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ABSTRACT
As graphs are getting larger and larger, federated graph learning
(FGL) is increasingly adopted, which can train graph neural net-
works (GNNs) on distributed graph data. However, the privacy of
graph data in FGL systems is an inevitable concern due to multi-
party participation. Recent studies indicated that the gradient leak-
age of trained GNN can be used to infer private graph data informa-
tion utilizing model inversion attacks (MIA). Moreover, the central
server can legitimately access the local GNNgradients, whichmakes
MIA difficult to counter if the attacker is at the central server. In
this paper, we first identify a realistic crowdsourcing-based FGL sce-
nario where MIA from the central server towards clients’ subgraph
structures is a nonnegligible threat. Then, we propose a defense
scheme, Subgraph-Out-of-Subgraph (SOS), to mitigate suchMIA and
meanwhile, maintain the prediction accuracy.We leverage the infor-
mation bottleneck (IB) principle to extract task-relevant subgraphs
out of the clients’ original subgraphs. The extracted IB-subgraphs
are used for local GNN training and the local model updates will
have less information about the original subgraphs, which renders
theMIA harder to infer the original subgraph structure. Particularly,
we devise a novel neural network-powered approach to overcome
the intractability of graph data’s mutual information estimation
in IB optimization. Additionally, we design a subgraph generation
algorithm for finally yielding reasonable IB-subgraphs from the op-
timization results. Extensive experiments demonstrate the efficacy
of the proposed scheme, the FGL system trained on IB-subgraphs
is more robust against MIA attacks with minuscule accuracy loss.
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1 INTRODUCTION
Federated learning (FL) has been recognized as a privacy-preserving
solution to the data-silo problem in machine learning [43]. With
graph neural networks (GNN) hitting the mainstream of ML, FL
is extended to the graph domain, i.e., federated graph learning
(FGL). Privacy preservation in FGL is more challenging than that in
conventional FL. In addition to feature attributes, the attributes of
graph structure are also considered as data contributors’ sensitive
information. A graph structure can store the personal social relation-
ships or commercial intercourse among different nodal entities (e.g.,
transaction network), and it can also imply the intellectual prop-
erty of a data contributor, as (s)he may consume massive resources
on collecting the relationships among different nodal entities (e.g.,
citation network) [9, 14].

In crowdsourcing-based FGL systems, the graph structures are
intellectual properties of workers (clients), as they can be the prod-
ucts of workers in fine-processing the assigned coarse graph data
(refer to Figure 2 in Section 3.2). Therefore, the privacy of graph
structures should be emphasized. However, vanilla FGL systems
can only guarantee clients’ subgraph data privacy when the FL
protocol is strictly followed. Recent studies indicated that model
inversion attacks (MIA) can be utilized to steal private graph struc-
tures from the leaked gradients or outputs of trained GNN models
[9, 54], which can be regarded as a big threat to the privacy of graph
data. It is even more difficult to identify MIA against FGL systems:
as the central server can legitimately access the local GNN updates
according to the FL protocol, it can further infer the corresponding
private data information from any local GNN update, intentionally
and stealthily (see Figure 1).

As FGL systems are usually adopted in scenarios in which the
privacy of graph data is a major concern, the privacy-preserving
capability of FGL systems should be emphasized, however, not yet
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Figure 1: Illustration of a model inversion attack launched
by an attacker at the central server in a subgraph-level FGL
system, which attempts to reconstruct the graph structure
of a client’s subgraph.

in existing FGL approaches [4]. Among the works addressing the
privacy issues of GNN and FGL systems, differential privacy (DP)
is primarily regarded as the countermeasure, which adds calibrated
noise to nodal attributes [40, 51]. However, research has shown
that neural network-based reconstructing attacks can circumvent
DP protection to a significant degree [10]. In addition, privacy
protection of nodal attributes differs from that of the graph structure
we are concerned about. In addition, the use of DP techniques
can have many limitations in achieving a satisfactory data utility-
privacy tradeoff [21, 53].

From another perspective, the existing approaches to FGL are
usually designed in an incremental manner to improve the learning
capacity. For example, in [49], the missing edges connecting differ-
ent subgraphs are considered to be significant for improving the
connection among different local GNN updates. Therefore, each
client is required to additionally train a generator to recover missing
neighbors serving its local GNN training. On the one hand, these
processes inevitably increase the communicational and computa-
tional burden on the overall system. On the other hand, the learned
GNN models in these approaches would record more information
related to the original subgraph, naturally expanding the attack
surface to MIA. The danger of private subgraph data leakage thus
increases. Therefore, we also wonder: in terms of designing FGL
defense schemes, whether it is possible to do “subtraction” rather than
do “addition” ?

One solution using the notion of “subtraction” is data compres-
sion. Conventional data compression approaches can be accompa-
nied by a loss of data utility. Compressive privacy (CP) enables the
compression to be customized in accordance with known utility and
privacy models [26]. Previous research found that the information
bottleneck (IB) [31] principle can provide a critical solution for CP:
an optimal tradeoff between utility gain and privacy loss [18]. In the
domain of ML on regular data, the IB principle has demonstrated its
efficacy in privacy preservation since it can work as a “privacy fun-
nel” to distort the information in a new data representation while
maintaining its informative (predictive) information [32]. Unlike

regular data such as images, graph data are sampled from non-
Euclidean space, which renders their unique characteristics such as
discreteness due to the existence of edges [49]. Unfortunately, the
discreteness makes the direct compression of the graph structure
unachievable. Recent studies indicated that the explainability of
GNNs is highly associated with some implicit subgraphs of a graph,
as they can reveal which components (e.g., motifs) of a graph sup-
port the final predictions of GNNs and also which components are
related to the privacy of the entire graph structure [4].

In this paper, we proposed to leverage the information bottleneck
(IB) principle to identify a smaller subgraph, namely, IB-subgraph,
as the “compression” from the client’s original subgraph to serve
the training of FGL—we name this scheme as Subgraph-Out-of-
Subgraph (SOS). On the one hand, the obtained IB-subgraphs are
as informative as possible concerning the task target (e.g., the node
classification labels) in order to develop accurate predictions. On
the other hand, they are distorted from the original subgraphs,
where the task-irrelevant information can be juiced out as much
as possible. In this way, less information related to the original
subgraphs’ structures would be learned and recorded by the GNN
model, which further mitigates MIA on the FGL system. Moreover,
the involved IB-subgraph publishing phase is only executed once in
a FGL life span, making our scheme computationally inexpensive.

We summarize our main contributions as follows:

• We identify a realistic scenario of MIA in FGL systems where
the graph structure owned by the client is under the threat
of MIA from the central server.
• To defend FGL againstMIA, we propose a novel scheme lever-
aging the information bottleneck (IB) principle that identifies
smaller IB-subgraphs from clients’ original subgraphs for
local GNN training.
• We further devise a neural network-powered approach to
estimate mutual information for IB optimization. We also
design an algorithm to reasonably construct the final IB-
subgraphs from the optimization results. The developed IB-
subgraphs are distorted yet informative.
• We conduct comprehensive case studies on three graph
datasets. The results show that the IB-subgraphs developed
by the proposed approach can better resist MIA yet reach
the same prediction accuracy level as the original subgraphs.
Moreover, the proposed scheme is computationally efficient
compared with other FGL schemes.

The remainder of this paper is organized as follows. In Section
2, we introduce the related work. Section 3 defines the problems of
subgraph-level FGL and the threat model to be investigated in this
work. We elaborate on the proposed SOS scheme in Section 4 and
perform a series of experiments to demonstrate the effectiveness of
the proposed approach in Section 5. Section 6 concludes the paper
with a discussion of future work.

2 RELATEDWORK
2.1 Security and Privacy of Graph Neural

Networks
Security and privacy concerns about machine learning and related
assets are increasing. A plethora of research has demonstrated that
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machine learning models are vulnerable to security and privacy
attacks, such as adversarial attacks [6], model inversion attacks
[5]. As an extension of machine learning to graph-structured data,
GNNs are also vulnerable to these attacks [29].

The majority of existing works focus on the aspect of GNN secu-
rity such as the adversarial attack on GNNs. For example, Zügner et
al. [57] have shown that both features and structure modification on
graph data could significantly reduce GNNs’ accuracy. Zhang et al.
[52] indicated subgraphs can be cast for backdoor attacks on GNNs.
With the concern for data privacy in recent years, the privacy of
graph data has also started to receive research attention. Particu-
larly, model inversion attacks (MIA) are a nonnegligible threat to
the privacy of graph data, which can steal graph data from a trained
GNN. Considering a black-box setting, He et al. [9] proposed to
utilize the outputs of GNN models to infer the graph data the GNN
models were trained on. Considering a white-box setting, Zhang et
al. [54] demonstrated that gradient information of a trained GNN
can be utilized to reconstruct the graph with graph autoencoder.
Wu et al. [38] focused on graph-level MIA, with the aim of identify-
ing if a graph sample was used to train a GNN model. Reference
[51] considered the information leakage of the graph embeddings
and designed a series of corresponding MIA approaches. Along
with MIA attacks, model extraction attacks (MEA) are another typ-
ical privacy attack on graph neural networks (GNNs), which focus
on the GNN model itself rather than the data, aiming to extract a
model that achieves similar performance to the target model [39].

To counter/mitigate these attacks, a few defense methods have
been proposed [29]. Most existing studies considered defending
against adversarial attacks [41], but less attention has been paid to
the prevent the privacy leakage of GNNs. Among the few works
concerning the privacy problems of GNN, differential privacy (DP)
is mainly considered as the countermeasure, which introduces noise
to nodal attributes [40, 51]. However, research has demonstrated
that neural network-based reconstructing attacks can bypass the DP
protection to a great extent [10]. Furthermore, the privacy preser-
vation of nodal attributes is still far from the one of the graph
structure.

Therefore, we aremotivated to study the countermeasures against
model inversion attacks— one of the most threatening privacy at-
tacks. Furthermore, we consider white-box attacks in this work:
the attackers know more information about the target than it is in
black-box settings, which could be more aggressive.

2.2 Information Bottleneck of Graph Data
Information bottleneck (IB) was first proposed for preserving the
maximum mutual information (MI) of input data during encoding
[31]. Alemi et al. [1] first extended IB to deep learning by the pro-
posed variational information bottleneck (VIB). The capacity to
extract condensed and significant representation makes it a promis-
ing tool for enhancing learning performance in various learning
tasks [36]. Nevertheless, conventional IB methods like VIB can-
not handle graph data due to the intractability of MI calculation
for irregular data. To address the problems, some earlier studies
such as [34], [24], and [28] adopted MI maximization [11] to obtain
graph representations. Wu et al. [42] first conceptualized the graph

representation learning with IB principle as graph information bot-
tleneck (GIB), and leveraged Gaussian prior assumption to sample
neighbors for node representation learning. Our notion of IB-based
subgraph extraction is akin to the subgraph recognition pattern in
[45], however, the one in [45] is designed for graph classification
tasks. Furthermore, for most of GIB studies [24, 28, 34, 45], Security
and privacy robustness of the IB-extracted graph representations
is not involved. While [42] showed that the graph representation
attained by the proposed GIB could be resilient to adversarial attack,
the robustness to model inversion attack is not investigated in this
work.

As an extension and supplement to the body knowledge, this
work is dedicated to adapting the information bottleneck to solve
the privacy problem of graph data in a realistic scenario. This
methodology can be associated with the explainability of privacy
issues in graph deep learning [47].

2.3 Federated Graph Learning
Federated learning (FL) is an emerging machine learning technique
that allows decentralized and privacy-preserving learning among
multiple parties [43]. While FL has been extensively investigated
with Euclidean data (e.g., images), the cases regarding irregular
graph data are still in the early stage. Generally, there are three
types of FGL scenarios, namely, Node-level FL [15], Graph-level
FGL [8], and Subgraph-level FGL [49]. Particularly, our work falls
into the realm of subgraph-level FGL in which each client holds a
subgraph that is part of a larger global graph.

The challenge of non-independent and identically distributed
(non-IID) datasets in conventional FL training becomes more severe
in the context of FGL. In addition to features and labels, heteroge-
neous graph structure (topology) distributions could also have a
great impact on FL training. Specific to subgraph-level FGL, Zheng
et al. [56] exploited the distribution divergence among different
clients’ datasets using split learning. Zhang et al. [49] mitigated
the issue by leveraging GraphSAGE [7] model to improve the in-
ductiveness and scalability of graph mining. Moreover, the authors
attached importance to the missing connections among subgraphs
and tried to recover them as they may contain important informa-
tion bridging different clients.

However, the effectiveness of these approaches is based upon
additional and iterative operations executed by the central server
and clients, which introduce not a small communicational and com-
putational burden [35]. Credited to the IB principle, our proposed
scheme highlights the overall performance of the FGL, including
the tradeoff between privacy and accuracy, and computational effi-
ciency.

3 PRELIMINARY
3.1 Subgraph-level Federated Learning for Node

Classification Tasks
Our work focuses on the subgraph-level FGL system since it is the
best match for the investigated privacy attack scenario. Subgraph-
level federated learning assumes that horizontally distributed sub-
graphs of a global graph are held by clients. Thus, in the subgraph-
level FGL system, we have the central server 𝑆 and 𝐾 clients with
distributed subgraphs. Given a global graph 𝑮 = {V, E,𝑿 }, each
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Figure 2: The central server only has a coarsely connected
global graph. The workers have to manually fine-process the
subgraph and hence owns the intellectual property of such a
subgraph structure.

subgraph is denoted by 𝑮𝑖 := {V𝑖 , E𝑖 ,𝑿𝑖 | 𝑖 ∈ [𝐾]} := {𝑨𝑖 ,𝑿𝑖 }
where V = V1 ∪ · · · ∪ V𝐾 , 𝑿𝑖 = {𝑥 𝑗 } ∈ R𝑁×𝑑 (𝑑 is the feature
dimension). Note that unless other stated, we use subscript 𝑖 as the
subgraph-level (client-level) index to distinguish a subgraph (client),
and subscript 𝑗 as the node-level index to distinguish a node.

The semi-supervised node classification task is investigated in
this work. Given the set of labeled nodesV𝑙 , the set of unlabeled
nodes V𝑢 = V \ V𝑙 , and the labels 𝒀 = {𝑦 𝑗 } ∈ R |V𝑙 | , the task
require the FGL system to develop a GNN-based classifier 𝑓 : 𝑿 →
𝒀 that can map the class of each unlabeled node to the exact one.
We use𝑾 to denote all the learnable parameters (weights) of 𝑓 .

Further, the goal of such a FGL system is to develop a global
GNN model 𝐹 with optimized parameters𝑾𝑠 that minimizes the
prediction loss after aggregation, which can be formulated as

min
𝑾𝑠

R𝑠 (𝐹 (𝑾𝑠 ;𝑮)) := min
𝑾𝑠

1
𝐾

𝐾∑︁
𝑖=1
R𝑖 (𝑓𝑖 (𝑾𝑠 ;𝑮𝑖 )) , (1)

where R𝑠 and R𝑖 are the global and 𝑖-th client’s empirical risks,
respectively. In this work, FedAvg algorithm [20] is adopted as
most of the studies in this domain— 𝑆 aggregates and averages the
clients’ local model parameters to obtain the global model. It is also
worth mentioning that GNN model is treated inductively in this
work— the parameter aggregation process does not require graph
structure information.

3.2 Threat Model
In this work, the threatmodel is assumed in a realistic crowdsourcing-
based FGL scenario. The curator of the central server is the initial
graph data owner, which splits the global graph data into several
subgraph data and distributes them to each client (worker). There-
fore, (S)he knows the nodal feature and labels of the distributed data.
However, the original global graph only has a coarse connection
pattern. The workers have to further rewire the received subgraphs
by collecting/identifying relationships among nodal entities to con-
struct reasonable training sets for the local GNN models—fine
subgraphs. An illustration is given in Figure 2. Since this process
is laborious and resource-consuming for the workers, the graph
structures of the subgraphs are naturally part of their intellectual
properties. It is worth stating additionally that while some studies

suggested that it can be more efficient for workers to learn new
graph structures from coarse subgraphs [30, 50], the utility of graph
data can be compromised. Therefore, we consider the manual col-
lection of graph construction, as a traditional paradigm, to be of
existential significance.

We assume that the attacker is the curator of the central server,
which is curious about the subgraph structure 𝑨𝑖 constructed by
the workers. Since the curator can only access the model updates
according to the FL protocol, (s)he attempts to leverage model in-
version attacks (MIA) to reconstruct the subgraph structures based
on the received model updates and the subgraph attributes (s)he
has already known. We know that the model update𝑾 is associated
with the graph structure 𝑨, where the former is developed by the
latter in local GNN training. Due to this correlation, releasing𝑾 to
the central server will enable him or her to draw some inferences
on 𝑨. Furthermore, we know that the MIA attack is in a white-box
setting in our investigated case. The “malicious central server” as-
sumption is akin to the one in [37]; however, as the attacker in our
setting has more knowledge related to the target, the attacks will
be much more threatening.

More specifically, such a reconstruction is subsumed to “link
stealing attack”[9, 54]: the goal of the attacker is to reconstruct
target client 𝑏’s graph structure by identifying whether there exists
an edge between each node pair of the subgraph given its local
model updates (parameters)𝑾𝑏 , feature information 𝑿𝑏 , and label
information 𝒀𝑏 . The attack process can be formulated by

max
𝑨

𝑃 (𝑨 | 𝑿𝑏 , 𝒀𝑏 ,𝑾𝑏 ) , (2)

where 𝑃 is the posterior possibility that the attacker aims to maxi-
mize by finding the adjacency matrix 𝑨.

To mitigate the inference threat on 𝑨, the client can release a
distorted version of either 1) 𝑨 before local GNN training or 2)𝑾
before model updating. In this paper, we adopt the first notion to
construct our approach. Additionally, we also compare with a local
differential privacy (LDP) method who adopts the second notion in
our experiments.

3.3 Information Bottleneck Principle
Let 𝐼 (𝑿 ,𝒁 ) denote the mutual information (MI) between the input
𝑿 and the encoded representation 𝒁 , and 𝐼 (𝒀 ,𝒁 ) denote the MI be-
tween 𝒁 and the class label 𝒀 . IB principle [31] optimizes a tradeoff
between 𝐼 (𝒀 ,𝒁 ) and 𝐼 (𝑿 ,𝒁 ), that is

min
𝒁
LIB = −𝐼 (𝒀 ,𝒁 ) + 𝛽𝐼 (𝑿 ,𝒁 ) , (3)

where 𝑿 is the input and 𝒁 is the encoded representation of 𝑿 ,
𝒀 is the class label, and 𝛽 is a Lagrange multiplier to control the
compression extent of 𝒁 .

Alemi [1] et al. proposed a variational approximation to Eq (3)
by using a neural network to parameterize the distribution, known
as variational information bottleneck (VIB), which is defined as

LVIB =
1
𝑁

𝑁∑︁
𝑖=1

∫
𝑝 (𝑧 | 𝑥𝑖 ) log𝑞𝜙 (𝑦𝑖 | 𝑧) 𝑑𝑧

−𝛽KL (𝑝 (𝑧 | 𝑥𝑖 ) | 𝑟 (𝑧)) ,
(4)
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where 𝑞𝜙 (𝑦𝑖 | 𝑧) is the variational approximation to 𝑝 (𝑦𝑖 | 𝑧), 𝑟 (𝑧)
is the variational approximation of 𝑝 (𝑧), and KL(·) denotes the
Kullback–Leibler divergence (KLD).

4 SOS: PROPOSED SCHEME
In this section, we present the proposed SOS scheme in a top-down
manner. We commence from a framework view by introducing the
IB-subgraph publishingmechanism for subgraph-level FGL systems.
Then, we define the graph information bottleneck in subgraph-
level FGL and elaborate on the Sub-GIB approach from mutual
information estimation to the final IB-subgraph generation. Lastly,
we discuss the privacy and utility of IB-subgraphs.

Algorithm 1: Brief pipeline of SOS
Input: Number of clusters 𝐾 , subgraphs

𝑮𝑖 = {V𝑖 , E𝑖 ,𝑿𝑖 | 𝑖 ∈ [𝐾]}, GNN model 𝑓 , learning
rate 𝜂, number of IB optimization epochs 𝑇IB,
number of global training epochs 𝑇 , number of local
training epochs 𝑇𝑙 .

Output: R𝑠 (𝐹 (𝑾𝑠 ;𝑮)).
// Phase 1: IB-subgraphs Publishing

1 foreach 𝑖 ∈ 𝐾 in parallel do
2 foreach epoch 𝑡 = 1, 2, . . . ,𝑇IB do
3 𝜃h, 𝜃r, 𝜃g, 𝜃b ← Optimize NNh,NNr,NNl,NNb via

Eq. (13)
4 𝑩𝑖 ← NNb (𝜃b; GNN(𝑮𝑖 ))
5 𝑮IB

𝑖
← Construct IB-subgraph via the algorithm

described in Section 4.3 with 𝑩𝑖

// Phase 2: Federated Graph Learning on IB-subgraphs

6 𝑾𝑖,0 ← Initialize GNN model 𝑓
7 foreach epoch 𝑡 = 1, 2, . . . ,𝑇 do
8 # Updates local GNN model’s weights
9 foreach 𝑖 ∈ 𝐾 in parallel do
10 foreach epoch 𝑒 = 1, 2, . . . ,𝑇𝑙 do
11 𝑾𝑖,𝑡 ←𝑾𝑖,𝑡−1 − 𝜂 · ∇L(𝑓 (𝑮IB

𝑖
), 𝒀 𝑖 )

12 # Updates aggregation at central server (FedAvg) and
broadcasting

13 𝑾𝑠,𝑡 ← 1
𝐾

∑𝐾
𝑖=1𝑾𝑖,𝑡

14 return R𝑠 (𝐹 (𝑾𝑠 ;𝑮))

4.1 IB-subgraph Publishing Mechanism for
Subgraph-level Federated Learning Systems

As shown in Figure 3 and Algorithm 1, the proposed SOS scheme
introduces two phases for subgraph-level FGL systems: (1) IB-
subgraph publishing; (2) FGL on IB-sbugraphs. In reality, the global
graph data can be either static or dynamic. We consider the graphs
in a static condition as a single FGL lifespan. That is to say: if any
of the subgraphs changes, the previous lifespan is over, and it will
proceed to the subsequent FGL lifespan. The proposed approach
is incorporated as an in-processing one catered for a single FGL
lifespan.

In the IB-subgraph publishing phase, the system requires each
client to generate an IB-subgraph out of the original subgraph.
Specifically, we propose the subgraph generation with information
bottleneck (Sub-GIB) approach for IB-subgraph generation, which
will be introduced later. Given an attributed graph 𝑮 = (𝑨,𝑿 ), we
name its subgraph developed by Sub-GIB as IB-subgraph denoted
by 𝑮IB.

Once all the IB-subgraphs are published, the system will proceed
to the FGL phase. The clients will hold their original subgraphs
and IB-subgraphs locally. Notably, for privacy concerns, the clients
will train their local GNN model on the IB-subgraphs instead of the
original subgraph. Thus, original subgraphs will not be involved in
the FL training. This design embodies the advantage of the proposed
approach: as the local GNN model is trained on IB-subgraph data,
less “footprint” associated with the original subgraph will be left on
the local model updates. As thus, if the central server or any outsider
(if there is a gradient leakage) intends to infer the original subgraph
information (cf. the model inversion attack scenario described in
Section 3.2), the inference effect would be impeded to a great extent.
Another advantage is that according to the FL protocol, ones cannot
know whether local models were trained on the original subgraphs
or any processed subgraphs. Even if they successfully reconstruct
the training graphs (i.e., IB-subgraphs), they are not identical to the
original subgraphs.

Furthermore, the IB-subgraph publishing phase is designed to be
one-off in a FGL lifespan— it will only be executed in the initializing
stage for one time. As the subgraphs are all static in a lifespan, it
is of no necessity to publish their IB-subgraphs iteratively along
with the training epochs. One may notice that the FGL phase in the
proposed scheme remains the same as the naive FedAvg algorithm,
it does not introduce any additional actions to both the central
server and clients. These designs endow the proposed scheme with
some advantages. First, the algorithmic complexity of the proposed
scheme is close to that of vanilla FGL, making it computationally
and communicationally sparing. Second, The proposed scheme
is both model-agnostic and FL algorithm-agnostic, which can be
integrated with different FL algorithms. Moreover, the proposed
scheme is orthogonal to many of the existing subgraph-level FGL
approaches, such as the splitting learning-based approach in [56],
which can be orchestrated to improve the FGL performance further.

4.2 Sub-GIB: Subgraph Generation with
Information Bottelneck

4.2.1 Subgraph Information Bottelneck in Graph Data. Generally,
Sub-GIB extends the IB principle, which casts about for most pre-
dictive but compressed 𝑮IB by: (1) minimizing the MI between 𝑮IB

and 𝑮 , i.e., 𝐼
(
𝑮, 𝑮IB

)
); (2) maximizing the MI between 𝑮IB and

𝒀 , i.e., 𝐼
(
𝒀 , 𝑮IB

)
. The optimization objective of Sub-GIB can be

formulated as

min
𝑮 IB∈GIB

LGIB = −𝐼
(
𝒀 , 𝑮IB

)
+ 𝛽𝐼

(
𝑮, 𝑮IB

)
, (5)

where GIB denotes the subgraph search space of 𝑮 .



AsiaCCS ’23, July 10–14, 2023, Melbourne, Australia Chenhan Zhang, Weiqi Wang, James J.Q. Yu, and Shui Yu

Figure 3: Schematic of the proposed SOS scheme.

Figure 4: Architecture of Sub-GIB. GNN(·) and Readout(·) operations differ from the practically adopted GNN models in the FL
systems. Negative samples for the holistic discriminator and regional discriminator are generated by row-wise shuffling the
feature matrix 𝑿𝑖 but keep the original adjacency matrix, i.e., 𝑮̃𝑖 = (𝑨𝑖 , 𝑿̃𝑖 ).

We generalize the Sub-GIB for the learning of a centralized GNN
to the subgraph-level FGL scenario. In contrast to centralized sys-
tems, the FGL system involves multiple clients, each of which al-
ready owns a smaller subgraph of a global graph. In such a fed-
erated scenario, Sub-GIB seeks to further recognize a subgraph
of the subgraph owned by these clients—we name this process
as Subgraph-Out-of-Subgraph (SOS). Each IB-subgraph is expected
to embody minimal-sufficient information. Sufficient requires that
IB-subgraph is as informative as possible regarding the target to
develop accurate predictions.Minimal promotes the IB-subgraph to
be distorted from the original subgraph, and the information that is
irrelevant to the prediction can be juiced out as much as possible. In
this work, we in particular leverage the Minimal feature to achieve
the privacy preservation of the IB-subgraph.

Furthermore, we only consider the graph structural compression
in this work. That is to say that the encoded 𝑮IB

𝑖
will have a new

and smaller graph structure; however, the nodal feature will not be
encoded. As shown in Figure 3, the attributes of the nodes that are
eliminated after the compression will be naturally discarded.

4.2.2 Neural Network-powered Mutual Information Estimation. In
this work, we commence by using VIB [1] to optimize the Sub-GIB
for each client’s IB-subgraph generation. Describing the informa-
tion transmission among 𝒀 , 𝑮 , and 𝑮IB, the Markov chain in VIB
is

𝒀
𝑝 (𝑮 |𝑦)
−→ 𝑮

𝑞𝜃2 (𝑮
IB |𝑮 )
−→ 𝑮IB 𝑞𝜃1 (𝑦 |𝑮

IB )
−→ 𝒀̂ , (6)

where 𝑞𝜃1
(
𝑦 | 𝑮IB

)
and 𝑞𝜃2 (𝑮IB | 𝑮) are reparameterized varia-

tional approximations to 𝑝
(
𝑦 | 𝑮IB

)
and 𝑝

(
𝑮IB | 𝑮

)
, respectively.

Resorting to the deduction in [46], a tractable variational lower
bound for the first term of Eq. (5) for each client 𝑖 can be derived as

𝐼

(
𝒀 𝑖 , 𝑮

IB
𝑖

)
=

∫
𝑝

(
𝑦, 𝑮IB

𝑖

)
log 𝑝

(
𝑦 | 𝑮IB

𝑖

)
𝑑𝑦 𝑑𝑮IB

𝑖 + 𝐻 (𝒀 𝑖 )

≥
∫

𝑝

(
𝑦, 𝑮IB

𝑖

)
log𝑞𝜃1

(
𝑦 | 𝑮IB

𝑖

)
𝑑𝑦 𝑑𝑮IB

𝑖 ,

(7)

where the entropy of labels 𝐻 (𝒀 𝑖 ) can be neglected as it is indepen-
dent of the optimization. In the practical optimization, Eq. (7) can
be transformed into the node classification loss between the real
labels 𝒀 𝑖 and the labels predicted on 𝑮IB

𝑖
, which can be formulated
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as
min
𝑮 IB

𝑖

LYZ = Lce (𝑓𝜃g (𝑮
IB
𝑖 ), 𝒀 𝑖 ), (8)

where 𝑓𝜃g (·) is the adopted GNN-based classifier in the FGL system,
and Lce (·) denotes the cross entropy loss. As some of the nodes in
𝑮𝑖 are eliminated in 𝑮IB

𝑖
, the loss evaluation are only performed

on the nodes included in 𝑮IB
𝑖
.

The second term of Eq. (4) is tractable for the primitive VIB only
if the data’s empirical distribution information is known to further
compute the MI. Nevertheless, the discreteness and non-IID of
graph-structured data renders its empirical distribution untraceable
[42]. In other words, we cannot find a proper prior distribution
𝑞𝜃2 (𝑮IB) (cf. 𝑟 (𝑧) in Eq. (4)) for 𝑮IB.

To make 𝐼
(
𝑮𝑖 , 𝑮IB

𝑖

)
tractable, we introduce a neural network-

powered mutual information estimation approach to instantiate
and minimize 𝐼

(
𝑮𝑖 , 𝑮IB

𝑖

)
. We adapt ideas from [11] to consider

both holistic and regional features1. We first introduce a neural
network-based extractor 𝑓ℎ (·) to learn implicit graph-level repre-
sentation (holistic feature). Basically, 𝑓ℎ (·) consists of an encoder
and a discriminator 𝑓𝜃h (·). The encoder here shares the same ar-
chitecture and parameters with 𝑓𝜃g (·) in Eq. (8). Thus, we have
𝑓ℎ = 𝑓𝜃g ◦ 𝑓𝜃h . Particularly, we define holistic feature developed
by 𝑓ℎ (·) as the graph-level information— summarizing the graph
feature as a whole. Different from prior work [30, 46], we propose
to use Jensen-Shannon divergence (JSD) to evaluate MI, which
requires a smaller number of negative samples and demonstrates
better stability in practice. Based on a JSD-based MI estimation[23],
we can formulate the objective specific to the holistic feature as

Lℎ = − logE𝑮̃𝑖 ∈𝑝 (𝑮𝑖 ,𝑮 IB
𝑖 )

(
1 + 𝑒 𝑓ℎ

(
𝑮̃𝑖

) )
− logE𝑮𝑖 ∈𝑝 (𝑮𝑖 )

(
1 + 𝑒−𝑓ℎ (𝑮𝑖 )

)
,

(9)

where 𝑮̃𝑖 represents the negative samples from the joint distribution
𝑝

(
𝑮𝑖 , 𝑮IB

𝑖

)
, which is instantiated by row-wise shuffling the feature

matrix𝑿𝑖 but keep the original adjacencymatrix, i.e., 𝑮̃𝑖 = (𝑨𝑖 , 𝑿̃𝑖 ).
We consider regional features as specific node-level represen-

tations contributing to the node classification. Correspondingly,
let 𝑓𝑟 (·) be the neural network-based extractors for the regional
feature. Similar to 𝑓ℎ (·), 𝑓𝑟 (·) adopts 𝑓𝜃g (·) as the encoder but with
a specific discriminator 𝑓𝜃r (·), i.e., 𝑓𝑟 = 𝑓𝜃g ◦ 𝑓𝜃r . The details of 𝑓𝜃r (·)
and 𝑓𝜃r (·) are illustrated in Figure 4. Incorporating the negative
samples, we use binary cross-entropy (BCE) to evaluate the loss of
regional MI, which can be formulated as

L𝑟 = Lce (𝑓𝑟 (𝑮𝑖 ), 1) + Lce (𝑓𝑟 (𝑮̃𝑖 ), 0), (10)

where 1 and 0 are the all-one and all-zero vectors respectively
representing the positive and negative labels. Combining Eq. (9)
and (10), we can obtain the objective estimating 𝐼

(
𝑮𝑖 , 𝑮IB

𝑖

)
:

min
𝜃h,𝜃r
LXZ = Lℎ + 𝛾L𝑟 (11)

where 𝛾 is a multiplier to control the tradeoff between the two parts.
This design is different from the one in [46] which only considers
1we use “holistic” and “regional” to describe “global” and “local” here to avoid abuse.

the holistic feature for the graph classification task. We believe
that involving holistic features and regional feature will further
improve the quality of generated IB-subgraphs, and the hypothesis
is justified in our experiments.

To ensure that 𝑮IB
𝑖

has a compact graph structure with sufficient
feature smoothness, we additionally introduce a loss term with
respect to the generated graph structure based on the one in [54],
which is formulated as

min
𝜃h,𝜃r
LGS = Tr(𝑩𝑇𝑖 𝑳𝑖𝑩𝑖 ), (12)

where 𝑳𝑖 is the Laplacian adjacency matrix of 𝑮𝑖 , 𝑩𝑖 is a node
belonging of 𝑮IB

𝑖
(the computation will be detailed in Section 4.3),

and Tr(·) represents the trace of a matrix.
Combining Eq. (8), (11), and (12), we can obtain the final objective

function of Sub-GIB, that is

min
𝜃h,𝜃r,𝜃g,𝜃b

LSub-GIB = LYZ (𝜃g, 𝜃b) + 𝛽LXZ (𝜃h, 𝜃r) + LGS (𝜃g, 𝜃b) .

(13)
In practice, Eq. (13) is optimized in a bi-level manner: we first
optimize LXZ (𝜃h, 𝜃r) and fixed 𝜃h and 𝜃r to further optimize Eq.
(13) as a whole. Corresponding to Eq. 6, we have 𝜃1 = {𝜃g} and
𝜃2 = {𝜃h, 𝜃r, 𝜃b}

4.3 IB-subgraph Generation Algorithm
We design an algorithm as the last step of Sub-GIB to generate
the 𝑮IB

𝑖
for publishment. When Sub-GIB is optimized, we first use

a node discriminator (denoted by NNb (·)) to generate a node be-
longing to each node, as shown in Figure 4. The node belonging
evaluates each node by two score: IN ∈ [0, 1] and OUT = 1 − IN
which is the probability of the node should be included or not
included in 𝑮IB

𝑖
, respectively.

Then, we use Top-K algorithm to sort out all the nodes’ IN scores
to decide the ones to be reserved in the IB-subgraph. Let 𝜌 be the
ratio controlling the number of the nodes that are reserved in 𝑮IB

𝑖
,

we have 𝑁 (min)
𝑖

= int(𝜌𝑁𝑖 ). Thus, the first 𝑁 (min)
𝑖

points with the
largest IN score values in subgraph 𝑮𝑖 will be retained. We define
a downsampling function Ds ∈ {−1, +1} to perform this process.
The downsampling function is defined as

Ds( 𝑗) =


1 if 𝑗 ∈ [𝑁 (min)
𝑖

]

−1 if 𝑗 ∉ [𝑁 (min)
𝑖

]
. (14)

We then perform the downsampling operation on the adjacency
matrix, which is formulated as

𝑨∗𝑖 = {𝑎
∗
𝑗 } = {

1
2
(1 + Ds( 𝑗))𝑎 𝑗 }, (15)

where 𝑎 𝑗 ∈ 𝑨𝑖 and 𝑎∗𝑗 are the entry of node 𝑗 in the adjacency
matrix before and after the downsampling, respectively. Then, we
can use the updated adjacency matrix 𝑨∗

𝑖
∈ R𝑁

(min)
𝑖

×𝑁 (min)
𝑖 and

the corresponding feature matrix 𝑿∗
𝑖
∈ R𝑁

(min)
𝑖

×𝑑 to construct
IB-subgraph 𝑮IB

𝑖
= (𝑨∗

𝑖
,𝑿∗

𝑖
).

Such an algorithm ensures that at least 𝑁 (min)
𝑖

nodes can be
retained, eliminating the possibility that no nodes are reserved.
The edges connecting the discarded nodes and the retained nodes
will be naturally dropped— if some nodes supposed to be retained,
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Table 1: Statistical summary of Cora, Citeseer, and PubMed
datasets.

Data # Node # Edge Density # Class # Feature

Cora 2708 5278 14.3𝑒 − 4 7 1433
Citeseer 3312 4536 8.2𝑒 − 4 6 3703
PubMed 19717 44338 2.2𝑒 − 4 3 500

however, become singletons after these edges’ dropping, they will
be discarded as well.

4.4 Discussion on Privacy and Utility of
IB-subgraph

4.4.1 Privacy Analysis. Let𝑾𝑖 and𝑾 IB
𝑖

be the local model updates
developed by the original subgraph and IB-subgraph, respectively.
The privacy leakage can be measured by the mutual information
between the local model updates trained on IB-subgraphs and the
target private subgraph structure, i.e., 𝐼 (𝑾 IB

𝑖
,𝑨𝑖 ). According to the

Markov chain stated in Eq. (6), it can be ensured that𝑾 IB
𝑖

cannot
contain more information about the original subgraph structure 𝑨𝑖
than𝑾𝑖 since 𝑮𝑖 = (𝑨𝑖 ,𝑿𝑖 ) subsumes 𝑮IB

𝑖
= (𝑨IB

𝑖
,𝑿 IB

𝑖
). We can

further derive the diminishing mutual information with 𝑨𝑖 from
𝑾𝑖 to𝑾 IB

𝑖
, i.e.,

𝐼 (𝑾𝑖 ,𝑨𝑖 ) ≥ 𝐼
(
𝑾 IB
𝑖 ,𝑨𝑖

)
, (16)

where the inequality is irreversible. We can deduce that the upper
bound ofMIA using𝑾 IB

𝑖
is equivalent toMIA using𝑾𝑖 . By the same

token, the upper bound of MIA using (𝑾 IB
𝑖
,𝑿𝑖 , 𝒀 𝑖 ) is equivalent

to MIA using (𝑾𝑖 ,𝑿𝑖 , 𝒀 𝑖 ) As 𝑮IB
𝑖

is optimized to maximumly juice
out the task-irrelevant MI with 𝑮𝑖 , MIA using (𝑾 IB

𝑖
,𝑿𝑖 , 𝒀 𝑖 ) will be

much less effective.
Moreover, most of the existing privacy-targeted FL approaches

modify the model updates to protect the data privacy [2, 55]. While
these approaches can help defend against MIA, if the local datasets
are actively hacked and data privacy will also be compromised.
An inherent advantage of our proposed IB-subgraph is that the
publishing mechanism isolates the original subgraphs which are
the privacy carriers. For example, the original subgraphs can be
further stored in a trusted execution environment [25] at the client
side to guarantee privacy protection. This advantage enables the
privacy guarantee to hold in broadening threat scenarios.

4.4.2 Utility Analysis. Assume that 𝑮 irr
𝑖

is the subgraph of 𝑮𝑖
which is irrelevant to the target 𝒀 𝑖 . Following [46], an upper bound
for MI between 𝑮IB

𝑖
and 𝑮 irr

𝑖
is derived as

𝐼

(
𝑮 irr
𝑖 , 𝑮

IB
𝑖

)
≤ 𝐼

(
𝑮𝑖 , 𝑮

IB
𝑖

)
− 𝐼

(
𝒀 𝑖 , 𝑮

IB
𝑖

)
. (17)

Eq. (17) proved that 𝑮IB
𝑖

is dependent on 𝑮 irr
𝑖
. Thus optimizing

Eq. (5) will be equivalent to minimize 𝐼
(
𝑮 irr
𝑖
, 𝑮IB
𝑖

)
, making the

optimized 𝑮IB
𝑖

would be with less irrelevant information to target
𝒀 𝑖 .

Additionally, since we apply the proposed approach in federated
scenarios, two concerns pop up. 1) Is the new dataset compatible
with the original GNN model due to the change in dataset size? 2)

Table 2: Model Inversion Attack against Different Clients.

Cora Citeseer PubMed

AUC AP AUC AP AUC AP

𝑮1

SOS-NIB 60.6% 66.1% 57.2% 67.4% 59.2% 60.2%
FedSage+ 59.8% 64.5% 57.4% 67.3% 60.1% 60.9%
FedGCN 59.6% 65.0% 56.9% 65.9% 60.6% 61.3%
SOS 49.8% 49.8% 55.8% 53.7% 49.7% 49.8%

𝑮2

SOS-NIB 61.8% 65.6% 56.0% 68.4% 57.3% 61.8%
FedSage+ 61.3% 66.8% 55.9% 69.8% 56.9% 61.4%
FedGCN 62.1% 67.1% 55.3% 68.8% 56.9% 61.2%
SOS 53.4% 51.6% 54.7% 52.4% 54.0% 52.2%

𝑮3

SOS-NIB 53.6% 57.3% 61.3% 65.5% 55.4% 59.5%
FedSage+ 51.8% 54.7% 61.2% 65.5% 55.3% 60.6%
FedGCN 51.7% 54.1% 60.8% 64.5% 55.6% 61.0%
SOS 41.5% 46.1% 51.9% 50.6% 51.9% 50.6%

𝑮4

SOS-NIB 64.3% 70.4% 61.6% 66.3% 58.4% 61.6%
FedSage+ 62.7% 68.9% 62.0% 68.2% 58.9% 62.7%
FedGCN 62.6% 67.2% 61.5% 67.3% 58.4% 62.5%
SOS 50.7% 50.2% 53.3% 51.7% 49.3% 49.6%

Will the down-sampling process on the local graph datasets affect the
overall system training effect? For the first concern, as mentioned
in Section 3.1, we treat the learning process of GNN models in an
inductive way, therefore, the change in graph size will not cause
any incompatibility problem. For the second concern, we would
like to mention that the paradigm of the proposed approach is
akin to dropout-related FL approaches [3, 19], where some training
elements (e.g., participated clients, neuron links, or model weights)
are dropped out in the training procedure. The difference is that
the majority of dropout-related FL approaches such as Federated
Dropout [3] select a subset of shared model to locally train and
update while we select a subset (IB-subgraph) of the local dataset
(original subgraph) to locally train the shared model. On the one
hand, the performance of federated aggregation algorithms (e.g.,
FedAvg) has been demonstrated to be robust to even benefit from
these dropout operations [3]. On the other hand, compared with
the change in model weights or participated clients, which directly
influence the model aggregation at the server side, the change in
local training data samples will have less influence on the model
aggregation. Our scheme is similar to dropping out some local
training data samples in the FL systems on regular data (e.g., images).
While the data samples in node classification tasks, i.e., nodes, may
strongly correlate to each other due to the existence of edges, the
IB principle enables the proposed Sub-GIB method can preserve
useful edges in the process of preserving task-relevant information.
Recall Eq. 1, once local models can effectively learn predictive
information from these IB-subgraphs by optimizing local empirical
risk R𝑖 , model aggregation algorithms are capable of handling these
model updates to develop a generalized and accurate global model
[16, 48]. Meanwhile, one limitation is that the influence of non-
IIDness between different IB-subgraphs on the FGL performance is
not specifically investigated in this work, which can be a possible
direction for future work.
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Table 3: Prediction Accuracy Comparison of Overall Feder-
ated Learning System.

# Client Cora Citeseer PubMed

𝑘 = 2

SOS-NIB 79.3% 79.9% 80.8%
FedSage+ 84.2% 85.7% 86.6%
FedGCN 73.0% 61.7% 78.0%

SOS-HCW 79.1% 82.0% 81.3%
SOS 78.6% 78.6% 81.3%

𝑘 = 4

SOS-NIB 84.8% 82.2% 75.0%
FedSage+ 85.4% 86.2% 82.6%
FedGCN 80.3% 70.6% 72.4%

SOS-HCW 83.7% 81.8% 73.3%
SOS 84.2% 81.6% 74.7%

𝑘 = 8

SOS-NIB 81.6% 74.7% 84.3%
FedSage+ 85.4% 73.57% 86.2%
FedGCN 76.2% 66.6% 74.8%

SOS-HCW 76.4% 80.1% 81.4%
SOS 78.4% 74.4% 84.2%

Further justification of our proposed approach in terms of privacy
and utility can be referred to as the experimental results in Sections
5.2 and 5.3.

5 EXPERIMENTAL EVALUATION
5.1 Experiment Preparation
In our experiments, we employ three real-world andwidely-adopted
graph-structured datasets, namely, Cora [27], Citeseer [27], and
PubMed [22]. The statistical information of the three datasets is
summarized in Table 1. Following the previous work [49], the ra-
tios of training, validating, and testing sets are 60%, 20%, and 20%,
respectively.

To simulate the non-IID characteristics of graph data distributed
across different clients, we adopt Metis partitioner [12] to partition
the global graph into 𝐾 subgraphs for corresponding 𝐾 clents, and
further construct their datasets. Metis can ensure a balanced distri-
bution of nodes to different subgraphs. For example, the numbers
of nodes of the four partitioned subgraphs of Cora are 696, 661, 688,
and 663.

Unless otherwise stated, for the FGL system, the number of
clients is set to 𝐾 = 4. We set the global training epoch 𝑇 = 50. The
number of local training epochs is set to 10 for Cora and Citeseer
and 2 for PubMed. The local GNN models are optimized by Adam
with a learning rate 𝜂 = 0.001. For SOS, the hyperparameters are
set as: 𝛽 = 0.2, 𝜌 = 0.5, and 𝛾 = 0.5— the influence of different
settings will be investigated later. The epoch of IB optimization
is set as 𝑇IB = 150. As one of the most investigated models in the
graph learning domain, graph convolutional networks (GCN) [13]
is adopted as the GNN model to be trained in the FGL system. We
employ a 2-layer GCN with the hidden space size of 16 as did in
most existing works. Particularly, for the GCN used in Sub-GIB, the
hidden space size (i.e., 𝐻 in Figure 4) is set to 512.

As we are the first to investigate the novel yet significant sce-
nario— subgraph-level FGL against MIA attacks, there are no com-
pletely corresponding baselines from existing works. Nevertheless,

we consider that two state-of-the-art FGL methods, FedSage [49]
and FedGCN [44], could be good performance benchmarks. In
particular, according to the referenced literature, we adopt Fed-
Sage+, which is the best-performance one of FedSage. To provide
a fair comparison, the setting of FedSage+ is adjusted according
to our investigated scenario. Additionally, we first introduce two
derived approaches of SOS as the baselines, namely, 1) SOS-NIB:
No IB-Subgraph, equal to the vanilla FGL as introduced in Section
3.1, which just uses the original subgraphs for local training. 2)
SOS-HCW: High Card Win, different from the rank-based one in
Section 4.3, the larger of scores IN and OUT decides the retention of
the node, that is: reserve the node if it has IN ≥ OUT and discarded
otherwise.

SOS and the baseline approaches are implemented with PyTorch
using half-precision (i.e., float16). All experiments are conducted on
a computing server with two Intel Xeon E5 CPUs, and eight nVidia
GTX 2080 Ti GPUs are employed for neural networks’ computing
acceleration. To alleviate the randomness, experiments for each
setting are run over five repetitions.

5.2 Robustness to Model Inversion Attack
To validate the effectiveness of our proposed scheme defense against
MIA, we conduct a case study of MIA against FGL following the one
described in Section 3.2. Particularly, we introduce a state-of-the-art
MIA approach, GraphMI [54], which is utilized by the central server
to attack a targeted client. GraphMI integrates projected gradient
descent and graph autoencoder, which can be regarded as a very
threatening MIA adversary. The setting of GraphMI (including
architecture and parameters) follows the recommended one in the
original literature with minuscule non-algorithmic changes in the
practical implementation. As did in [54] and [9], we use two metrics
to evaluate the attack, namely, area under the ROC curve (AUC)
and average precision (AP)— the larger the AUC or AP, the more
successful the MIA. Furthermore, as the subgraph structures vary
from client, we in particular show the performance of MIA on
different clients to provide a more comprehensive demonstration.

From the results shown in Table 2, we can find that the AUC
and AP of MIA on SOS is significantly lower than those on SOS-
NIB. When SOS is adopted, the results of AUC are suppressed to
50%, which means that the MIA model is almost making random
guesses in this case. That is to say that the threat of MIA is greatly
reduced by SOS. The results highlight the advantage of the pro-
posed scheme: as the IB-subgraph developed by SOS is considerably
distorted from the original subgraph, less information regarding the
original subgraph can be learned by a GNN model. This condition
further prevents MIA from reasoning relevant information about
the structure of the original subgraph from the model weights.
Additionally, it can be observed that for different clients, the ro-
bustness brought by the IB-subgraphs (i.e., the downgrade of MIA
performance) shows differently. This phenomenon can be explained
by that GraphMI predicts the graph structure by a graph autoen-
coder, where the neural network nature renders randomness in
the prediction process. Additionally, we can find the MIA accuracy
on FedSage+ is close to that on vanilla FGL and even higher in
some cases. This may be due to the missing neighbor mechanism
of FedSage+ making the local GNN model learn more information
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Figure 5: Comparison of training curves with 𝐾 = 4.
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Figure 7: Comparison of MIA resistance and prediction accu-
racy between LDP and the proposed approach.

about a single subgraph, which makes the updated model updates
contain more potential information that MIA can use. The accu-
racy of MIA on FedGCN is closing to the two, slightly better in
some cases. Overall, SOS considerably outperforms the two FGL
benchmarks on MIA resistance.

5.3 Accuracy of Federated Graph Learning
As FL systems endeavor to train an accurate global model, the
prediction accuracy of the global model is a crucial metric for the
goodness of a FL system. We first evaluate the developed global
GNN model’s prediction accuracy on the testing set, and compare
that between SOS and baselines.

The results are presented in Table 3 and Figure 5. We observe
that SOS develops a very close accuracy performance to the SOS-
NIB, even though the IB-subgraph developed by SOS is smaller
and has less information than the original subgraph. The result
demonstrates that the developed IB-subgraph can provide the GNN

model with sufficient predictive information, which further justifies
the effectiveness of our Sub-GIB approach: an informative subgraph
in terms of prediction can be extracted. The variant SOS-HCW can
also obtain a satisfactory prediction accuracy; however, the no-
node-reserved result as concerned in Section 4.3 appears according
to our offline tests. In this aspect, the stability of SOS is greater
than SOS-HCW credited to the protection mechanism provided by
the Top-K algorithm. While FedSage+ demonstrates a remarkable
prediction accuracy, the success is on the premise of sacrificing
computational efficiency as the involved missing link prediction is
time-costly. As shown in Figure 6, the training time consumption
of FedSage+ can be ten times as much as that of SOS. On the other
hand, we can find that the proposed one is time-efficient from the
results due to the one-off generation mechanism of IB-subgraphs.
For FedGCN, its training time consumption is satisfying thanks to its
communication-optimized mechanism. However, its performance
is not robust (refer to the much lower accuracy on Citeseer).

Additionally, we compare prediction accuracy under FGL set-
tings with different numbers of clients, i.e., 𝐾 = 2, 4, 8. Generally,
the results on 𝐾 = 2, 4, 8 demonstrate a similar pattern. The only
exception occurs when we set 𝐾 = 8 on Cora, where there is an
accuracy drop from 81.6% to 78.4%; however, this drop is within
the acceptable range.

5.4 Comparison with Differential Privacy-based
Defenses

Local differential privacy (LDP) [55] is a widely-adopted technique
for protecting local data privacy in FL systems, where a common
way of achieving LDP in FL systems is the perturbation of local
model updates by calibrated noise. As introduced in Section ??,
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Figure 9: Visualization of reserved nodes in IB-subgraphs.
Note that the singletons are presented in this visualization
but discarded in practice.

we consider MIA against FGL system, which utilizes the gradient
information from the model updates. Amongst various DP-based
paradigms in the context of FL, LDP on model updates would be
more effective in defending against such attacks [17]. Therefore, we
hereby compare the performance between LDP and the proposed
approach. Particularly, we empirically adopt the Laplacian mecha-
nism for LDP and add noise from Laplacian distribution Lap(0, 𝑠𝜖 )
onto the local GNN updates before aggregation. The sensitivity
parameter is set as 𝑠 = 1 as a matter of experience. Moreover, our
offline fine-tuning suggests that we can obtain a set of noise en-
abling a comparable MIA resistance with the proposed scheme
when the exponential decay 𝜖 is set to 1.

We present the comparison of prediction accuracy and MIA
resistance between LDP and the proposed scheme under the afore-
mentioned settings in Figure 7. We can clearly observe that the
prediction accuracy of FGL with LDP deteriorates considerably
under such a noise level. This phenomenon implies a huge utility
drop on the GNN models’ updates when applying such noises. We
can conclude that the proposed approach can achieve a more satis-
factory tradeoff between data utility and privacy in the investigated
scenario of FGL systems, compared with LDP.

5.5 Sensitivity Studies of Hyperparameters
The proposed scheme mainly incorporates three hyperparameters
to control the optimization process, namely, the Lagrange multi-
plier that controls the distortion extent of 𝑮IB

𝑖
— 𝛽 , the Lagrange

multiplier that controls the tradeoff of contribution between the
holistic feature and regional feature—𝛾 , and the ratio controlling
the lowest number of the nodes reserved in 𝑮IB

𝑖
— 𝜌 . They play a

pivotal role in determining the finally generated IB-subgraphs.
We can draw several conclusions from the results shown in

Figure 8. The larger the 𝜌 , the higher the AUC of MIA and the
lower the accuracy. This is due to that the larger 𝜌 makes more
nodes in the original subgraph reserved in the IB-subgraph, making
the GNN model can learn sufficient node interaction and develop
more accurate predictions. Conversely, the information recorded
in the GNN model can also leave exploitable loopholes for MIA.
This is the reason why the AUC of MIA is higher when there are
more nodes reserved in the IB-subgraphs. For 𝛽 , a larger one means
the MI with the original subgraph will be less considered in the
developed IB-subgraph. This makes the developed IB-subgraph
reserve less information about the original subgraph. Therefore,
the larger 𝛽 can render a lower AUC of MIA. In terms of 𝛾 , a larger
one will take less influence of regional feature into account when
doing MI estimation; the results show that this will degenerate the
prediction performance. This implies the significance of regional
features in the Sub-GIB optimization, whichwill lead to IB-subgraph
containing more predictive features regarding structure.

Generally, SOS is more sensitive to the change of 𝜌 as it directly
controls the scale of finally generated IB-subgraphs while 𝛽 and 𝛾
mainly control the optimization of Sub-GIB. While the sensitivity
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of SOS to the change of 𝛽 and 𝛾 is less remarkable, appropriate fine-
tuning can contribute to developing more reasonable IB subgraphs
to affect the final performance.

In addition, the results of generated IB-subgraphs are visualized
in Figure 9. We can observe that the topology among reserved nodes
remains the backbone of that in the original subgraph. Furthermore,
when 𝜌 becomes larger (from 0.2 to 0.5), the newly included re-
served nodes will be uniformly distributed around the existing
reserved nodes. A preliminary hypothesis is that the predictabil-
ity (utility) and privacy of the IB-subgraph is closely related to
such a pattern. More in-depth analysis of this phenomenon will be
conducted in future work
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Figure 10: Comparison of MIA resistance and prediction ac-
curacy on different GNNs.

5.6 Generalization Ability on Different GNNs
In Figure 10, we present the performance of SOS on different GNNs.
In addition to the default GCN, we introduce graph attention net-
work (GAT) [33] and GraphSAGE [7] in this case study. Generally,
we observe that SOS performs better on GCN and GSAGE than
GAT. This can be explained by the fact that the attention mech-
anism in GAT can help establish a stronger correlation between
the graph structure and node labels, which can benefit the MIA’s
performance. Meanwhile, GAT may also be more susceptible to
structural changes in the graph caused by SOS, which could lead to
a decrease in prediction accuracy.

6 SUMMARY AND FUTUREWORK
In this paper, we propose a novel scheme named SOS for federated
graph learning, which can defend against model inversion attacks
effectively. Our proposed scheme mainly leverages the information
bottleneck principle to identify a smaller IB-subgraph from the
original subgraph of each client and feed these IB-subgraphs into
FGL systems for local GNN model’s training. Particularly, we use
neural networks to achieve the mutual information estimation
between original subgraphs and IB-subgraphs. We also devise an IB-
subgraph generation algorithm to develop reasonable IB-subgraphs.
Comprehensive experiments on three datasets demonstrate that the
proposed scheme can significantly improve the robustness of FGL
to model inversion attacks. Meanwhile, the prediction accuracy of
the global GNN model trained on smaller IB-subgraphs is at the
same level as the one trained on the original subgraphs.

In our future work, we will conduct a theoretical analysis of the
privacy guarantee provided by the IB-subgraph. In addition, it is

interesting to explore our scheme with further MIA approaches in
various FGL attack settings.
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