative matching-based methods. Note that the blue, black, and 
red words indicate the methods performing UVOS, SVOS, and both, respectively. STM (Oh et al. 2019) is 
marked in bold words due to its breakthrough innovation and numerous extensions. Best viewed in colour



	 M. Gao et al.

1 3

Reference frame 
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Fig. 11   Diagram of different pixel-level matching modules. Given the reference and target feature maps, the 
top module feeds them into a set of CNN/FC layers to perform implicit matching. In contrast, the bottom 
module directly measures the similarities of all pairs of points between feature maps

Table 8   Summary of the discussed pixel-level matching methods

The first item indicates the indices of reference frames. Note that “PR” (Point-based Reference) means 
the reference consists of feature points instead of feature maps. “(1, t-1, 5)” indicates the frames sampled 
between the 1st and previous frame (these two frames not included) with the interval=5. ep and eq are the 
pixel-level features from different frames. b is a trainable bias

Methods Reference Frames Matching Schemes Measurements

PLM 1 Local Fully connected layers
RGMP 1 Local Convolutional layers
AGSS-VOS 1 Local Convolutional layers
PML PR (1st frame, high-confident results) Global L2 similarity
VideoMatch 1 Global Cosine similarity
FEELVOS 1, t-1 Local, Global 1 −

2

1+exp(||ep−eq||2)
RANet 1 Global Dot product
STM 1, t-1, (1, t-1, 5) Global Dot product
EGMN 1, t-1, 4 intermediate frames (uniformly sam-

pled)
Global Dot product

KMN 1, t-1, (1, t-1, 5) Local, Global Dot product
AFB-URR​ PR (1st frame, diverse features) Global Dot product
SwiftNet PR (1st frame, diverse features) Global Dot product
LCM 1, t-1, (1, t-1, 5) Local, Global Dot product
RMNet 1, t-1, (1, t-1, 5) Local, Global Dot product
HMMN 1, t-1, (1, t-1, 5) Local, Global Dot product
STCN 1, (1, t-1, 5) Global L2 similarity
TVOS [t-4, t-1], 5 frames sparsely sampled from [1, 

t-5]
Local, Global Weighted dot product

CFBI+ 1, t-1 Local, Global 1 −
2

1+exp(||ep−eq||2+b)
AOT 1, t-1, (1, t-1, 5) Local, Global Dot product
COSNet 5 frames uniformly sampled from the input 

sequence
Global Weighted dot product

AD-Net 1, t Global Dot product
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(1) Implicit matching. PLM (Pixel-Level Matching, Yoon et al. 2017) is one of the earli-
est matching-based SVOS methods. The method performs multi-scale matching between 
the previous and target frames to segment the target objects. To suppress ambiguous back-
grounds, only the regions around the previous frame objects are considered. Discussion: 
Although achieving good efficiency, the segmentation results are vulnerable to fast motion 
and occlusion since PLM only performs local matching between frames.

RGMP (Reference-Guided Mask Propagation,Oh et  al. 2018) performs matching 
between the first and target frames. Unlike PLM, RGMP encodes object masks together 
with video frames, implicitly merging the object appearance and location priors. Discus-
sion: Due to the enhanced data augmentation and effective feature fusion, RGMP performs 
well in both efficiency and accuracy. However, RGMP is inefficient in multi-object seg-
mentation since repeat runs are required.

AGSS-VOS (Attention Guided Single-Shot VOS, Lin et al. 2019) improves the matching 
module in RGMP to process ALL objects in a single feed-forward path. Multiple target 
objects are then separated by a lightweight target-specific module. Discussion: Although 
the latter module requires repeat runs, its relatively lightweight structure still mitigates 
computation costs. However, the overall architecture becomes more complicated due to 
integrating extra modules for object separation and optical flow.

(2) Explicit matching. PML (Pixel-wise Metric Learning, Chen et al. 2018b) is one 
of the earliest deep methods using pixel-wise similarities. Each pixel in the target frame 
is labelled based on its top-k similarities with all reference pixels, which are initial-
ised with the first frame annotation and updated by high-confident results. Discussion: 
Since no decoding is required after the matching-based labelling, PML achieves high 
efficiency in SVOS. However, PML cannot handle ambiguous backgrounds because it 
relies heavily on matching results.

VideoMatch (Hu et al. 2018c) implements a soft matching strategy for SVOS. Unlike 
PML, VideoMatch utilises the averaged top-k similarities to generate the final results. 
Also, an outlier removal module is proposed to filter out ambiguous backgrounds far 
from the previous results. Discussion: VideoMatch is robust against clutter scenes than 
PML. However, such robustness is limited since VideoMatch still relies heavily on 
matching results.

FEELVOS (Fast End-to-End Learning for VOS, Voigtlaender et  al. 2019) considers 
matching results as implicit guidance instead of directly propagating labels based on them 
(as in PML and VideoMatch). Specifically, FEELVOS performs global/local matching 
between the first/previous frames and the target frame. The matching results are then fused 
with semantic features to predict the final results. Discussion: Unlike the above methods, 
FEELVOS further mitigates the distractions from backgrounds. However, the adaptability 
in FEELVOS is limited since only the first and previous frames are referenced.

RANet (Ranking Attention Network, Wang et al. 2019d) only considers the high-confi-
dent instead of all reference features during matching. To this end, RANet implements a 
ranking attention module to select the reliable features contributing to the segmentation. 
Discussion: Compared with other methods, RANet filters out the potential noises, achiev-
ing more robustness against complex scenes. However, like FEELVOS, RANet suffers less 
adaptability due to the limited reference frames.

STM (Space-Time Memory network, Oh et al. 2019) makes a great breakthrough in 
SVOS. Besides the first and previous frames, STM also considers the intermediate frames 
between them as the reference to adapt the object changes better. Unlike the above meth-
ods, STM performs SVOS with an attention-like scheme: (1) Encode key/value features 
from the target and reference frames; (2) Measure the key similarities between frames; (3) 
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Consider the similarities as weights to sum the reference values; (4) Concatenate the target 
values with the summed values and feed them into a decoder to predict the final outputs. 
Owing to its efficient yet comprehensive matching scheme, STM achieved state-of-the-art 
performance on all the benchmark datasets at the time of publication while keeping rela-
tively low computation costs.

The success of STM motivates many recent methods, which improve the SVOS per-
formance from the following aspects: (1) Matching scheme: STM only considers global 
matching between frames, which is vulnerable to similar target objects/backgrounds; (2) 
Encoder architecture: STM applies different encoders to the target and reference frames 
due to different input channels (Target frame: RGB; Reference frames: RGB+mask), 
increasing the architecture redundancy; (3) Memory management: With the progress 
of the segmentation, the number of intermediate frames in STM improves increasingly, 
resulting in out-of-memory when segmenting long videos; (4) Temporal correspondence 
between reference frames: STM considers all reference frames individually and ignores 
the temporal correspondence between them; (5) Similarity metrics: STM employs dot 
product for similarity measurement. However, the recent work demonstrates that dot prod-
uct might reduce the utilisation of the reference features. (6) Multi-scale matching: STM 
only performs matching between the coarsest feature maps and ignores the fine-grained 
correspondence, limiting further performance improvement. These extension works are 
briefly introduced as follows:

EGMN (Episodic Graph Memory Network, Lu et al. 2020a) improves STM in tempo-
ral correspondence. To this end, the method builds a fully-connected graph over the ref-
erence frames and performs information propagation between them. Discussion: Due to 
the enhanced reference, EGMN outperforms STM on some benchmarks. However, such 
improvement is achieved at the cost of efficiency since the graph-based propagation is 
time-consuming.

KMN (Kernelized Memory Network, Seong et  al. 2020) improves STM in matching 
scheme. The method assumes each reference point has a candidate area in the target frame, 
represented by a 2D Gaussian kernel centred at its most similar point in the target frame. 
Discussion: The Gaussian kernels limit the effects of some ambiguous objects/back-
grounds on the segmentation results, enabling KMN to outperform STM. However, the 
regions with strong ambiguity (e.g., objects with the same class as the target object) remain 
if they are mutually matched with the reference points.

AFB-URR​ (Adaptive Feature Bank-Uncertain Region Refinement, Liang et  al. 2020) 
improves STM in memory management. To this end, the method creates a fixed-size 
memory bank for efficient space utilisation. The final outputs are refined by an uncertainty-
based module. Discussion: SVOS for long videos is supported in AFB-URR. Under the 
same training setting, AFB-URR achieves similar performance to STM with less memory 
space and computation.

SwiftNet (Wang et al. 2021a) improves STM in memory management and encoder archi-
tecture. The method utilises a similar strategy to AFB-URR to build the memory bank, but 
different update triggers are used. In addition, since all reference frames (except the first 
frame) were encoded when they were the target frames, SwiftNet implements a lightweight 
module to encode the reference features on top of the encoded target features instead of 
scratch. Discussion: Unlike the above STM-based methods, SwiftNet predicts competitive 
results with fewer parameters and therefore achieves the state-of-the-art balance between 
SVOS accuracy and efficiency.

LCM (Hu et  al. 2021) improves STM in matching scheme. Unlike the above STM-
based methods, which perform global matching between all reference frames and the target 
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frame, LCM performs local matching between the previous and target frames. The local 
matching is achieved by appending the positional encoding (Parmar et  al. 2018) to the 
reference and target keys. Discussion: LCM implicitly encourages the label propagation 
between the spatially neighbouring points, which fits the nature of the object movement in 
videos and helps suppress the distant ambiguous backgrounds.

RMNet (Regional Memory Network, Xie et  al. 2021) improves STM in match-
ing scheme. Unlike LCM, RMN performs local matching with a more straightforward 
approach, only involving the reference and target frame features within ROIs. The ROIs in 
the reference and target frames are generated based on the predicted object masks and opti-
cal flow, respectively. Discussion: RMN is robust against distant ambiguous backgrounds. 
However, such improvement is achieved at the cost of extra computation (optical flow).

HMMN (Hierarchical Memory Matching Network, Seong et al. 2021) improves STM in 
multi-scale matching. Besides the feature matching on the coarsest scale (with a stride of 
16), HMMN considers the pixel-wise correspondence on fine-grained scales (with strides 
of 4 and 8). Moreover, HMMN refines a kernelised approach (as in KMN) with tempo-
ral constraints to generate candidate locations for each reference point. Discussion: Multi-
scale matching brings significant performance improvement to the STM-based SVOS. On 
top of the initial kernelised approach, the temporal smoothness further mitigates the dis-
traction from ambiguous objects/backgrounds.

STCN (Space-Time Correspondence Network, Cheng et  al. 2021) improves STM in 
encoder architecture and similarity metrics. In STCN, two issues in all the above STM-
based methods are recognised: (1) the reference and target keys (the features to match) are 
computed by different encoders, which distracts the pixel-wise correspondence between 
frames; (2) cosine distance limits the utilisation of reference features. To address the 
issues, STCN encodes keys with a shared architecture, followed by a lightweight module 
to encode values. As for the similarity metric, STCN implements an efficient L2 distance 
to replace the cosine distance. In addition, STCN removes the previous frame from the 
reference to avoid drifting errors. Discussion: With the above efforts, STCN significantly 
improves STM in efficiency and accuracy. Since the effective and simple architecture and 
the remaining challenges (e.g., vulnerable to ambiguous backgrounds; feature matching on 
the coarsest scale only), STCN can serve as a new baseline method in SVOS.

Recently, most methods have achieved competitive results via the memory-based archi-
tecture. However, there are still methods exploring different ways for VOS, increasing the 
diversity of this field. These methods are introduced as follows:

TVOS (Transductive VOS, Zhang et  al. 2020) incorporates transductive infer-
ence (Zhou et  al. 2004) into SVOS. Unlike STM, TVOS considers a fixed number of 
frames as the reference and the similarities are constrained by both spatial and tempo-
ral distances between pixels. Discussion: Therefore, TVOS suppresses more distracting 
regions. Since TVOS is only trained on video datasets, the overall performance is not 
competitive with STM and its variants but better than the methods with the same train-
ing settings.

CFBI (Collaborative VOS by Foreground-Background Integration, Yang et  al. 2020) 
only considers the first and previous frames as the reference. Unlike other matching-based 
methods, CFBI treats the foreground and background regions equally, implicitly enhancing 
the discriminability of the encoded features. By integrating the Feature Pyramid Network 
(Lin et al. 2017) into the segmentation network, CFBI is extended to handle multi-scale 
target objects (CFBI+, Yang et al. 2021b). Discussion: Compared with STM and its vari-
ants, CFBI and CFBI+ achieve similar performance with fewer reference frames due to the 
powerful feature embedding.
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AOT (Associating Objects with Transformers, Yang et al. 2021a) introduces the multi-
layer transformer module to build the correspondence between frames. Unlike most meth-
ods in this section, which process each target object separately, AOT implements a uniform 
mechanism to encode, match, and decode multiple objects. Discussion: This mechanism 
encourages AOT to better mine and exploit the relationships between objects, leading to 
superior performance on several benchmark datasets. The success of AOT provides a per-
fect example to show how transformers boost the matching-based SVOS methods.

Besides SVOS methods, feature matching also brings competitive results to UVOS 
methods. According to the pixel-level correlation between frames, matching-based UVOS 
methods can efficiently localise the frequently reappearing objects (even static objects) 
from the sequence.

COSNet (Co-Attention Siamese Networks, Lu et  al. 2019) is a UVOS method, which 
resolves the salient object by a co-attention module:

where � is a learnable weight matrix, �r, �t are the features from reference and target 
frames. Discussion: Equation  4 focuses on the pair-wise relationship between frames. 
Although aggregating multiple � can achieve more global relationships throughout the 
sequence, the resulting information is still limited since the module is trained with pairs 
of frames. To address this problem, Lu et  al. (2020b) extended COSNet by training the 
module with groups of frames. Specifically, �r is the concatenation of multiple reference 
frames instead of a single one. Therefore, the module is encouraged to encode more rich 
correspondence among multiple frames.

AD-Net (Anchor-Diffusion Network, Yang et  al. 2019b) performs UVOS with both 
cross-correlation and auto-correlation to localise the salient object:

where �1, �t are the features from the reference and target frames. Discussion: Unlike 
COSNet, AD-Net only considers the first frame as the reference, accelerating the corre-
lation computation. Also, auto-correlation brings more discriminative feature embedding. 
However, AD-Net works only when the foreground object appears in the first frame and 
cannot apply to the sequences with an empty first frame.

(3) Variants. So far, all the discussed methods in this section are developed based on 
pixel-level matching, whose basic elements are feature points. Generally, each point rep-
resents a subregion with a regular shape in the video frame. Here some variants based 
on irregular elements (e.g., super-pixels) are discussed. Table 9 briefly summarises these 
variants.
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Table 9   A summary of the discussed variants

The second item indicates the utilised entities during matching, the other two items have the same meanings 
as in Table 8

Methods Reference Frames Matching Entities Measurements

CCNN t-30, t-15, t+15, and t+30 Super-pixels L2 similarity
CapsuleVOS 1 Capsules L2 similarity



Deep learning for video object segmentation: a review﻿	

1 3

CCNN (Complementary CNNs, Li et  al. 2017b) performs UVOS based on the super 
pixel-wise similarities between frames. During inference, CCNN propagates the initial 
foreground/background labels (predicted based on visual saliency) along the paths built 
from the similarities. Discussion: Compared with grid regions, super-pixel regions fit bet-
ter with the object boundaries, enabling more detailed results. However, temporal embed-
ding is less explored in CCNN since the deep networks for initial result generation are 
trained on image datasets only.

CapsuleVOS (Capsule-based VOS, Duarte et al. 2019) is one of the earliest SVOS meth-
ods with capsule networks (Hinton et  al. 2018). Since their abilities to establish part-to-
object relationships, capsule networks have been successfully applied in pixel-wise clas-
sification tasks (e.g., object segmentation (LaLonde and Bagci 2018) and salient object 
detection (Liu et  al. 2019)). In CapsuleVOS, a capsule implicitly represents an object/
object part, whose potential region in the target frame is predicted by a routing algorithm, 
according to the capsule-level similarities between the reference and target frames. Discus-
sion: Capsules bring more effective object modelling. In addition, CapsuleVOS supports 
parallel segmentation, where multiple video frames can be segmented at once during train-
ing and inference.

4.2.2 � ROI‑level matching

This section reviews the representative VOS methods based on ROI-level matching. Unlike 
pixel-level matching, this method can better handle the distractions from noisy pixels. Spe-
cifically, this method first extracts a set of object proposals from the target frame. Then, 
these proposals are filtered by comparing them with the objects in the reference frames. 
Finally, the method feeds the filtered proposed into an ROI-based segmentation module to 
predict object masks.

Based on different mechanisms for proposal generation, existing methods can be 
divided into two types: proposal detection and correlation. The former generates object 
proposals via off-the-shelf object detection (e.g., Region Proposal Network, Ren et  al. 
2015) or instance segmentation (e.g., Mask R-CNN, He et al. 2017) approaches. The lat-
ter is inspired by object tracking approaches (e.g., SiamFC, Bertinetto et al. 2016), which 
compute the ROI-level correlations between frames to generate object proposals. Fig. 12 
shows the diagram of two types of ROI-level matching. Table 10 briefly summarises the 
discussed methods.

(1) Detection-based ROI matching. DyeNet (Li and Change Loy 2018) is one of the ear-
liest methods based on ROI matching. The ROIs are generated by RPN. To localise the tar-
get object, DyeNet measures the similarities between the target frame ROIs and reference 
frame ROIs, which are initialised with the first frame annotations and then updated with 
the high-confident ROIs in subsequent frames. Discussion: Since the intermediate results 
are considered as the reference, DyeNet is adaptive to the changes of the target objects.

PReMVOS (Proposal-generation, Refinement and Matching for VOS, Luiten et al. 2018) 
performs SVOS with almost all spatial and temporal techniques. Unlike DyeNet, PReM-
VOS predicts coarse masks (by Mask R-CNN) instead of bounding boxes for each target 
object. These masks are then refined by previous frame masks, optical flow, and a Dee-
pLab-based refinement module. Discussion: PReMVOS outperformed most VOS meth-
ods at the time but the computation cost is high due to the integration of multiple deep 
networks.
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DMM-Net (Differentiable Mask-Matching Network, Zeng et  al. 2019a) implements a 
more optimal matching scheme than the above methods relying on ROI-level feature simi-
larities. The scheme is achieved by solving a linear programming problem:

Correlation-based ROI matching

Proposal Detection-based ROI matching

Target Frame Bounding Boxes

Reference Frame Annotation

Target Frame

Reference Frame Annotation

Proposal
Matching

ROI-
Dec.

ROI-
Dec.

Target Frame and Mask

Target Frame and Mask

Ref. frame
feature map

Target frame
feature map

Ref. frame
feature map

Target frame
feature map

Target frame
feature map

Correlation map

: Convolution

Fig. 12   Diagram of two types of ROI-level matching. Top (Proposal detection): Use a proposal detection 
method to generate object proposals (Yellow, green, and pink boxes) from the target frame, which are then 
compared with the objects annotated in the reference frame (Red box). The boxes with high similarities 
would be kept and further decoded to the segmentation results. Bottom (Correlation): Use a shared encoder 
to embed the reference and target frames, respectively. Then, consider the target object features (Red cube) 
in the reference frame as the kernel to convolve the target frame features (Green cube). From the resulting 
correlation map, the regions with high correlations (Red box in the correlation map) would be resolved to 
object proposals and further decoded to the segmentation results. The coloured arrows indicate the data 
flow only containing the features within the corresponding boxes. Best viewed in colour

Table 10   Summary of the discussed ROI-level matching methods

The first item indicates the indices of reference frames. Note that ‘PR’ (Proposal-based Reference) means 
the reference consists of proposals instead of frames

Methods Reference Proposal Types Measurements

DyeNet 1, PR (confident 
boxes)

Bounding box Cosine similarity

PReMVOS 1 Object mask Normalised L2 similarity
DTN 1 Bounding box L2 similarity
DMM-Net 1 Object mask Differentiable matching
FAVOS 1 Bounding box (object part) Cross correlation
SiamMask 1 Bounding box Depth-wise cross correlation
SAT 1 Bounding box Cross correlation
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where C, X ∈ ℝ
n×m are initial and target affinities between n and m masks in the reference 

and target frames. C is initialised with the cosine similarities/IoUs between ROI-level fea-
tures/masks. �n, �m are all-one vectors. Discussion: Due to the optimal matching scheme, 
DMM-Net is robust against ambiguous regions and dramatic object property changes.

DTN (Dynamic Targeting Network, Zhang et  al. 2019) switches between ROI-based 
and mask propagation-based SVOS, according to the temporal continuity between frames 
(measured by optical flow). Unlike other ROI-based methods, DTN generates object pro-
posals from the past frame masks instead of resorting Mask R-CNN. Discussion: There-
fore, DTN achieves a good balance between SVOS accuracy and efficiency. However, the 
overall architecture in DTN is less optimal since an extra module (FlowNet) is required to 
trigger the dynamic mechanism.

(2) Correlation-based ROI matching. FAVOS (Fast and Accurate VOS, Cheng et  al. 
2018) combines SiamFC (Bertinetto et  al. 2016) and an ROI-based segmentation mod-
ule for SVOS. Unlike other ROI-based methods, FAVOS tracks and segments object parts 
instead of the entire objects. Discussion: Besides high efficiency, FAVOS is also robust 
against occlusion and object deformation. However, there is still room for further accuracy 
improvement since the segmentation module focuses more on efficiency and fails to utilise 
detailed features sufficiently.

SiamMask (Wang et al. 2019a) combines SiamRPN (Li et al. 2018a) and a light seg-
mentation module for SVOS and VOT. In order to achieve rich cross-frame correlations, 
the method implements the correlation module with depth-wise convolution rather than 
vanilla convolution operations. Discussion: Benefiting from its efficient correlation com-
putation and segmentation, SiamMask achieves the competitive balance between SVOS 
accuracy and efficiency. However, SiamMask suffers a similar problem to FAVOS: the less 
optimal ROI segmentation.

SAT (State-Aware Tracker, Chen et  al. 2020) combines SiamFC++ (Xu et  al. 2020) 
and a saliency detection module for SVOS. Unlike FAVOS and SiamMask, which perform 
object tracking and segmentation in order, the method executes both modules in parallel. 
Then, the resulting correlation and saliency maps are fused for final outputs. In SAT, sali-
ency maps are computed within the ROIs generated by a dynamic strategy. The strategy 
switches between the efficient or accurate approaches based on the previous frame outputs. 
Discussion: Unlike DTN (another dynamic method), SAT can switch approaches more 
efficiently since no extra modules (e.g., optical flow) are involved. In addition, SAT com-
putes a global representation for each target object, improving the global consistency of the 
segmentation results throughout the sequence.

4.2.3 � Summary

This section reviews the feature matching-based VOS method, which resorts to pixel-/ROI-
level feature correspondence between frames to segment objects. Based on the discrim-
inative knowledge learned offline, this method can predict robust results without online 
fine-tuning, resulting in a better balance of VOS efficiency and accuracy. So far, most top-
performing SVOS methods have been developed based on feature matching, as shown in 

(6)
min
X

&Trace(CXT)

s.t. &X�m = �n, X
T�n ≤ �m, X ≥ 0

,
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Tables  16, 17, and 19. In addition, the reliable correspondence also brings high-quality 
results to UVOS methods, as shown in Table 20.

Most existing feature matching-based VOS methods are implemented with pixel-level 
matching, which measures the dense correspondence between frames. The earlier prac-
tices (e.g., PLM, (Yoon et al. 2017), RGMP (Oh et al. 2018), and AGSS-VOS (Lin et al. 
2019)) achieve this implicitly via learnable fully-connected or CNN-based layers. To sup-
press ambiguous regions, the above methods take the previous frame masks into account to 
constrain the matching area. Therefore, they only apply to SVOS.

Unlike implicit matching, the explicit scheme achieves dense correspondence by 
directly measuring the pair-wise similarities between target and reference frames’ pixels. 
Therefore, no extra modules are required for the correspondence, and the backbone net-
works can focus more on the discriminative representation. The earlier methods (PML 
(Chen et al. 2018b), VideoMatch (Hu et al. 2018c)) only utilise the correspondence to prop-
agate labels between frames. With a CNN-based decoder, the subsequent methods (FEEL-
VOS (Voigtlaender et al. 2019), RANet (Wang et al. 2019d)) combine the correspondence 
with the fine-grained features in the target frame, further improving the segmentation per-
formance. By considering more past frames as the reference, STM (Oh et al. 2019) starts 
a new branch on top of pixel-level matching: the memory-based method, which signifi-
cantly enhances the VOS robustness against object changes, occlusion, and fast motion. 
Most of the current SVOS practices are inspired by STM, and they improve the segmenta-
tion performance mainly in the following aspects: (1) temporal correspondence between 
memory frames (EGMN, (Lu et  al. 2020a)); (2) matching scheme (KMN, (Seong et  al. 
2020), LCM (Hu et al. 2021), RMNet (Xie et al. 2021)); (3) memory management (AFB-
URR (Liang et al. 2020), SwiftNet (Wang et al. 2021a)); (4) encoder architecture (SwiftNet 
(Wang et  al. 2021a), STCN (Cheng et  al. 2021)); (5) similarity metrics (STCN (Cheng 
et al. 2021)); (6) multi-scale matching (HMMN (Seong et al. 2021)). Although achieving 
great improvement in VOS performance, several challenges remain in the memory-based 
VOS, e.g., a better balance between memory management, VOS accuracy, and VOS effi-
ciency. Besides the memory-based methods, there are still current practices exploring dif-
ferent ways to improve pixel-level matching-based VOS. For example, TVOS (Zhang et al. 
2020), CFBI/CFBI+ ( Yang et al. (2020, 2021b)), and AOT ( Yang et al. (2021a)).

Pixel-level matching also applies to UVOS, whose main idea is to locate the frequently 
appearing objects via the cross-correlation between frames. For example, AD-Net (Yang 
et  al. 2019b), COSNet (Lu et  al. 2019, 2020b), and EGMN (Lu et  al. 2020a) perform 
UVOS based on the cross-correlation. The main difference between them is the selection of 
the reference frames. From Table 20, it is observed that the matching-based UVOS meth-
ods outperform other methods, illustrating the effectiveness of cross-correlation on UVOS.

The discussed variants of pixel-level matching consider super-pixels (CCCN, (Li et al. 
2017b)) or capsule components (CapsuleVOS, (Duarte et  al. 2019)) as the basic entities 
for matching. Instead of regular grids, the variants encode features for the regions with 
similar appearance or semantic information, enriching the diversity of the matching-based 
VOS. Although their segmentation performance is limited, these variants still make a good 
exploration for future research.

The ROI-level matching scheme measures the ROI-level correspondence between 
frames. In general, there are two approaches to generate ROIs from the target frame: 
Detection-based approach and Correlation-based approach. The earlier detection-based 
methods (DyeNet (Li and Change Loy 2018), PReMVOS (Luiten et al. 2018), DMM-Net 
(Zeng et  al. 2019a)) utilise off-the-shelf networks (e.g., Mask R-CNN) to generate pro-
posals (bounding boxes or coarse masks) for the target objects. To accelerate the ROI 
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generation and suppress ambiguous backgrounds, DTN (Zhang et al. 2019) predicts object 
proposals from the previous frame results instead of resorting extra networks. In contrast, 
the correlation-based methods (e.g., FAVOS (Cheng et al. 2018), SiamMask (Wang et al. 
2019a), and SAT (Chen et al. 2020)) generate ROIs based on the correlations between the 
first frame annotations and the target frame. Their differences mainly lie in the matching 
entities and the approach for the target object localisation. Since the correlation-based 
methods do not require any extra networks for ROI generation, they perform VOS much 
faster than the detection-based ones. However, the segmentation performance of this 
method is limited because the fine-grained details are ignored in the ROI-based segmenta-
tion module.

4.3 � Graph optimisation‑based methods

Until 2021, most existing VOS methods implement spatial techniques based on online fine-
tuning and feature matching. However, for each frame to segment, both techniques only 
establish the correspondence between the frame and the limited number of other frames in 
the same video, which is insufficient to handle the objects experiencing dramatic changes. 
To address the issue, the graph optimisation-based technique was developed, in which 
additional video frames from the same video are involved and organised as a graph struc-
ture. Based on the analysis and optimisation for the graph, this technique can achieve more 
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Fig. 13   Diagram of graph optimisation-based VOS methods, which apply to both SVOS and UVOS. Spe-
cifically, the methods organise the input features (blue maps) into a structural graph, encoding the com-
prehensive global context. Then, the context is optimised to generate the final segmentation results. Best 
viewed in colour

Fig. 14   Development roadmap 
of the discussed graph optimi-
sation-based methods. Note that 
the blue, black, and red words 
indicate the methods performing 
UVOS, SVOS, and both, respec-
tively. Best viewed in colour
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comprehensive and high-level dependencies between frames, further facilitating the high-
quality segmentation results, as shown in Fig. 13.

In general, there are two types of approaches to organise and analyse the graph nodes: 
track selection and information propagation, as shown in Fig. 14. Given a set of input 
frames, the former (Sect. 4.3.1) retrieves the optimal node track throughout the video, from 
which the target object masks can be derived. In contrast, the latter (Sect. 4.3.2) focuses 
more on propagating the foreground and background information between frames, achiev-
ing a global context to facilitate the segmentation. The difference between them is shown 
in Fig. 15. Section 4.3.3 summarises the discussed methods.

… …

…
…

Track selection

Information propagation

Input
frame 

features

Processed
features

Fig. 15   Diagram of two techniques for graph node organisation and analysis. In the track selection-based 
methods, super-pixels or object proposals are considered as nodes (red circles), which are connected with 
those from other frames only. The connected nodes form a set of tracks throughout the sequence. This 
technique aims to retrieve an optimal track (an example for the optimal track is highlighted in bold orange 
arrows) from the formed tracks (orange and black arrows). The final results come from the nodes belong-
ing to the optimal track. As for the ones utilising information propagation, more varied connections are 
supported (even the nodes within the same frame). This technique aims to establish a high-level and com-
prehensive context by exchanging information between nodes (grey lines with two-way arrows). The final 
results come from both the spatial features and context information. Best viewed in colour

Table 11   Summary of the discussed graph optimisation-based VOS methods

The last item indicates which nodes should be connected with for each node in the tth frame It

Methods Node entities Connection modes

IET-VOS Seed pixels Nodes from It−1 and It+1
SCO-VOS Object masks Nodes from all other frames
MHP-VOS Bounding boxes Nodes from It−1 and It+1
UnOVSVT Object tracklets Temporally neighbouring and visually similar nodes
MSGSTP Super-pixels Nodes from [It−15, It+15]
STVOS Super-pixels Nodes from It−1 and It+1
AGNN Video frames Nodes from {..., It−2N , It−N , It , It+N , It+2N , ...} , where 

N = T∕5 , T is the video length.
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4.3.1 � Track selection‑based method

This method performs VOS by resolving an optimal node track from a set of continuous 
frames. Specifically, the method first encodes input frames. Then, as shown in Fig.  15, 
nodes are abstracted from the encoded features and then connected frame by frame. Finally, 
the optimal node track is resolved from the graph and decoded to the object masks. This 
section introduces the representative track selection-based works, which are briefly sum-
marised in Table 11.

IET-VOS (Instance Embedding Transfer to UVOS, Li et al. 2018b) is one of the earli-
est VOS methods based on track selection. With the pixel-level instance embeddings, the 
method considers the locally stable and globally diverse pixels as the seed pixels, over 
which a set of tracks are built throughout the video. The track with the highest accumulated 
objectness and motion scores are selected as the optimal track to derive the object masks. 
Discussion: Due to the accumulation-based strategy, the method can effectively localise 
the frequently reappearing objects from the input video.

SCO-VOS (Sequential Clique Optimisation for VOS, Koh et  al. 2018) builds a k-par-
tite graph over object masks (predicted by FCIS, ). The method derives the optimal mask 
track by minimising an energy function defined upon the graph nodes. Discussion: Unlike 
IET-VOS, SCO-VOS considers object-level features, which makes the segmentation more 
robust against noises, but extra computations and more elaborate optimisation are required.

MHP-VOS (Multiple Hypotheses Propagation for VOS, Xu et  al. 2019c) builds tree 
structures to cover all the possible tracks of object proposals throughout the sequence. For 
each target object, the method derives one track with the highest spatial-temporal consist-
ency. Discussion: Compared with other graphs, tree structure applies better to SVOS since 
it generates fewer hypotheses for earlier frames and more for later frames, consistent with 
the confidence decay of the propagated masks with time.

UnOVOST (Unsupervised Offline Video Object Segmentation and Tracking, Luiten et al. 
2020) implements a similar approach to MHP-VOS. Differently, the method considers 
tracklets instead of object proposals as nodes, where each tracklet is a track of spatiotempo-
rally consistent object proposals. Discussion: Compared with MHP-VOS, fewer nodes are 
involved in UnOVOST, mitigating the efforts for track selection. In addition, the method 
supports multi-object UVOS due to the integration of instance-level segmentation module.

4.3.2 � Information propagation‑based methods

Information propagation is another technique to implement graph optimisation-based VOS. 
This technique builds the comprehensive context of target objects and backgrounds by 
propagating semantic information between nodes. The resulting context provides more dis-
criminative features are achieved for robust segmentation. Table 11 briefly summarises the 
discussed methods.

MSGSTP (Motion Saliency-Guided Spatio-Temporal Propagation, Hu et  al. 2018b) 
builds intra-frame, inter-frame, and long-range connections between super-pixels. Along 
with the connections, the method propagates the initial motion saliency to achieve the 
output object masks. Discussion: Although MSGSTP is not a deep learning (DL)-based 
method, the idea of graph optimisation-based information propagation is enlightening and 
worth mentioning. In addition, the method can achieve competitive results with other DL-
based ones, as shown in Table 20, which provides further evidence of the effectiveness of 
the proposed graph optimisation-based idea.
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STVOS (Super-Trajectories for VOS, Wang et  al. 2018) performs SVOS by propagat-
ing the annotated labels along super-trajectories, which link sets of pixels from continuous 
frames. Unlike MSGSTP, which only determines super-pixels based on spatial features, 
STVOS also considers motion clues when grouping pixels, enabling reliable temporal con-
sistency. Discussion: STVOS is also a non-DL method (MSGSTP and STVOS are the only 
two non-DL methods in this review). However, the segmentation results of STVOS demon-
strate that point trajectory, as an earlier VOS technique, still works well if designed elabo-
rately. With the development of deep feature descriptors, it is believed that the trajectory-
based method could be further improved.

AGNN (Attentive Graph Neural Network, Wang et al. 2019b) builds a fully-connected 
graph upon a subset of the input sequence. During inference, the method iteratively per-
forms information propagation, achieving a global context for all the involved nodes. Dis-
cussion: Unlike the above methods, AGNN considers video frames as nodes, where more 
comprehensive features are encoded to build high-level dependencies. However, the effi-
ciency of information propagation and summarisation decreases as the number of involved 
nodes increases, limiting further performance improvement.

4.3.3 � Summary

In this section, several representative graph optimisation-based methods are introduced. 
Unlike online fine-tuning and feature matching, this technique considers more frames to 
establish extensive correspondence throughout the sequence. Therefore, the VOS methods 
based on graph optimisation can better localise frequently appearing objects from raw vid-
eos, achieving competitive results in UVOS (as shown in Table 20).

There are mainly two schemes to organise and analyse graph data in VOS methods: (1) 
track selection and (2) information propagation. The track selection-based scheme organ-
ises nodes into a set of tracks or trees, from which the optimal track is retrieved to generate 
object masks. The earlier method (IET-VOS, (Li et al. 2018b)) only embeds pixel-level fea-
tures to build tracks, which are vulnerable to background noises. Therefore, the subsequent 
ones (SCO-VOS (Koh et al. 2018), MHP-VOS (Xu et al. 2019c), and UnOVOST (Luiten 
et al. 2020)) consider object proposals/tracklets for robust track generation and selection. 
However, these methods require extra networks (e.g., Mask R-CNN or FCIS) to generate 
object proposals, increasing the network parameters and computation costs.

Unlike track selection, the information propagation-based scheme assists VOS via 
iterative information propagation among nodes. The earlier methods (MSGSTP (Hu et al. 
2018b), STVOS (Wang et al. 2018)) mainly propagate the label-related information (e.g., 
motion saliency or annotations), making the segmentation results sensitive to the connec-
tions between nodes. The recent work (AGNN, (Wang et al. 2019b)) mitigates this issue 
due to the consideration of deep features and frame-level information propagation. To sum 
up, graph optimisation brings more extensive correspondence to VOS methods, enabling 
high-quality segmentation results (especially in UVOS). However, such good results are 
achieved at the cost of segmentation efficiency due to graph optimisation’s high computa-
tion complexity (whether the track selection- or information propagation-based schemes). 
As a result, the current graph optimisation-based approaches are unsuitable for real-time 
and resource-limited VOS tasks.
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4.4 � Optical flow‑based methods

The previous Sects. 4.1, 4.2, and 4.3 introduce the frequently used spatial techniques 
for VOS methods. These techniques. These techniques are beneficial to address several 

Table 12   Summary of the discussed optical flow-based VOS methods. (t-1, t) measures the flow maps from 
I
t−1 to I

t
 . “Computation and Usage” indicate how the listed methods compute and use the flow maps

Methods Flow maps Computation and usage

MP-Net (t-1, t) LDOF; Generate initial object masks
FusionSeg (t-1, t) CNN module; Fused with appearance (when predicting)
SegFlow (t-1, t) CNN module; Fused with appearance (when upsampling)
CINM (t-2, t), (t-1, t), (t, t+1), 

(t, t+2)
FlowNet 2.0; Build temporal dependencies among pixels

MBN-VOS (t-1, t) FlowNet 2.0; Background suppression
MoNet (t-1, t); (t, t+1) FlowNet 2.0; Feature wrapping and background suppression

Previous Frame

Test Frame Test Frame and Mask

OF module

Enc.
Semantic & 

Flow 
integration

Dec.

Flow map between two frames

Fig. 16   Diagram of the optical flow-based VOS methods, which apply to both SVOS and UVOS. During 
inference, the methods compute the optical flow from continuous frames and integrate the flow map with 
semantic features for object mask generation. When the target object and background have separate motion 
patterns, their difference can be easily derived, providing helpful clues for segmentation. The map shown 
here is generated by FlowNet 2.0 (Ilg et al. 2017), the most frequently used approach for flow computation 
in VOS

Fig. 17   Development roadmap of the discussed optical flow-based VOS methods. With the estimated flow 
maps, the earlier methods explicitly feed them into segmentation networks, while recent methods further 
mine temporal clues from them. Note that the blue, black, and red words indicate the methods for UVOS, 
SVOS, and both, respectively. Best viewed in colour
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challenges in VOS, such as occlusion, out of view, and fast motion. However, only con-
sidering spatial features cannot generate high-quality results when segmenting the objects 
with appearance change, scale variation, or complex background. Therefore, several tech-
niques focusing on continuous video frames (i.e., optical flow, mask propagation, and long-
term temporal modelling) have been proposed to address these challenges.

Optical flow has been a widely used technique in VOS due to the pixel-level motion 
patterns. The technique assumes that the target object and backgrounds have different 
movement patterns. Therefore, integrating optical flow into VOS can provide segmenta-
tion networks with reasonable priors, as shown in Fig. 16. The earlier methods integrate 
the estimated flow maps explicitly into their segmentation networks. To further encode the 
temporal clues implicit in flow maps, some recent methods employ optical flow to build 
the short-term correspondence between frames. The representative works are depicted in 
Fig. 17. In this section, the earlier works are discussed first in Sect. 4.4.1, followed by the 
recent extensions (Sect. 4.4.2). Section 4.4.3 summarises the discussed methods. The prop-
erties of these methods are briefly listed in Table 12.

4.4.1 � Early optical flow‑based methods

MP-Net (Motion Pattern Network, Tokmakov et al. 2017a) is one of the earliest deep meth-
ods using optical flow. LDOF (Large Displacement Optical Flow, Brox and Malik 2010a) 
is used to generate flow maps between frames, which are refined by deep networks and 
then integrated with objectness scores for the final results. Discussion: Due to the com-
prehensive motion patterns and complementary information integration, MP-Net can bet-
ter segment the moving object from complex scenes than traditional motion-based VOS 
methods.

FusionSeg (Jain et al. 2017) implements a parallel mechanism to integrate motion pat-
terns and semantic information. Unlike MP-Net, which post-process the motion-based 
results with objectness, FusionSeg encodes the motion-based and appearance-based seg-
mentation results with two separate branches and combines them later. Discussion: There-
fore, the combination module can be trained to better utilise both information and generate 
more accurate results.

SegFlow (Cheng et al. 2017) is also a parallel network integrating motion and appear-
ance features. Unlike FusionSeg, SegFlow trains two branches for different goals (for 
segmentation and optical flow, respectively). Therefore, the method cannot combine both 
branches directly. Instead, the combination is achieved during the upsampling stage. Dis-
cussion: Compared with MP-Net and FusionSeg, SegFlow builds a more tight bridge 
between motion and appearance features, resulting in an end-to-end trainable architecture 
for both UVOS and SVOS.

4.4.2 � Extensions

Optical flow brings pixel-level location and shape priors to the target object, enabling VOS 
methods to produce competitive results on several benchmark datasets. However, limited 
by the lack of training data and the challenges such as moving background and camera 
shaking, the quality of the estimated flow maps are not always good enough to provide 
such valuable priors. Therefore, several methods have been proposed to mine more confi-
dent temporal information from the flow maps.

CINM (Cnn IN Mrf, Bao et al. 2018) performs SVOS by minimising an MRF model:
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where Eu , Et , and Es are the energies for likelihood maximisation, temporal and spatial 
dependencies. x denotes the initial labels predicted by OSVOS, V defines all the pixels in a 
video sequence. The local connection NT is established by optical flow. �c is an auxiliary 
mask in the cth frame, initialised with x and then refined by a DeepLabv2-based module. 
Discussion: Unlike the above methods, CINM considers flow maps as a constraint term in 
MRF instead of using them explicitly for mask generation. Although achieving competitive 
results, the computation cost is enormous in CINM since it integrates several deep net-
works (OSVOS, FlowNet, and DeepLab).

MBN-VOS (Motion-based Bilateral Network for UVOS, Li et  al. 2018c) implements 
a Bilateral Network (Jampani et  al. 2016), which generates generate background motion 
patterns based on objectness and optical flow. The resulting patterns can serve as priors 
to reduce the negative effect of static background objects on the final results. Discussion: 
Unlike CINM, optical flow in MBN-VOS is mainly used for background suppression, fur-
ther improving the segmentation performance, especially when background objects look 
similar to the foreground objects.

MoNet (Xiao et al. 2018) implements a similar approach to MBN-VOS for background 
suppression. However differently, MoNet generates background motion patterns from 
the flow branch only. In addition, both forward and backward optical flows are estimated 
to wrap the adjacent frame features. Discussion: With the bi-directional flow maps and 
the wrapped features, MoNet can effectively encode the spatial-temporal correspondence 
between frames, improving VOS performance.

4.4.3 � Summary

This section discusses the representative VOS methods based on optical flow. These meth-
ods assume that the target object and backgrounds have different motion patterns. There-
fore, the generated flow maps can reasonably estimate the shape and location priors of the 
target object. The earlier methods (MP-Net (Tokmakov et al. 2017a), FusionSeg (Jain et al. 
2017), and SegFlow (Cheng et  al. 2017)) explicitly integrate the flow maps with spatial 
features, to generate object masks. The main difference between them is how to encode 
and combine different types of features. However, the estimated flows are not always reli-
able due to the lack of training data and challenging sequences (e.g., dynamic background). 
Therefore, several methods have been recently proposed to exploit optical flow more suffi-
ciently while avoiding the above risks. As discussed above, CINM (Bao et al. 2018) implic-
itly constraints the VOS results with optical flow-based temporal dependencies. MBN-VOS 
(Li et al. 2018c) and MoNet (Xiao et al. 2018) suppress the background regions by recog-
nising the background motion patterns.

Although achieving high-quality results on many challenging sequences, optical flow 
has been rarely employed in recent VOS systems since: (1) In some cases, the object and 
background flow maps are not discriminative (e.g., static object); (2) Extra deep networks 
(e.g., FlowNet) are required during inference (as shown in Tables 3, 4 and 5). Therefore, 
this technique has been gradually replaced by mask propagation, which will be discussed 
in the next section.

(7)E(�) =
∑
i∈S

Eu(xi) +
∑

(i,j)∈NT

Et(xi, xj) +
∑
c∈S

Es(�c),
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4.5 � Mask propagation‑based methods

This section discusses the representative methods based on mask propagation. This method 
assumes the target objects move smoothly throughout the input sequence. Therefore, the 
masks predicted in the previous frame can well estimate the location and shape of the tar-
get objects. With such estimates, the methods can focus more on the regions where the 
target objects most probably appear. Unlike optical flow, mask propagation applies better to 

Target Frame Target Frame and Mask

Enc. Dec.

Predicted Mask in the 
Previous Frame

Target frame 
feature map

Fig. 18   Diagram of the mask propagation-based VOS method, which applies to SVOS only. During infer-
ence, the segmentation network takes the target frame and the previous frame mask as input and predicts 
object masks for the target frame. After this, the predicted masks are propagated to serve the subsequent 
frame segmentation (the dashed line with an arrow)

Fig. 19   Development roadmap of the mask propagation-based VOS. MaskTrack is the first method using 
mask propagation in SVOS. After that, several methods are proposed on top of MaskTrack for further 
improvement. Their main modifications to MaskTrack are highlighted by bold words with the prefix “+”

Table 13   Summary of the discussed methods based on mask propagation

The first item indicates the directions of mask propagation. The second item shows the techniques used for 
mask refinement (OF: Optical Flow, RL: Reinforcement Learning). The final item indicates the target frame 
regions focused explicitly by segmentation networks. Note that “Whole target frame” means the propagated 
masks implicitly guide the segmentation

Methods Directions Mask refinement Focused regions

MaskTrack Forward – Whole target frame
CTN Forward OF-based wrapping Bounding box of the refined mask
MGCRN Forward OF-based contour evolution Whole target frame
DyeNet Bi-direction OF-based wrapping Bounding box of the refined mask
RCAL-VOS Forward RL-based relocation Bounding boxes containing object and sur-

rounding context, generated from the propa-
gated mask
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the sequences with dynamic backgrounds. Tables 3, 4, and 5 show that most existing meth-
ods are built based on this technique.

Fig. 18 shows the diagram of the mask propagation-based VOS method. In the Mask-
Track proposed by Perazzi et al. (2017), mask propagation is first proposed for deep learn-
ing-based SVOS (Sect. 4.5.1), where the masks predicted in the previous frame are directly 
fed to the segmentation network for mask generation. To further improve the segmentation 
performance, recent methods incorporate other valuable techniques to enhance the con-
fidence of the propagated masks, e.g., optical flow, bidirectional propagation, and rein-
forcement learning, enabling the segmentation network to focus on more plausible regions. 
These methods are introduced in Sect. 4.5.2. Section 4.5.3 summarises the discussed meth-
ods. Table 13 briefly summarises the related methods. The development roadmap of the 
discussed methods is shown in Fig. 19.

4.5.1 � MaskTrack

MaskTrack, proposed by Perazzi et  al. (2017), is the first SVOS method based on mask 
propagation. As shown in Fig. 18, the segmentation network takes a tensor with four chan-
nels (the current frame + previous frame mask) as input and predicts object masks for each 
target frame. Discussion: Although achieving competitive results, MaskTrack cannot han-
dle the objects experiencing abrupt changes or occlusion since the previous frame masks 
fail to provide the correct estimations. Therefore, the majority of its extension works focus 
on how to improve the confidence of such estimations.

4.5.2 � Extensions

CTN (Convolutional Trident Network, Jang and Kim 2017) adapts the previous mask to the 
current frame. For each pixel � = [x, y]T , its label Ht(�) comes from the previous frame 
labels and flow map between frames:

where St−1 is the previous frame mask, [ut
b
(�), vt

b
(�)] is the flow vector at pixel � . Discus-

sion: Unlike MaskTrack, CTN refines the foreground and background masks separately. 
With the mask adaptation by optical flow, future changes can be better handled.

MGCRN (Motion-Guided Cascaded Refine Network, Hu et  al. 2018a) also refines the 
previous mask with optical flow. Unlike CTN, MGCRN utilises active contours (Chan and 
Vese 2001) to iteratively estimate the object contours from the flow map, where the initial 
contours come from the previous mask. Discussion: Due to properties of active contours, 
the estimation can focus mainly on the regions neighbouring to the target object from the 
previous frame, suppressing the distraction from background objects.

DyeNet (Li and Change Loy 2018) has been discussed in Sect.  4.2.2 due to its ROI-
based matching. Besides, DyeNet implements bi-directional mask propagation. To this 
end, DyeNet first predicts a set of high-confident masks from the input sequence and then 
propagates them bi-directionally to the remaining frames. Discussion: Unlike other meth-
ods, DyeNet performs better on the sequences with dramatic occlusions or deformations 
since, in some cases, the mask propagated inversely might better estimate the shape and 
location of the target object.

RCAL-VOS (Reinforcement Cutting-Agent Learning for VOS, Han et  al. 2018) imple-
ments two deep reinforcement learning-based networks (CPN: Cutting-Policy Network; 

(8)Ht(�) = St−1(x + ut
b
(�), y + vt

b
(�)),
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CEN: Cutting-Execution Network), which are trained to predict a set of actions to refine 
the propagated object proposals (e.g., moving up, down, left or right; shrink or expand; 
ratio changes; stop). Discussion: Unlike other methods, optical flow is not required for 
mask refinement. Also, the method demonstrates that the contrast information around tar-
get object is beneficial for high-quality results.

4.5.3 � Summary

This section discusses several representative methods based on mask propagation. This 
method originates from MaskTrack (Perazzi et al. 2017). With the underlying shape and 
location priors, the segmentation network can be guided to focus more on the object region 
and derive high-quality results. However, there are still some factors affecting the VOS 
performance: (1) drastic deformation; (2) abrupt motion or occlusions. The previous frame 
mask generally fails to estimate the potential shape or location of the target object when 
these factors occur. Therefore several extension works are proposed to improve the confi-
dence of the propagated mask.

CTN (Hu et al. 2018a) and MGCRN (Hu et al. 2018a) improve the propagated mask 
with optical flow, providing the motion clues to adapt to the changes between frames. 
Although MaskTrack also considers optical flow, more straightforward approaches are uti-
lised in the extensions to refine the propagated masks. However, these methods still cannot 
handle occlusions and abrupt motion well. To address the issue, the bi-directional mask 
propagation (DyeNet, Li and Change Loy 2018) is proposed. Some occluded-then-reappear 
objects can contribute to the VOS via inverse mask propagation. RCAL-VOS (Han et al. 
2018) implements a deep reinforcement learning-based method to generate potential target 
regions. Without the deep networks for optical flow, RCAL-VOS learns a policy to auto-
matically adapt the propagated mask to the target frame.

From Tables 3, 4 and 5, it is observed that most existing methods consider mask propa-
gation for VOS. Since their implementations about the propagation are similar, only five 
representative methods are discussed here. Mask propagation contributes a lot to the ear-
lier methods because it can provide implicit location and shape priors. In the recent SVOS 
methods based on feature matching, the propagated mask has been the essential data indi-
cating the probabilities that a reference point belongs to the target object or background.

4.6 � Long‑term temporal propagation‑based methods

The previous two sections discuss the VOS methods based on optical flow and mask 
propagation, which only focus on the short-term temporal correspondence and gener-
ate implicit object location and shape priors for target objects. Relying less on visual 
features enables these methods to handle the sequences with visually ambiguous back-
grounds. However, only short-term temporal clues are insufficient for high-quality 
results when segmenting the sequences with dynamic backgrounds or heavy occlusions. 
To address the issues, methods based on long-term temporal information are proposed. 
These methods accumulate the spatial-temporal clues from relative longer video clips, 
implicitly encoding the dynamic properties related to the target objects and background, 
such as the changes in appearance, scale, location and shape. Therefore, segmentation 
networks can adapt to the changes and achieve better results.

Fig.  20 shows the diagram of this method. According to the techniques for spatial-
temporal information extraction and utilisation, the discussed methods can be mainly 
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categorised into three groups: (1) Bilateral Neural Network (BNN)-based methods 
(Sect. 4.6.1); (2) Generative Adversarial Network (GAN)-based methods (Sect. 4.6.2); (3) 
Recurrent Neural Network (RNN)-based methods (Sect. 4.6.3); and (4) Transforms-based 
methods (Sect.  4.6.4). Section 4.6.5 summarises the discussed methods, whose develop-
ment roadmap is shown in Fig. 21. Table 14 illustrates a brief comparison between these 
methods.

Previous Frames

…

…

Target Frame

Enc.
Information 
integration

Dec.

Target Frame and Mask

Enc. …
Spatial- 

temporal 
info. 

modelling 

Fig. 20   Diagram of VOS methods based on long-term temporal propagation, which apply to both SVOS 
and UVOS. For each target frame, the encoded features and the features propagated from a set of past 
frames are integrated for mask generation. Note that in some cases, the encoders for the target and past 
frames are different, and thus they are highlighted in different colours. Best viewed in colour

Fig. 21   Development tracks of VOS methods based on long-term temporal propagation (abbreviated as 
‘LP-based VOS’). Based on the techniques for spatial-temporal information extraction, the listed methods 
are grouped into three categories: BNN-based method, GAN-based method and RNN-based method. Note 
that the methods marked in blue and black are UVOS and SVOS methods, respectively, those in red are the 
methods for both UVOS and SVOS. Best viewed in colour
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4.6.1 � BNN‑based method

VPN (Video Propagation Networks, Jampani et al. 2017) is one of the earliest deep meth-
ods based on long-term temporal propagation. The propagation is achieved by a BNN 
(Bilateral Neural Network), where input frames and masks are converted into bilateral 
space and then filtered for spatial-temporal propagation throughout the input space. Dis-
cussion: Due to the dense connections in BNN, VPN can achieve more comprehensive 
information propagation than traditional VOS methods. However, BNN only takes raw 
frames as input, limiting higher-level information propagation and further performance 
improvement.

4.6.2 � GAN‑based method

Besides BNN, GAN (Generative Adversarial Network, Goodfellow et  al. 2014) can also 
be used for VOS. STCNN (SpatioTemporal CNN, Xu et al. (2019a)) implements a frame 
generation module, which predicts the target frame according to four previous frames. The 
module is trained in an adversarial manner to implicitly learn spatial-temporal information 
propagation and accumulation. Discussion: The competitive results demonstrate the effec-
tiveness of the GAN-based technique on VOS. Future research in the longer-term analysis 
is encouraged since STCNN only considers four frames for accumulation.

4.6.3 � RNN‑based methods

Many related works have been proposed to solve VOS problems that take advantage of 
recurrent neural networks (RNNs) in spatial-temporal information modelling. Until now, 
there have been three types of RNN-based VOS methods: ConvGRU (Ballas et al. 2016), 
ConvLSTM (Shi et al. 2015b), and the recurrently connected networks. The first two RNNs 
are the convolutional versions of GRU and LSTM, while the last one is built by recurrently 
concatenating segmentation networks and trained with BPTT (Back Propagation Through 

Mask Propagation

(a) (b)

Dec.

Dec.

Dec.

Enc.

Enc.

Enc.

Input Frames and Masks…

…

Enc.

Enc.

Enc.

Dec.
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Dec.

Mask Propagation

Mask Propagation

Input Frames…

…

Input Frames and Masks…

…

Hidden 
layers

Hidden 
layers

Hidden 
layers

…

…

Fig. 22   Difference between the VOS methods based on (a) typical RNNs and (b) recurrently connected net-
works. In former methods, the hidden layers integrate current frame features and spatial-temporal informa-
tion propagated from the past frames. The resulting hidden state is then decoded to predict the final results. 
The latter methods bridge the current and past segmentation via mask propagation. Each of them involves 
one copy of the segmentation network. The losses are calculated and accumulated during training to update 
the network parameters. Unlike the methods discussed in Sect. 4.5, which do not accumulate losses across 
frames, the illustrated methods can better handle error propagation
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Time, Werbos 1990). Fig. 22 demonstrates the difference between the VOS methods based 
on typical RNNs and recurrently connected networks.

(1) ConvGRU-based method. VM-VOS (Visual Memory for UVOS, Tokmakov et  al. 
2017b) implements a bidirectional ConvGRU module. Unlike the aforementioned meth-
ods, VM-VOS accumulates and propagates the appearance and motion information (optical 
flow) in both forward and backward directions. Discussion: Since both spatial and tempo-
ral features are considered, VM-VOS can encode more comprehensive contexts to handle 
the sequences with dramatic deformation and occlusions.

(2) ConvLSTM-based methods. S2S (Sequence-to-Sequence, Xu et al. 2018a) performs 
SVOS with a simple but effective ConvLSTM model, whose architecture is similar to the 
one shown in Fig.  22 (a). Given the first frame annotation, S2S encode features for the 
annotated objects and propagate them throughout the input sequence. Discussion: S2S is a 
baseline method trained on YouTube-VOS (Xu et al. 2018b). The competitive results show 
the large-scale and long-range video datasets can activate the VOS methods based on long-
term spatial-temporal modelling.

RVOS (Recurrent network for VOS, Ventura et  al. 2019) extends S2S by propagating 
information in both spatial and temporal domains. Unlike S2S, RVOS considers each 
object as an entity, which accumulates the spatial-temporal features from the inter-frame 
and intra-frame objects. Discussion: With the object-level feature propagation, RVOS 
can encode more comprehensive spatial-temporal dependencies, therefore handling the 
sequences with complex scenes and multiple target objects.

PDB (Pyramid Dilated Bidirectional ConvLSTM, Song et al. 2018) implements a Con-
vLSTM with PDC (Pyramid Dilated Convolution) and bidirectional propagation. Unlike 
other methods, the method applies PDC in both backbone and ConvLSTM modules for 
comprehensive spatial features, which are propagated in directions with different dilated 
rates. Discussion: Due to the multi-scale and bidirectional feature propagation, PDB 
encodes deeper spatial-temporal relationships between frames, deriving competitive results 
on challenging sequences.

AGS (Attention Guided-Segmentation, Wang et  al. 2019c) performs UVOS with a 
coarse-to-fine mechanism, where the coarse attention maps are predicted from a ConvL-
STM-based module and then refined to generate the final results. Discussion: Unlike the 
above methods, AGS demonstrates that even the datasets with coarse annotations (gener-
ated with human eye-tracking records) enable the UVOS systems to achieve competitive 
results. Such a conclusion is further validated in the extended work (Wang et al. 2020) via 
systematic analysis. Since less cost is required for coarse annotations, more sequences can 
be considered in future works for further improvement.

(3) Recurrently connected network. MaskRNN (Hu et  al. 2017) implements the RNN 
architecture by connecting the copies of the segmentation network recurrently. As shown 
in Fig. 22 (b), the connection is established via mask propagation. Discussion: The main 
difference between MaskRNN and mask propagation-based methods is that MaskRNN can 
accumulate losses across frames during training (via back propagation through time, Wer-
bos 1990). Therefore, the network can handle the sequential inference better with less error 
propagation.

4.6.4 � Transformer‑based method

Transformers have been widely explored in recent computer vision tasks (Carion et  al. 
2020; Wang et  al. 2021c). Since transformers can model long-range dependencies, they 
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are naturally suitable for video-related applications. SSTVOS (Sparse Spatiotemporal 
Transformers for VOS, Duke et  al. 2021) is one of the earliest SVOS approaches based 
on transformers. The method takes the frame to segment and several past frames as inputs 
and encodes the spatial-temporal attention and affinities over them for mask generation. To 
improve the segmentation efficiency, SSTVOS implements a sparse scheme to compute 
attention maps. Discussion: Unlike other methods in this section, SSTVOS processes input 
frames in parallel instead of sequential, mitigating drifting errors to some extent. However, 
limited by computation resources, SSTVOS only considers three past frames during infer-
ence, failing to sufficiently utilise long-range dependencies over frames.

4.6.5 � Summary

This section discusses the VOS methods based on long-term temporal propagation, which 
accumulate the spatial-temporal features within a period, implicitly encoding the trends of 
objects and context. There are mainly four types of techniques to achieve this. BNN (Bilat-
eral Neural Network) is one of the earliest techniques. VPN, (Jampani et al. 2017) utilises 
BNN to accumulate spatial-temporal features from past frames. Besides BNN, GAN (Gen-
erative Adversarial Network)-based method (STCNN, Xu et al. 2019a) GAN also per-
forms well on several VOS benchmarks. The long-term information is embedded implicitly 
from a frame generation branch. The success of ConvGRU and ConvLSTM in spatial-tem-
poral feature embedding gave rise to the RNN-based VOS methods. The earlier methods 
(VM-VOS, (Tokmakov et  al. 2017b), S2S (Xu et  al. 2018a)) build standard pipelines to 
perform VOS with long-term information propagation. PDB (Song et  al. 2018) achieves 
further improvement by incorporating multi-scale feature embedding and bidirectional 
propagation. To facilitate multiple object segmentation, RVOS (Ventura et al. 2019) prop-
agates both temporal correspondences between frames and spatial relationships between 
objects. AGS (Wang et  al. 2020) implements a coarse-to-fine strategy and validates that 
even the datasets with coarse annotations can also facilitate learning long-term temporal 
correspondence. All of the above approaches require a specific module for long-term prop-
agation, which typically runs slowly due to the time-consuming information accumulation. 

Table 14   Summary of the discussed methods based on long-term temporal propagation

“# Frames”: Number of the involved frames during training / inference. T: video length. t: target frame 
index. NG: not given. “Directions”: Directions of temporal propagation. “Spatial-temporal info.”: Data rep-
resenting the long-term spatial-temporal information

Methods # Frames Directions Spatial-temporal information

VPN 9 / t-1 Forward Bilateral filtering response
STCNN 4 / 4 Forward Intermediate outputs of the frame generation branch
VM-VOS NG / T-1 Bi-direction Concatenation of forward and backward hidden states
S2S < 10 / T-1 Forward Forward hidden states
RVOS 4 / t-1 Forward Forward hidden states (integrating cross-frame and 

in-frame sequential clues)
PDB 4 / T-1 Bi-direction Sum of forward and backward hidden states
AGS < 2 / t-1 Forward Forward hidden states
MaskRNN 7 / t-1 Forward Binary object masks
SSTVOS NG / 3 Non-direction Spatial-temporal attention maps
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Therefore, several methods (MaskRNN (Hu et  al. 2017)) propagate the predicted masks 
only to the subsequent frames.

From Tables 16, 17, 19, and 20, it is observed that long-term propagation is rarely used 
in recent methods and it does not bring better results than other methods, even on the 
long-term VOS benchmark (YouTube-VOS, Table 19). Therefore, the long-term propaga-
tion does not contribute a lot to the VOS as the expectation, which might be explained 
by Table  14. The table shows that the discussed methods accumulate spatial-temporal 
information from all previous frames during inference. However, only a limited number of 
frames are used during training due to the limitation of the computation cost. Therefore, 
the existing methods are still largely trained by short-term frames, which prevents them 
from achieving desirable results in some cases. Although the transformer-based method 
(Duke et  al. 2021) significantly improves the VOS performance, it still relies heavily on 
short-term temporal dependencies over frames. Future research is encouraged to learn 
long-term information propagation with limited resources.

5 � Experimental results and discussion

The previous section discussed the current VOS methods according to their techniques 
exploiting spatial and temporal features. To better understand how these techniques per-
form and make a fair comparison, we test some representative VOS methods with the same 
experimental settings. Both quantitative and qualitative results, alongside the theoreti-
cal analysis, help to draw the conclusion on these methods. In addition, the segmentation 
scores of all the reviewed methods on several benchmark datasets are tabulated to further 
support the conclusion. Last, we outline possible research trends in this field.

Table 15   Segmentation accuracy and efficiency of the representative SVOS methods on the DAVIS-2016 
validation set

S. techs: Spatial techniques, O: Online fine-tuning, M: Matching, G: Graph; T. techs: Temporal techniques, 
O: Optical flow; P: Mask propagation; L: Long-term temporal propagation. Frames: indices of the involved 
frames, where [b, e, i] indicated the frames sampled from I

b
 to I

e
 , with an interval i. FPS: frames segmented 

per second. Resolutions: resolutions of input video frames

Methods S. techs T. techs Frames Resolutions J&F  ↑ FPS ↑

O M G O P L

OSVOS ✓ 1 480 × 854 80.2 0.38

MSKTrack ✓ ✓ ✓ 1, t-1 480 × 854 77.6 0.29
OSMN ✓ 1, t-1 480 × 854 73.3 1.87
RGMP ✓ ✓ ✓ 1, t-1 480 × 854 81.8 12.4
SiamMask ✓ ✓ 1, t-1 480 × 854 69.8 79.6
A-GAME ✓ 1, t-1 480 × 854 81.9 12.6
RVOS ✓ [1, t-1, 1] 240 × 427 72.3 193.7
RANet ✓ ✓ 1, t-1 480 × 854 87.1 41.3
STM ✓ ✓ [1, t-1, 5] 480 × 854 89.4 11.9
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5.1 � Quantitative and qualitative results

In this section, the reviewed methods are discussed in both segmentation efficiency and 
accuracy. To make a fair comparison in computation efficiency, 9 representative SVOS 
methods are evaluated on the DAVIS-2016 dataset (Perazzi et al. 2016a), which consists 
of 20 video sequences and 1475 frames. The selected methods are: OSVOS (Caelles et al. 
2017, online fine-tuning), MaskTrack (Perazzi et al. 2017, online fine-tuning, mask propa-
gation), RGMP (Oh et al. 2018, matching, mask propagation, and long-term propagation), 
STM (Oh et al. 2019, matching, mask propagation), RANet (Wang et al. 2019d, matching, 
mask propagation), SiamMask (Wang et al. 2019a, matching, mask propagation), OSMN 
(Yang et al. 2018, variant of online fine-tuning, mask propagation), A-GAME (Johnander 
et  al. 2019, variant of online fine-tuning, mask propagation) and RVOS (Ventura et  al. 
2019, long-term propagation). The evaluation is achieved with a single NVIDIA GeForce 
RTX 2080 Ti GPU card.

Table  15 illustrates the average accuracy and FPS of the representative methods on 
DAVIS-2016. In addition, several properties considered to be significant for the efficiency 
are listed, including the use of spatial and temporal techniques, involved frames, and the 
resolutions of input frames. Tables 16, 17, 19 demonstrate the quantitative results of the 
reviewed SVOS methods on four benchmark datasets: DAVIS-2016 validation set (Perazzi 
et  al. 2016a), DAVIS-2017 validation set, DAVIS-2017 test-development set (Pont-Tuset 
et al. 2017), and YouTube-VOS test set (Xu et al. 2018b). The comparison results between 
the reviewed UVOS methods are shown in Table 20, where four benchmarks are consid-
ered for the performance evaluation: DAVIS-2016 validation set (Perazzi et  al. 2016a), 
YouTube-Objects (Prest et al. 2012), SegTrack v2 (Li et al. 2013, and FBMS (Ochs et al. 
2013).

The evaluation metrics in this section are J  , F  , and J&F  introduced in Eqn 1. For the 
YouTube-VOS series (Xu et al. 2018b; Yang et al. 2019a; Xu et al. 2019b), since the data-
sets were divided into two subsets (‘seen’ and ‘unseen’), different metrics are computed: J
-seen, F -seen, J -unseen and F -unseen.

From Sect. 4.1, it is observed that online fine-tuning is a technique that fine-tunes the 
segmentation network with annotations during inference. Although much knowledge about 
the target object can be learned for accurate segmentation, an extra fine-tuning process is 
required. In our experiments, the number of iterations for online fine-tuning is set to 1000, 
which takes an average of 118 seconds for each video sequence. Therefore, the FPS values 
of OSVOS (Caelles et al. 2017) and MaskTrack (Perazzi et al. 2017) are the lowest two 
values of all listed methods. To improve the efficiency of VOS methods, online fine-tuning 
have been gradually replaced by its variants and the matching-based techniques.

The reference frames have a great impact on both SVOS efficiency and accuracy. As 
shown in Table 15, the first frame is mandatory since it contains the target object masks. 
Besides the first frame, the previous frame is also frequently utilised in most representative 
methods. The correspondence between the previous and target frames provides SVOS with 
short-term temporal correlations. Compared with other methods listed in Table 15, STM 
(Oh et al. 2019) and RVOS (Ventura et al. 2019) utilise more reference frames for segmen-
tation. In RVOS, the network architecture is constructed based on ConvLSTM, thus long-
term temporal information can be achieved to build long-range correlations between target 
objects and backgrounds. To perform VOS efficiently, RVOS resizes the input frames to 
half of the original resolution before training and inference. As discussed in Sect. 4.6.5, 
the recurrent module in RVOS is trained on five consecutive frames only due to the limited 
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computation resources. Although RVOS uses all previous frames during inference, such 
training setting still limits the effectiveness of the recurrent module in spatial-temporal 
information accumulation. The quantitive results in Tables 17 and 19 show that there are 
still gaps between RVOS and state-of-the-art methods. Unlike RVOS, STM considers the 
intermediate frames as the reference, which enables the segmentation network to better 
adapt to the changes in target objects over time. To achieve a better trade-off between effi-
ciency and accuracy, the intermediate frames are sampled every five frames. Compared 

Fig. 23   The performance change due to the specific challenge attributes (part 1/2). For each attribute on the 
x-axis, the value measures the performance difference between evaluating the VOS methods on the dataset 
with and without the sequences related to the attribute. Positive values (red bars) or negative values (purple 
bars) indicate the performance increases or decreases when considering the specific challenging sequences. 
The range for the changes is set as [−0.1, 0.1] , the values out of bounds are marked in the corresponding 
bars. Note that all challenge attributes are abbreviated due to the space limitation. AC: appearance changes; 
BC: background clutter; CS: camera shake; DB: dynamic background; DE: non-linear deformation; EA: 
edge ambiguity; FM: fast-motion; HO: heterogeneous object; IO: interacting objects; LR: low resolution; 
MB: motion blur; OC: occlusions; OV: out-of-view; SC: shape complexity; SV: scale variation. Best viewed 
in colour
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with other methods listed in Table 15, STM achieves better performance on all benchmark 
datasets while simultaneously keeping acceptable efficiency (Table 18).

Besides the network architecture, the video datasets are also important to the segmenta-
tion performance. As shown in Tables 16, 17, and 19, there are three frequently used video 
datasets in SVOS: DAVIS-2016 (Perazzi et  al. 2016a, 20 training sequences), DAVIS-
2017 (Pont-Tuset et al. 2017, 60 training sequences) and YouTube-VOS (Xu et al. 2018b, 

Fig. 24   The performance change due to the specific challenge attributes (part 2/2). Please refer to the cap-
tion of Fig. 23 for the definitions and abbreviations in the bar charts. Best viewed in colour

Fig. 25   Negative results due to ‘dynamic background’ (DB) and ‘shape complexity’ (SC). Top row: results 
predicted by RVOS (Ventura et al. 2019) on DB sequence; Bottom row: results predicted by STM (Oh et al. 
2019) on SC sequence. Red masks are the ground truth masks, which are covered by the green masks (the 
predicted results)
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3400+ training sequences). Seen from the reported performance, it is clear that most of the 
methods trained on DAVIS-2017 and YouTube-VOS perform better than those trained on 
DAVIS-2016. To some extent, this reflects that more training sequences are more likely 
to make the VOS methods achieve high-quality results. Compared with DAVIS-2017, the 
methods trained on YouTube-VOS are more likely to achieve state-of-the-art performance 
(e.g. STM and its extensions) since YouTube-VOS has much more annotated frames and 
longer duration within each video sequence. For example, AFB-URR (Liang et al. 2020), 
as a STM-based method, cannot perform as good as other STM-based ones (e.g., EGMN, 
KMN, and SwiftNet) in Table 17 because YouTube-VOS is not considered during training. 
Besides video datasets, image datasets also play a key role in VOS training. With the pixel-
level annotations in the image datasets far more than that in the video datasets, more gen-
eral knowledge for object detection and segmentation can be learned by pre-training VOS 
methods on these datasets. Generally, the datasets for image segmentation (COCO (Lin 
et  al. 2014), PASCAL VOC (Everingham et  al. 2015), Mapillary Vistas (Neuhold et  al. 
2017), SBD (Hariharan et al. 2011), BIG (Cheng et al. 2020), FSS-1000 (Li et al. 2020)) 
and saliency detection (DUTS (Wang et  al. 2017a), ECSSD (Shi et  al. 2015a), HKU-IS 
(Li and Yu 2015), MSRA10k (Cheng et al. 2014), HRSOD (Zeng et al. 2019b), SOC (Fan 
et al. 2018), ILSO (Li et al. 2017a)) are considered during pre-training.

Table 20 shows the performance of UVOS methods on four datasets (DAVIS-2016 (Per-
azzi et al. 2016a), YouTube-Objects (Prest et al. 2012), SegTrack v2 (Li et al. 2013), and 
FBMS (Ochs et  al. 2013)). It is obvious that DAVIS-2016 has been the primary bench-
mark dataset for UVOS evaluation. This is mainly because DAVIS-2016 has more video 
sequences with high and unified resolutions, diverse object categories, and challenges than 
other datasets. Since no supervision signals are required, the UVOS methods have to seg-
ment the primary object from the input sequence by themselves. Therefore, recent UVOS 
methods mostly learn salient object recognition via pre-training on extra image datasets 
(for saliency detection). The table also shows that the recent matching-based methods 
outperform other UVOS ones, which validates the effectiveness of dense affinity between 
frames in segmenting the object appearing simultaneously in multiple frames (Table 21).

To further explore the representative methods on different challenging sequences, we 
refer to the challenge attributes of each video in DAVIS-2016 dataset, and provide the 
quantitative results (mean J  & F  ) of these methods on each challenge attribute in Fig. 23 
and Fig. 24. For more information about these challenge attributes, please refer to the sup-
plemental material4 of DAVIS-2016 dataset (Perazzi et al. 2016b).

Figures  23 and 24 demonstrate that the evaluated methods perform well on the 
sequences with ‘background clutter’ and ‘camera shake’. In the sequences with these 
two challenges, the target objects are generally moving in a relatively still scene, where 
the ‘background clutter’ sequences contain many confusing background objects or 
regions, and the ‘camera shake’ indicates that the scenes being captured are affected by 
the irregular shakes. Although these challenges pose an obstacle to computing discrim-
inative clues and motion patterns, the previous frame can provide confident estimates 
for the segmentation due to the relative still background and smooth movement of the 
target objects. Therefore, the evaluated methods (most of them consider It−1 during 
inference) achieve high-quality results on the sequences with these two challenges.

4  https://​davis​chall​enge.​org/​files/​davis_​suppl​ement​ary.​eps.

https://davischallenge.org/files/davis_supplementary.eps
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Among the challenges listed in Figs. 23 and 24, ‘dynamic background’ and ‘shape 
complexity’ appear to be the two hardest challenges to handle. Similar to ‘background 
clutter’, the target objects in the sequences with ‘dynamic background’ are surrounded 
by the ambiguous backgrounds. But on top of this, some of the background objects are 
moving around the scene, thus making the segmentation of target object more chal-
lenging. The challenge ‘shape complexity’ indicates that the target object is intricate, 
generally consisting of irregularly shaped parts and small details. Due to the partial 
loss of detailed information during feature encoding, the predicted masks are generally 
smoother than corresponding ground truth results, limiting the accuracy of existing 
VOS methods on the sequences with ‘shape complexity’. To demonstrate the influence 
of these two challenges on the VOS performance, we provide the qualitative results 
of some representative methods on related sequences in Fig. 25. From the segmenta-
tion results (predicted by RVOS, Ventura et al. 2019) for the sequences with ‘dynamic 
background’, it is observed that the moving backgrounds (rising smoke) significantly 
reduce the quality of the predicted mask. This is because the segmentation network 
mistakenly estimates the motion patterns of the target object. In the bottom sequence 
with ‘shape complexity’ in Fig.  25, the target objects are a boy and a bmx bicycle. 
Although STM (Oh et al. 2019) successfully locates where the target object is, many 
small details are missing (especially the bmx bicycle parts) from the predicted masks 
due to its decoder cannot completely recover the detailed information.

5.2 � Discussion and future research directions

In this paper, a variety of VOS methods have been reviewed in terms of their techniques, 
contributions and highlights. To sum up, VOS is a task of extracting pixel-level masks for 
target objects from each video frame while simultaneously keeping the global consistency 
of these objects throughout the sequence. For SVOS, the target objects generally indicate 
the objects annotated in the first frame. For UVOS (single-object), the target objects cor-
respond to the salient objects, or moving objects in the video sequence. Due to its ability 
of producing fine-grained object masks, VOS has received great attention in the computer 
vision community, and facilitated many related applications. To further boost the progress 
in this research field, this paper summarises several factors affecting the segmentation per-
formance of VOS methods.

The first factor is the training data. With complex scenes in real-world sequences and 
large number of parameters in the deep learning-based methods, the quality and quantity 
of annotated video data are crucial to derive high-quality segmentation results. In Sect. 3.1, 
the commonly used video datasets are discussed. Based on the statistics of SVOS and 
UVOS mentioned above, and also the features of existing VOS datasets shown in Table 1, 
it is observed that DAVIS-2016 (Perazzi et al. 2016a), 2017 (Pont-Tuset et al. 2017), and 
YouTube-VOS-2018 (Xu et  al. 2018b), 2019 (Xu et  al. 2019b) are the main datasets for 
model training, where DAVIS-2016 is used for training UVOS and SVOS methods, while 
the others serve SVOS methods only. To further improve their capabilities of separating 
objects from backgrounds, many methods train their segmentation network using a two-
stage training process. At first, they utilise the datasets for static image segmentation (e.g. 
PASCAL VOC, Everingham et al. 2012, MSRA 10K, Cheng et al. 2014, and MS COCO, 
Lin et al. 2014) so as to allow their models to recognise and segment general objects. Next, 
the VOS datasets are employed to fine-tune the models to adapt video data.
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Apart from datasets, the techniques used to preserve the spatial and temporal consist-
ency of target objects are also important in improving the accuracy and efficiency of VOS 
methods. To preserve spatial consistency, the commonly employed techniques are online 
fine-tuning-based, matching-based and graph-based ones. From the aforementioned discus-
sion in Sect. 4, it can be concluded that online fine-tuning-based methods focus on fine-
tuning the segmentation network with annotated objects. Although accurate segmentation 
results can be achieved, extra time for fine-tuning is needed. On the other hand, for the sake 
of efficiency, these methods are gradually replaced by matching-based methods. Unlike 
online fine-tuning-based methods, the matching-based ones build the correspondence 
between target objects from different frames by comparing their features directly. Since 
similarity measurement is much faster than model fine-tuning, and can also achieve desir-
able and even better segmentation results, matching-based methods have been increasingly 
integrated into recent VOS works. Although graph-based methods are essentially built 
based on feature similarities, they establish the object correspondence between multiple 
frames, which is much more time consuming due to the complicated graph construction 
and optimisation procedures.

For temporal correlation, the commonly employed techniques are optical flow-based, 
mask propagation-based and long-term temporal information-based ones. From Table 15, 
it can be seen that the early generation of VOS methods mainly utilises optical flow and 
mask propagation to capture the changes of target objects in the local temporal domain. To 
obtain reliable optical flow between consecutive frames, most of the related methods incor-
porate individual networks for flow estimation (e.g. FlowNet 2.0, Ilg et al. 2017) into their 
segmentation models. In this way, the number of parameters of VOS methods is increased 
further, which is a burden for lightweight segmentation. In addition, optical flow-based 
methods cannot handle the video sequences with ‘dynamic background’, because the mov-
ing background objects are also extracted. Therefore, recent VOS methods mostly utilise 
mask propagation to guide the segmentation for the current frame. As for long-term tem-
poral information-based methods, several architectures for sequential analysis or predic-
tion are employed to capture temporal guidance from continuous frames, such as RNN and 
GAN. Limited by the computation resource, existing methods generally train their model 
with a small amount of frames during a single iteration (as shown in Table  14), which 
restricts the performance of long-term temporal information analysis.

The last important factor is model architecture. For VOS methods, encoder-decoder is 
the most frequently used network architecture for building segmentation models, where 
encoder computes the semantic features from video frames, and decoder serves for restor-
ing the processed feature map to the resolution of original input data. To better utilise the 
intra- and inter-frame information, most of existing VOS methods focus on developing an 
effective encoder and a module for feature analysis and integration. In a standard encoder-
decoder architecture for VOS, the networks for image classification and segmentation (e.g. 
VGGNet, Simonyan and Zisserman 2015, ResNet, He et al. 2016 or DeepLab, Chen et al. 
2015a, 2017a, b, 2018a) are implemented to compute semantic features. After integrating 
extra guidance from other frames, the obtained feature maps are converted to a map con-
taining masks of target objects. On top of the standard architectures, several VOS meth-
ods choose to integrate other visual networks to further enhance feature representation 
and improve the segmentation results, e.g. Mask R-CNN, He et al. 2017 or FCIS, Li et al. 
2017c for detecting object proposals, FlowNet (Ilg et al. 2017) for computing optical flow. 
These networks are independent of standard architectures, thus extra memory and time are 
needed to gain guidance from them. In general, the more sophisticated the architecture of 
VOS method is, the more accurate segmentation results can be achieved.
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Based on the discussed methods and evaluation results, we present several future 
research directions that would be beneficial for the field of VOS:

•	 Large-scale video datasets with dense annotations: At the point of submitting this 
paper, there have been two main families of video datasets serving VOS tasks: DAVIS, 
(Perazzi et  al. 2016a; Caelles et  al. 2019; Pont-Tuset et  al. 2017) and YouTube-VOS 
(Xu et al. 2018b; Yang et al. 2019a; Xu et al. 2019b), where DAVIS datasets have dense 
annotations, i.e. all video frames in the datasets have manually annotated object masks. 
In contrast, though YouTube-VOS datasets contain many more video sequences, the 
annotations are only provided with every 5th frame, which limits the further explora-
tion of VOS methods into long-term temporal correlations. Therefore, a dataset with 
large-scale and dense annotations will allow VOS methods to achieve further perfor-
mance improvement.

•	 Long-term temporal information analysis: As we have mentioned in this section, 
existing VOS methods based on long-term temporal information mostly train their 
recurrent modules or prediction modules using 4-11 continuous frames. In general, 
a video sequence in YouTube-VOS has over 200 frames, thus existing methods obvi-
ously cannot establish a comprehensive temporal correlation for the whole sequence. 
Because analysing the long-term changes of temporal information is beneficial for tack-
ling several challenges such as occlusion, out-of-view and fast motion, it is desirable 
for future VOS methods to develop a more efficient training process that allows infor-
mation propagation and accumulation for a longer temporal period.

•	 Balance between VOS accuracy and efficiency: The design for segmentation net-
works is essential to balance the VOS accuracy and efficiency. Unfortunately, it is still 
hard for the existing methods to achieve such a balance since the high-quality results 
generally call for deeper backbones or more elaborate processes, slowing down the 
VOS process. For example, among the discussed SVOS methods, the backbone net-
work is the main difference between the methods obtaining the best accuracy (STCN, 
based on ResNet-50) and the best efficiency (SwiftNet, based on ResNet-18), as shown 
in Fig. 6. Therefore, a lightweight but discriminative network is required in future VOS 
methods to promote the VOS methods in real-time applications.

•	 Multi-object UVOS: Visual saliency and motion information are the most fre-
quently used information in the current UVOS methods. However, such information 
is less effective to discriminate different object instances. Therefore, most existing 
UVOS methods can infer only a single object from the input video sequence, which 
rarely plays a role in real-world applications. To address this problem, several datasets 
for multi-object UVOS (Caelles et  al. 2019; Yang et  al. 2019a) have been proposed 
recently, which are already mentioned in Sect.  2. Due to the integration of instance-
level segmentation modules, some recent works (Luiten et al. 2020; Zhou et al. 2021) 
have achieved good results on these datasets, validating the feasibility of this direction 
and encouraging future improvements.

6 � Conclusion

In this paper, many recently proposed deep learning methods for VOS have been discussed. 
To highlight their contributions, these methods are categorised into six main groups: 
online fine-tuning-based, feature matching-based, graph-based, optical flow-based, mask 
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propagation-based and long-term temporal information-based methods. For each category 
of methods, we outline their main algorithmic contributions and summarise their advan-
tages and disadvantages. Through the analysis of quantitative and qualitative results, we 
validate the contributions of network architectures and training datasets to VOS perfor-
mance. Finally, we give an overview of the challenges in this field and future research 
trends.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
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