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Abstract—Federated learning has been applied to various tasks
in intelligent transportation systems to protect data privacy
through decentralized training schemes. The majority of the
state-of-the-art models in intelligent transportation systems (ITS)
are graph neural networks (GNN)-based for spatial information
learning. When applying federated learning to the ITS tasks with
GNN-based models, the existing frameworks can only protect the
data privacy; however, ignore the one of topological information
of transportation networks. In this work, we propose a novel
federated learning framework to tackle this problem. Specifi-
cally, we introduce a differential privacy-based adjacency matrix
preserving approach for protecting the topological information.
We also propose an adjacency matrix aggregation approach to
allow local GNN-based models to access the global network for
a better training effect. Furthermore, we propose a GNN-based
model named Attention-based Spatial-Temporal Graph Neural
Networks (ASTGNN) for traffic speed forecasting. We integrate
the proposed federated learning framework and ASTGNN as
FASTGNN for traffic speed forecasting. Extensive case studies
on a real-world dataset demonstrate that FASTGNN can develop
accurate forecasting under the privacy preservation constraint.

Index Terms—Traffic speed forecasting, deep learning, feder-
ated learning, graph neural networks.

I. INTRODUCTION

THE DEVELOPMENT and broad adoption of the Internet
of Things (IoT) have greatly revolutionized people’s

lifestyles and industrial production. Intelligent Transportation
System (ITS) is among the most typical application scenarios
of IoT [1]. For example, we can see a massive deployment
of IoT-based sensor networks for urban traffic data collection,
which provides overwhelming data for handling traffic prob-
lems such as traffic state forecasting. In this context, recent
years have witnessed an unprecedented advancement of data-
driven problem-solvers for traffic state forecasting, such as
deep learning-based approaches [2].

Graph Neural Networks (GNN) lies at the most cutting-
edge of deep learning techniques capable of learning spatial
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information from the complicated topology of data. GNN-
based approaches have been widely adopted in traffic state
forecasting tasks, and remarkable results have been shown
in the literature [3]. Nonetheless, most methods highly rely
on large-scale data for centralized training. In ITS, such
massive traffic data are generally collected and shared by
different providers, including government organizations (e.g.,
California Department of Transportation) and companies (e.g.,
AutoNavi). The collaborations among these providers usually
involve data exchange, but the data may contain personal
privacy (e.g., plate number, travel record). Thus, there exist
potential privacy leakage issues. With this in mind, different
organizations are requested to avoid data exchange by storing
their user data locally to preserve personal privacy, making it
challenging for them to train a powerful model collaboratively.

With the emerging Federated Learning (FL) technology,
the aforementioned collaborative problems have been vastly
resolved [4]. FL serves as a learning framework for multiple
data providers, allowing providers to build an effective model
collaboratively while keeping their data locally. Comprehen-
sive and successful cases have demonstrated that FL can trade
off between model performance and privacy [5], [6]. While
existing FL frameworks have been successfully applied to
many deep learning-based approaches, we found few cases
involving GNN-based models. There are two main challenges
to combining FL and GNN-based models. First, unlike regu-
lar deep learning-based models, GNN-based models need to
handle not only the input data feature but also topological
information. Existing FL aggregation algorithms are not ca-
pable of handling topological information, which may limit
their use in GNN scenarios. Second, the conventional FL
framework can only protect the privacy of the data feature. In
ITS, the topological information privacy is also important since
the topological information may contain sensitive information
(e.g., the relationships among mobile data contributors, the
number of deployed sensor stations).

To address the above two problems, we propose a FL
framework named Federated Attention-based Spatial-Temporal
Graph Neural Networks (FASTGNN). The proposed frame-
work integrates a novel FL strategy towards topological infor-
mation protection and a GNN-based model named Attention-
based Spatial-Temporal Graph Neural Networks (ASTGNN)
for traffic speed forecasting. Specifically, in the proposed fl
strategy, we introduce a differential privacy (DP)-based local-
network adjacency matrix preserving approach, and it enables
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each organization’s topological information in the FL frame-
work can be well-preserved. A local-network topological infor-
mation aggregation mechanism is also devised, which allows
the local models can take advantage of a DP-processed global
topological information to guarantee its performance. In the
proposed ASTGNN model, a graph attention mechanism and
Gated Recurrent Units networks are adopted, and they make
ASTGNN possess excellent spatial-temporal feature learning
capacity for developing accurate network-wide traffic speed
predictions. In such configuration, FASTGNN can develop
promising traffic speed forecasting without compromising pri-
vacy.

The main contributions of this paper are summarized below:
• We propose a topological information protected FL

framework FASTGNN for traffic speed forecasting prob-
lem. This framework integrates a GNN-based predictor
utilizing the advanced spatial-temporal techniques. Such
a framework can provide robust privacy-preserving traffic
speed forecasting through training models locally by
different organizations without raw data and topological
information exchange.

• In the proposed FL framework, we introduce a differential
privacy-based approach for adjacency matrix preserving
to protect the topological information. We also develop
an adjacency matrix aggregation mechanism to generate
a preserved global-network adjacency matrix. These two
approaches guarantee our framework achieves the trade-
off between privacy and performance.

• A series of comprehensive case studies on a real-world
traffic dataset are conducted to demonstrate the efficacy
of the proposed FASTGNN framework.

The rest of this paper is organized as follows. In Section II,
we review the related literature on traffic speed forecasting and
privacy-preserving in ITS. Section III gives a basic formulation
of the investigated traffic speed forecasting problem and the
federated learning framework. We elaborate on the proposed
ASTGNN model and FASTGNN framework in Section IV.
Section V presents the results and discussion of the case
studies, and this paper is concluded in Section VI with a
summary of potential future studies.

II. LITERATURE REVIEW

A. GNN-based Approaches for Traffic Forecasting

Since spatial correlation in traffic data has been demon-
strated useful in predicting the time-series, researchers start
to involve spatial feature exploiting mechanisms in traffic
forecasting approaches [7]. In [8] and [9], CNN is adopted to
extract the spatial independencies of the traffic data. Despite
its effectiveness in feature extraction, CNN-based approaches
are constrained to only process the grid-like spatial structure.
In the meantime, traffic data is sampled from the traffic
network, which is non-Euclidean. To overcome this problem,
Graph Neural Networks (GNN) are employed by treating the
irregular traffic networks as graphs where spatial information
can be fully learned [10]–[12]. Graph Attention Network is
an extension of GNN, which applies attention mechanism
to graphs [13]. In [14], the authors proposed a traffic flow

estimator where both spatial and temporal attentional factors
are computed to extract the spatial-temporal dependencies in
traffic data. Shi et al. [15] devise an attention mechanism that
can exploit short- and long-term dependencies in time-series.

B. Privacy Problems in ITS

The process of data exchange among users and organiza-
tions in ITS may leak private information [16]. These increase
the privacy-preserving awareness of ITS participants. Zhou et
al. [17] proposed a privacy-preserving transportation traffic
measurement approach for cyber-physical road systems, which
adopts maximum-likelihood estimation (MLE) to develop the
prediction. In [18], the authors proposed an autonomous
privacy-preserving authentication approach, where vehicles
can effectively conceal their information using pseudonyms.
In [19], the author proposed a secure ITS movement analysis
scheme that allows participants to generate the private/public
key pair of their own accord. Nonetheless, these approaches
suffer from massive data within a limited processing time
and preserve privacy in exchange for the model performance.
Recent years have witnessed the development of Federated
Learning (FL) models. FL can train machine learning models
in a privacy-preserving manner, where the training datasets
are distributed across multiple devices while preventing data
breach [4]. Liu et al. [20] proposed a FL-based GRU neural
network algorithm for traffic forecasting to achieve privacy-
preserving traffic flow prediction. Albaseer et al. [21] proposed
a federated semi-supervised learning scheme to utilize the
unlabeled data in ITS. Smarakoon et al. [22] optimized the
communications delay incurred by FL in their proposed dis-
tributed resource allocation approach for vehicular networks.
Feng et al. [23] proposed a privacy-preserving mobility pre-
diction framework via federated learning. In [24], the authors
proposed a FL-based mobility-aware proactive edge caching
approach for vehicular networks. Qolomany et al. [25] pro-
posed a particle swarm optimization approach to optimize the
hyperparameter settings for the local machine-learning models
in the FL framework, and demonstrated its capacity on a traffic
prediction task. Qi et al. [26] introduced blockchain technique
into FL for privacy-preserving traffic flow prediction.

While many insightful privacy-preserving and FL-based
approaches for traffic forecasting have been proposed, most
of them are based on relatively simple temporal models such
as [20]. In this paper, the proposed FL framework is devised
for GNN-based models, especially for privacy-preserving of
topological information, which attempts to fill the research
gap.

III. PRELIMINARY

In this section, we first define the problem of traffic fore-
casting on transportation networks. Then, the problem of traffic
forecasting with graph-based deep learning models in the FL
framework is introduced.

A. Traffic Speed Forecasting on Transportation Networks

A transportation network can be represented by an undi-
rected graph, G = (V, E ,A), where V is the set of nodes
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which we define each node as a road segment and E is the
set of edges, and A ∈ RN×N is the adjacency matrix of G
where N is the number of nodes in G. ∀ vi, vj ∈ V , if vi and
vj are connected, (vi, vj) ∈ E and entry Aij = 1 (otherwise
Aij = 0). Denote the traffic speed observed on G as a graph-
wide feature matrix X ∈ RN×Q where Q is the number
of incorporated features of each node. Let vector X t ∈ RN
denote the traffic speed observation at time t, the problem can
be thus defined as learning a function f(·) to develop traffic
speed predictions X̂ t+1, X̂ t+2, . . . , X̂ t+s in the following s
time stamps, given historical traffic speed observations of T
stamps X t−T+1,X t−T +2, . . . ,X t.

B. Federated Learning on Transportation Networks
In this work, we construct the FL framework for traffic

speed forecasting on the transportation network. We define
a “global-network” G as the entire transportation network
of an area. This area is divided and conquered by sev-
eral organizations (e.g., companies, governments). Let O =
{O1, O2, . . . , Op} denote the organization set where p is the
number of organizations. Thus, each organization operates
a local-network G∗i of G. Let G∗ = {G∗1 ,G∗2 , . . . ,G∗p} de-
note the local-network set. The respective databases of these
organizations are Di, which collect traffic speed data from
their operated local-networks. Particularly, we have Di =
(X ∗i , ZG∗

i
) where X ∗i and ZG∗

i
are the historical traffic speed

data and topological information (e.g., road connectivity)
collected from local-network G∗i , respectively. Additionally,
this study is based on the assumption that the organizations
do not have overlapping regions and data with each other, i.e.,
for any two organizations i and j, Di ∩ Dj = ∅. This is a
common assumption among the literature, see [20], [23], [27]
for some examples. Our goal is to train a powerful model
in the cloud that can predict the global-network-wide traffic
speed with local traffic speed data from Di. Nonetheless, due
to privacy concerns, these organizations are prohibited from
sharing the raw traffic data and the topological information of
their operated local-networks (i.e., they can only access their
respective local-networks).

To achieve our goal under the aforementioned privacy con-
straints, it is required to adopt a Secure Parameter Aggregation
Mechanism (SPAM) [4] in the FL framework. Particularly,
the graph-based deep learning model Mi constructed by
each organization Oi computes a group of updated model
parameters φi utilizing the local training data from Di and
the topological information of the corresponding local-network
G∗i . After all the organizations complete the parameters’ up-
dating, their respective parameters are uploaded to the cloud.
The global model is finally developed by aggregating these
uploaded parameters. SPAM guarantees that no traffic speed
data leakage happens among the organizations.

IV. METHODOLOGY

This section first introduces the proposed Attention-based
Spatial-Temporal Graph Neural Networks (ASTGNN) as the
local graph deep learning-based model for traffic speed fore-
casting. Then, we elaborate on our proposed FL framework
FASTGNN (Federated-ASTGNN).

TABLE I
DEFINED SYMBOLS IN THE PROPOSED FRAMEWORK

Symbol Definition
FASTGNN framework

G Transportation network.
V Set of road segments (nodes) in G.
N Number of road segments (nodes).
E Set of road intersections (edges).
A Adjacency matrix of G.
Ã Privacy-preserved A.

Ãaggre Aggregated Ã.
T Number of time stamps in the past.
s Number of time stamps in the future.

Xt Observed speeds of all roads at time t.
X̂t Forecasted speeds of all roads at time t.
f(·) Learnable function to forecast the speed in the future.
p Number of participated organizations.
O Set of participated organizations.
G∗ Set of local-networks.
Di Database of organization Oi.
Mi Local model of organization Oi.
φi Parameters of local model Mi.

ZG∗i Topological information of local network G∗i .

Z
(pp)
G∗i

Privacy-preserved ZG∗i .
M Number of random projection.

ASTGNN model
ht Network-wide feature vector at time t.
F Dimension of the vector ht.

Attvi←vj The attention score that vi perceive from vj .
W,a, U Weight matrix (vector).

concat(·) Concatenation operation.
αt
vi←vj

Attention coefficient of Attvi←vj .
α̂t
vi←vj

Filtered Attvi←vj for connected node pair.
N(i) Set of immediately adjacent nodes of node vi.
rt Reset gate vectors of GRU at time t.
zt Update gate vectors of GRU at time t.

σ(·) Non-linear activation function.

Fig. 1. The framework of ASTGNN.

A. Attention-based Spatial-Temporal Graph Neural Networks

For the network-wide traffic speed forecasting problem,
we propose ASTGNN as the local forecasting model. As
illustrated in Fig. 1, ASTGNN consists of four modules: fea-
ture embedding module, spatial dependency capture module,
temporal dependency capture module, and prediction output
module.

1) Feature Embedding Module: Feature embedding mod-
ule transforms the input time-series data into feature vectors,
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which can be processed by the spatial dependency capture
module afterward. Specifically, given a sequence (length =
T ) of network-wide time-series speed values X 1,X 2, . . . ,X T ,
each feature vector can be formulated as

ht = [X t−F+1,X t−F+2, . . . ,X t], (1)

where ht ∈ RF×N is the network-wide feature vector at time
t; F is the dimension of the vector whose physical meaning is
equivalent to the past window size (i.g., T ). That means that
we actually embed a sequence of speed data whose length
is the same as the past window size into a feature vector.
In this way, we can obtain a sequence of feature vectors
h1, h2, . . . , hT .

2) Spatial Dependency Capture Module: Spatial Depen-
dency Capture Module is used to exploit the spatial depen-
dency among different road segments (nodes) in the transporta-
tion network (graph). We construct this module by following
Graph Attention Networks (GAT) [13], which utilizes the
attention mechanism to obtain the spatial correlations. The
operational steps of this module can be described as the
following steps:

i. We commence by computing the attention score. For any
ordered pair of nodes (vi, vj) ∈ V , the attention score vi
perceive from vj can be formulated as

Attvi←vj
= aT · concat(Whti,Whtj), (2)

where Attvi←vj
denotes the attention score, hti and htj are

feature vector of node vi and vj at time t respectively,
W ∈ RFh×F is a weight matrix which can transform
feature vector into a higher-level dimension Fh, concat(·)
denotes the concatenation operation, a ∈ R2Fh

is a weight
vector, and ·T denotes the transposition operation.

ii. Subsequently, we use activation functions to normalize the
attention score and obtain the attention efficient, which
can be expressed as

αt
vi←vj

= softmax (LeakyReLU (eij)) , (3)

where αt
vi←vj

∈ [0, 1] denotes the attention coefficient,
LeakyReLU (·) denotes the Leaky Rectified Linear Units
activation function, and softmax (·) denotes the softmax
activation function.

iii. Next, we filter the obtained attention coefficient to survive
the attention coefficients only for connected node pair,
which can be formulated as

α̂t
vi←vj

= αt
vi←vj

�Aij , (4)

where Aij is the entry for node vi and vj in the adjacency
matrix A, and � denotes the Hadamard product. We
can deduce that when Aij = 1, the attention coefficient
survives, otherwise be discarded (i.g., equal to 0).

iv. Finally, the attention coefficients are employed to update
the feature vector of node vi, which can be formulated as

ĥti = σ

 ∑
j∈N(i)

α̂t
vi←vj

W ohtj

 , (5)

where ĥti is the updated feature vector of node vi at time
t which is regarded as the output of this module, N(i) is
the set of immediately adjacent nodes of node vi, W o is
a weight matrix.

3) Temporal Dependency Capture Module: The temporal
dependency capture module is designed to learn the potential
temporal dependency of data. We employ two layers of GRU
neural networks in this module. GRU introduces a collection
of gating units and cell states to process the input information,
which can solve the gradient vanishing problem in the learning
process. The gating units have two types, i.e., reset gate r and
update gate z. Given the input data xt1, the hidden layer output
htg can be computed by

zt =σ
(
W (z)xt + U (z)ht−1g

)
, (6)

rt =σ
(
W (r)xt + U (r)ht−1g

)
, (7)

h̃tg = tanh
(
Wxt + rt � Uht−1g

)
, (8)

htg = zt � ht−1g + (1− zt)� h̃tg, (9)

where W (z), W (r), U (z), U (r) are the weight matrices con-
necting xt and ht−1g to two gates, h̃tg is the intermediate
candidate activation.

4) Prediction Output module: A fully-connected layer is
employed in this module to produce the traffic speed of future
s time stamps. Such a linear transformation conducted by a
full-connected layer is formulated as

ˆX t+1, ˆX t+2, . . . , ˆX t+s =W (fc)htg + b, (10)

where W (fc) ∈ RC×s is a weight matrix that maps the hidden
output of GRU in the temporal module to s prediction output,
and b is the bias.

B. Federated Learning Framework for ASTGNN

In the previous subsection (Section IV-A), we introduce
the proposed ASTGNN model for traffic speed forecasting.
In this subsection, we introduce the proposed FL framework
for ASTGNN, namely, FASTGNN. As illustrated in Fig. 2),
each organization operates an ASTGNN as the local model,
whose input is traffic speed data and topological information
from its local traffic database. The DP-based adjacency matrix
preserving algorithm is implemented at the organization end
to protect the local topological information. The cloud server
is in charge of aggregating the preserved local topological in-
formation and ASTGNN model parameters and broadcast the
aggregated ones. The detailed elaboration of related algorithms
can be seen in the following.

1) FASTGNN Communication Protocol: As defined in
Section III-B, each organization can only access its own
traffic data and local-network topological information for local
models’ training. One concern with training local models
using only local-network topological information is that local-
networks do not contain all the essential topological informa-
tion for computing attention coefficients by ASTGNN. This

1xt is the output of the spatial module, i.e., ĥt, we use xt here to avoid
confounding notations
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Fig. 2. The framework of FASTGNN.

Algorithm 1 Communication Protocol of FASTGNN
1: The organizations apply a privacy-preserving algorithm

to its local-network topological information and obtain
preserved topological information Z(pp)

G∗
i

2: The organizations upload Z
(pp)
G∗
i

to the cloud server, the

latter aggregate the uploaded Z
(pp)
G∗
i

and develop one of

the global-network Z(pp)
G

3: The cloud distributes the copies of the global model and
Z

(pp)
G to all organizations, and each organization trains its

copies using local data
4: Each organization uploads the learned model parameters
φi to the cloud. Since the private data and topological
information are not shared in the entire process, the
privacy-preserving is guaranteed

5: The cloud server aggregates φi by SPAM as introduced in
Section III-B to build a new global model. Subsequently,
the new model is distributed to the organizations

issue may lead to the final low learning effect (the related
experimental comparison will be demonstrated in Section
V-C). Thus it is requisite to feed the topological information
of the global-network to the local models for obtaining better
results. To achieve this without compromising the privacy
of local-network topological information, we propose a FL
communication protocol as presented in Algorithm 1.

We then detail the adopted privacy-preserving algorithm
for topological information, the local-network topological in-
formation aggregation mechanism, SPAM, and the entire FL
process.

2) Differential Privacy-based Adjacency Matrix Preserv-
ing: In this work, we regard the adjacency matrix of local-

network as the carrier of topological information. We introduce
a Differential privacy (DP) -based approach to provide privacy-
preserving to the adjacency matrix while keeping its utility in
the learning process of ASTGNN. This approach is based on
[28], which leverages the theories of DP and random matrix
to the adjacency matrix privacy-preserving. Specifically, given
the to be preserved adjacency matrix A ∈ RN×N , the
algorithm is presented below:

i. Generate two Gaussian random matrices R(p) ∈ RN×M
and R(q) ∈ RM×M where M is the number of random
projection [29] that have M � N . In this way, each
entry of R(p) and R(q) are independently sampled from
Gaussian distribution N1(0, 1/M) and N2(0, σ

2)2

ii. Compute the projection matrix A(p) ∈ RN×M by A(p) =
AR(p). By doing this, each row of A is projected from a
high dimension RN into a low dimension RM.

iii. Perturb A(p) with the Gaussian random matrix R(q) by
Ã(p) = A(p) + R(q). We then project Ã(p) back to the
dimension RN×N by Ã = Ã(p)(R(q))T . Matrix Ã is the
output of the algorithm.

The perturbed matrix Ã is regarded as the preserved one
of the original adjacency matrix A. The top eigenvectors
of the adjacency matrices are mainly utilized in GNN-based
models to compute the spatial correlations [13], [30]. The
adoption of random projection as described in Step i preserves
the top eigenvectors of A, which provides a guarantee for
the effectiveness of the preserved adjacency matrix in the
subsequent ASTGNN predictor. Furthermore, this algorithm
enables us to involve a small amount of random perturbation,
which further improves the utility of the perturbed matrix. In
the case studies of this work, we empirically set M = 10
and σ = 0.5. Regarding the mathematical analysis of this
algorithm, interested readers can refer to [28].

3) Local-network Topological Information Aggregation
Mechanism: Step ii of the FASTGNN communication pro-
tocol requires the cloud server to aggregate the uploaded
Z

(pp)
G (i.e., the preserved adjacency matrix). Thus, we pro-

pose an adjacency matrix aggregation mechanism. Given a
group of uploaded preserved local-network adjacency matrices
{Ã1, Ã2, . . . , Ãp} where p is the number of involved local-
networks, their corresponding sizes are {N1,N2, . . . ,Np}.
Since the sizes of these matrices are different, we first use a
matrix alignment approach to make them possess the same size
while keeping their own topological information. Specifically,
as shown in Fig. 3, we align the dimensions of them to the
size of the global-network (i.g., N ) by using zero-padding and
thus obtain a group of aligned matrices {Ã(a)

1 , Ã(a)
2 , . . . , Ã(a)

p }
where ∀Ã(a)

i , Ã(a)
i ∈ RN×N . Further, considering the signif-

icance of the connectivity (i.g., edges) among different local-
networks (as the shadowed region shown in Fig. 3) for learning
the attention, we construct a random connection for them.
Specifically, we generate a Gaussian random matrix with the
same size as the shadowed regions using the approach as
introduced in Section IV-B2 and symmetrically replace the
original parts. Finally, we obtain the aggregated preserved

2With abuse of notation, σ in this subsection exclusively denotes the
variance of distribution N2.
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Fig. 3. Ajacency matrix alignment. The red frame highlights the padding
entries. The shadowed region highlights the entries entailing the connectivity
among objective local-network and other local-networks.

adjacency matrix by adding the aligned matrices together,
which can be formulated as

Ã(aggre) =

p∑
i

Ã(a)
i , (11)

Particularly, denote [Ã(aggre)] as the entry of Ã(aggre), we
threshold its value by

∀
∣∣∣[Ã(aggre)]

∣∣∣ < p

M
, [Ã(aggre)]← 0. (12)

4) Learning Process of FASTGNN: In FASTGNN, we use
FedAvg [31] algorithm as SPAM to aggregate the uploaded
parameters and develop a new global model. The FedAvg
algorithm can be formulated as

φt+1
(g) =

1

p

p∑
i=1

φi, (13)

where φi is the parameter of local model, p is the number of
organizations (i.g., the number of local models), and φt+1

(g) is
the aggregated parameter for the new global model. FedAvg
algorithm can help train high-quality global with a small cost
of communication.

Finally, as shown in Algorithm 2, the entire learning process
of each round in FASTGNN consists of three steps:

i. The cloud server broadcasts the global
model with initial parameters φ0g =

(W,W o,W (z),W (r), U (z), U (r),W (fc)) and the
preserved adjacency matrix of global-network Ã(aggre)

to the organizations.
ii. Each organization Oi trains its local data X ∗i using
Ã(aggre) and updates the initial local model parameter
φti for El epochs of an optimizer with mini-batch size B
to obtain φt+1

i .
iii. The cloud server aggregates each organization’s φt+1

i

through FedAvg algorithm and obtains a new global
model with the aggregated parameter φt+1

(g) .

Algorithm 2 FASTGNN
Input: Organizations O = {O1, O2, . . . , Op}; The number of

rounds (i.g., global epochs), E; The preserved adjacency
matrix of global-network, Ã(aggre); The size of local mini-
batch, S; The number of local epochs, El; The learning
rate, η; The gradient optimizer for ASTGNN, L(·, ·).

Output: Parameter φi.
Server (k,ω):

1: initialize global model parameters φ0g
2: broadcast Ã(aggre) to organizations
3: for each round t = 1, 2, . . ., t ∈ E do
4: for each organization O ∈ O in parallel do
5: φt+1

(g) ← LocalModelUpadate (O,Ã(aggre),φt(g))
6: end for
7: φt+1

(g) ←
1
p

p∑
i=1

φi

8: end for
LocalModelUpadte (O,Ã(aggre),φt(g)):

1: B ← (divide X ∗〉 in to batches of size B)
2: for each epoch e = 1, 2, . . ., e ∈ El do
3: for each batch b = 1, 2, . . ., b ∈ B do
4: φi ← φi − η · L(Ã(aggre), φi)
5: end for
6: end for
7: return φi to cloud server

5) Theoretical Discussion of DP-based Adjacency Matrix
Preserving on Model Performance: Many existing studies
have demonstrated that the noise added by DP algorithms to
the data may lead to degenerated learning and further affect the
model performance [32], [33]. In our proposed approach, the
noises are added to the adjacency matrices rather than the data.
In the learning process of each local model, the adopted aggre-
gated DP-processed global adjacency matrix Ã(aggre) is used
to only filter the attention coefficients as described in (4). Since
Ã(aggre) approximates a binary matrix (i.e., (0,1)-matrix)
after DP processing and aggregation, the values of attention
coefficients will not be affected significantly. Thus, promising
final model performance can be guaranteed. Furthermore, the
existing performance loss is due to the disparity between the
original global topology and the new global topology after DP
processing and aggregation on the adjacency matrices. The
related case study will be demonstrated in Section V-C.

V. EXPERIMENTS

In this work, we propose FASTGNN as a FL framework
to address the traffic speed forecasting problem with privacy-
preserving concern. To fully assess the performance of the
proposed framework, we carry out three comprehensive case
studies on a real-world traffic dataset. First, we investigate the
accuracy of forecasting speed using the proposed framework
and the comparison with baselines. Subsequently, an ablation
study is conducted to evaluate the critical components of
FASTGNN. Lastly, we exhibit the performance of FASTGNN
under different organization numbers.
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TABLE II
COMPARISON OF TRAFFIC SPEED FORECASTING ACCURACY.

Approach Accuracy Graph-based Privacy-preserving
RMSE MAE MAPE (%)

HA 7.20 4.01 10.61 − −
ARIMA 9.45 6.33 16.10 − −
LSVR 8.28 4.53 11.49 − −
DCRNN 7.14 4.11 9.92 X −
Graph WaveNet 6.23 3.51 9.03 X −
STGCN 5.80 3.47 8.56 X −
FASTGNN 5.83 3.50 8.36 X X

A. System Configuration

1) Dataset Description and Pre-processing: PeMSD7 is the
experimental dataset in this work, which is a public dataset
collected from Caltrans Performance Measurement System
(PeMS) in District 7 of California. We select 228 out of 39000
sensor stations in PeMSD7 to construct the final dataset as a
tailored one for our case studies. The time interval of speed
data is set to 5 minutes, and the period of the dataset is
from May 1st to June 30th of 20123. Linear interpolation is
employed to recover the missing data when there exist missing
data points. We apply Z-score to normalize the data before
input to the models. The training, validation, and testing sets
are correspondingly constructed for supervised learning, each
of which contains 60%, 20%, and 20% of all data, respectively.

To simulate the distributed training scenario of FASTGNN,
we first construct the adjacency matrix of the entire traffic
network (i.e., global-network) A by

[Aij ] =

1, if i 6= j and exp

(
−dist(vi, vj)

ς2

)
> ε

0, otherwise.
, (14)

where [Aij ] is the entry of A that denotes the connectivity
between node vi and node vj , which is decided by their
Euclidean space distance dist(vi, vj); ε and ς2 are the user-
controlled parameters that control the density of graph, and
we set their values to 0.5 and 10, respectively. Note that since
we define the network as an undirected graph, the adjacency
matrix is symmetrical, i.e., [Aij ] = [Aji]. Then, we partition
the global-network into p sub-networks for corresponding
p organizations randomly. Let Vu,Vv denote any two sub-
networks’ node sets, we have Vu ∩ Vv = ∅. We can thus
obtain sub-networks’ adjacency matrices {A1,A2, . . . ,Ap}.

2) Experiment Setting: The proposed FASTGNN is im-
plemented with PyTorch, and all tests are conducted on
a computing server with an Intel(R) Xeon(R) E5-2620 v4
CPU and eight nVidia GeForce RTX 2080 Ti GPUs. When
training FASTGNN, the objective dimension of the weight
matrix W in (2) (i.e., Fh) is set to 144, and the numbers
of neurons in the two GRU layers are set to 64 and 256,
respectively. All the neural networks-based models are trained
with Adam optimizer for 50 epochs, and the batch size and

3Only weekdays’ data is contained to avoid atypical traffic, which is in
accordance with the literature. See [30], [34] for examples

learning rate are set to 50 and 1e−3, respectively4. Unless
otherwise stated, we simulate FASTGNN with the number of
organizations p = 4. In terms of the traffic speed forecasting,
the past time window is 60 minutes (i.e., 12 timestamps), and
we use these to predict speed in the next 45 minutes (i.e.,
nine timestamps). With regards to accuracy comparison, we
adopt Root Mean Square Error (RMSE), Mean Absolute Error
(MAE), and Mean Absolute Percentage Error (MAPE) as the
metrics to evaluate the forecasting accuracy of all approaches.
Particularly, MAPE is considered as the most referable one
among the three metrics (see [35], [36] for examples), which
can be defined as,

MAPE =
1

n

n∑
i=1

∣∣∣∣∣Xi − X̂i

Xi

∣∣∣∣∣× 100%, (15)

where Xi and X̂i are the observed and the forecasted traffic
speeds at time i, respectively.

B. Accuracy of Forecasting Traffic Speed

We first investigate the accuracy of forecasting traffic speed
with PeMSD7 dataset. Specifically, FASTGNN is compared
with the following baselines and state-of-the-art approaches:
1) Historical Average (HA), 2) Autoregressive Integrated Mov-
ing Average (ARIMA), 3) Linear Support Victor Regression
(LSVR), 4) Diffusion Convolutional Recurrent Neural Net-
work (DCRNN) [37], 5) Graph WaveNet [38], and 6) Spatio-
Temporal Graph Convolutional Networks (STGCN) [30]. To
make a fair comparison, we configure the baseline approaches
with the default hyperparameters in their respective literature.

The forecasting results are presented in Table II for 45-
min ahead traffic speed forecasting. From the simulation
results, traditional approaches, i.e., HA, ARIMA, and LSVR,
have the worst performance with relatively large forecasting
errors, which implies their shortage in handling nonlinearity.
Comparatively, the graph deep learning-based approaches, i.e.,
DCRNN, Graph WaveNet, STGCN, and FASTGNN, perform
much better than the conventional approaches with an aver-
age improvement of 2.08 (RMSE), 1.34 (MAE), and 3.76%
(MAPE). Particularly, the proposed FASTGNN can achieve the
same performance level as STGCN, whose accuracy of MAPE
even surpasses STGCN by 0.20%. This demonstrates the

4For FASTGNN, it denotes that the global epoch size E = 50 and the size
of local mini-batch S = 50.
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TABLE III
COMPARISON OF ABLATION TESTS.

FASTGNN V1 V2 V3 ASTGNN

RMSE 5.83 5.51 9.29 7.98 5.33
MAE 3.50 3.20 7.27 6.10 3.21
MAPE (%) 8.36 8.03 16.10 12.33 7.84

efficacy of the adopted technical scheme for spatial-temporal
learning. Furthermore, FASTGNN is the only one among these
approaches that can both deal with spatial information and
achieve privacy-preserving through a decentralized training
scheme in the proposed FL framework. It indicates that
FASTGNN can achieve outstanding performance and privacy-
preserving at the same time.

Besides, to better illustrate the forecasting performance of
FASTGNN, we present and compare the forecasting curves
developed by FASTGNN, HA, and STGCN. As shown in Fig.
4, FASTGNN can produce traffic speed prediction with a small
deviation and accurately reflect the oscillation on ground truth.

C. Ablation study on FASTGNN

To evaluate the several scheme designs in the proposed
FASTGNN, we conduct ablation studies in this subsection.
Specifically, we first transform FASTGNN into the following
variants by adding particular constraints and compare their
MAPE performance with FASTGNN:
• FASTGNN-V1: Without the differential privacy-based

adjacency matrix preserving approach.
• FASTGNN-V2: Without local-networks aggregation, i.e.,

each local model of FASTGNN can only access the local-
network other than the global-network for training.

• FASTGNN-V3: Without considering the connectivity
among different local-networks when constructing the
aggregated global-network.

• ASTGNN: Naive ASTGNN model without FL as intro-
duced in Section IV-A.

The results are presented in Table III. Comparing FAST-
GNN and ASTGNN, it can be seen that performance de-
generation due to the adoption of FL’s decentralized training
is not significant, where the accuracy only suffers from a
0.52% MAPE penalty. This indicates that the combo of
adopted techniques can ensure the learning effect of ASTGNN
in FL framework under privacy-preserving. Especially when
we compare FASTGNN with FASTGNN-V1, the minuscule
difference of accuracy performance implies that the adoption
of differential privacy-based adjacency matrix preserving ap-
proach does not veritably weaken the topological informa-
tion of the network and further affect the spatial learning
effect of the model, which proves the effectiveness of this
approach. By contrast, a large performance gap is observed
between FASTGNN and FASTGNN-V2, where there is a
7.74% accuracy difference. Since in FASTGNN-V2 the local
model can only access the local-network for training where
the latter can only provide limited topological information
for training a generalized model applicable to the global-
network, this results in the striking performance degenera-

TABLE IV
THE ACCURACY OF FASTGNN WITH DIFFERENT ORGANIZATION

NUMBERS.

p = 2 4 6 8 12 16

RMSE 5.73 5.83 5.96 6.03 6.18 6.22
MAE 3.31 3.50 3.58 3.76 4.05 4.36
MAPE (%) 8.02 8.36 8.76 9.25 9.79 10.38

TABLE V
COMPARISON OF TRAFFIC SPEED FORECASTING ACCURACY ON

METR-LA.

Approach Accuracy

RMSE MAE MAPE (%)

HA 7.80 4.16 13.02
ARIMA 12.11 6.01 15.04
LSVR 12.01 5.92 14.81
DCRNN 7.24 3.41 9.67
Graph WaveNet 6.49 3.01 9.22
STGCN 6.11 2.98 8.84
FASTGNN 6.42 3.03 9.15

tion. It can also shed light on the necessity of adopting a
local-network aggregation mechanism to construct a shareable
global network for each local training. A similar conclusion
can be drawn when comparing FASTGNN and FASTGNN-
V3. FASTGNN-V3 performs worse than FASTGNN by 3.97%
MAPE. While in the setting of FASTGNN-V3, the local-
networks are aggregated, the connectivity among them is
absent. This results in the declined performance of V3.

D. Performance Comparison of FASTGNN Under Different
Organization Numbers

In the above tests, the default organization number is set
as p = 4. Nonetheless, the number of organizations in real
scenarios may vary a lot. It is interesting to investigate the
impact of different organization numbers on the performance
of FASTGNN. In this experiment, we set p ∈ {2, 4, 6, 8, 12}
for FASTGNN and compare the accuracy performance under
this group of settings.

As the results are shown in Table IV, we can observe
the number of organizations has a negative correlation with
the performance of FASTGNN. More organizations involve
increasing groups of local topological information and model
parameters, which makes it challenging for cloud sever to
perform the aggregation algorithms. We can draw the same
conclusion from the convergence curves as shown in Fig. 5,
where the larger number of involved organizations, the more
difficult the learning curves converge. It is worth mentioning
that no matter how many organizations are involved in our
simulation, their respective data and topological information
are obtained by dividing the same global-network (c.f. Section
V-A1). This may make the results contrast not distinct. We will
conduct refined tests in future work.
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Fig. 4. Traffic speed forecasting curves in a day. (a) and (b) present results from two different sensor stations, respectively.
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Fig. 5. Visualization of training process for 30 global epochs with different
organization numbers.

E. Generalization Ability

In the above case studies, we test the performance of
FASTGNN on PeMSD7 dataset. To assess the generalization
ability of FASTGNN, we adopt another dataset METR-LA to
examine the forecasting accuracy of FASTGNN. METR-LA
is a public dataset, which contains traffic data collected from
207 loop detectors in the highway of Los Angeles County.
The experiment setting are configured as the same as it on
PeMSD7 for the sake of fairness.

Table V presents the simulation results. For the results, we

can observe that conventional machine learning approaches
(i.e., ARIMA and LSVR) perform worse than on PeMSD7.
This implies that the data of METR-LA is more unstable and
changeable than that of PeMSD7. In this context, FASTGNN
can still obtain matched performance compared with the three
state-of-the-art baselines, where the MAPE of FASTGNN is
only 0.31% higher than that of STGCN. This indicates that
FASTGNN is capable of handling data with different time-
series fluctuation and topology.

VI. CONCLUSION

In this work, we propose the FASTGNN framework for
traffic speed forecasting with federated learning for privacy
preservation. FASTGNN integrates a GNN-based model AST-
GNN for local training and a novel FL strategy to protect the
shared topological information. Specifically, we introduce a
number of techniques, including a differential privacy-based
adjacency matrix preserving approach and a local-network
topological information aggregation mechanism, which can
make the local topological information be aggregated into a
shareable global-network without sharing their raw informa-
tion. We assess the performance of FASTGNN on a PeMS
dataset and compare it with state-of-the-art approaches. The
simulation results show a satisfactory forecasting accuracy for
FASTGNN. We also conduct an ablation study on FASTGNN
to validate the efficacy of its components. Furthermore, we
investigate the performance of FASTGNN under different
organization numbers.

In the future, we plan to focus on more fine-grained re-
search on FASTGNN, including the communication overhead,
generalization ability on different datasets, etc.



1551-3203 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2021.3055283, IEEE
Transactions on Industrial Informatics

10

REFERENCES

[1] W. He, G. Yan, and L. D. Xu, “Developing vehicular data cloud services
in the iot environment,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 2, pp. 1587–1595, 2014.

[2] J. Zhang, F.-Y. Wang, K. Wang, W.-H. Lin, X. Xu, and C. Chen, “Data-
driven intelligent transportation systems: A survey,” IEEE Transactions
on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1624–1639,
2011.

[3] Y. Wang, D. Zhang, Y. Liu, B. Dai, and L. H. Lee, “Enhancing
transportation systems via deep learning: a survey,” Transportation
research part C: emerging technologies, vol. 99, pp. 144–163, 2018.

[4] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 10, no. 2, pp. 1–19, 2019.

[5] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang, “Differentially
private asynchronous federated learning for mobile edge computing in
urban informatics,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 3, pp. 2134–2143, 2020.

[6] B. Li, Y. Wu, J. Song, R. Lu, T. Li, and L. Zhao, “Deepfed: Feder-
ated deep learning for intrusion detection in industrial cyber-physical
systems,” IEEE Transactions on Industrial Informatics, pp. 1–1, 2020.

[7] A. M. Nagy and V. Simon, “Survey on traffic prediction in smart cities,”
Pervasive and Mobile Computing, vol. 50, pp. 148–163, 2018.

[8] X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning
traffic as images: a deep convolutional neural network for large-scale
transportation network speed prediction,” Sensors, vol. 17, no. 4, p. 818,
Apr. 2017.

[9] H. Yu, Z. Wu, S. Wang, Y. Wang, and X. Ma, “Spatiotemporal recurrent
convolutional networks for traffic prediction in transportation networks,”
Sensors, vol. 17, no. 7, p. 1501, Jun. 2017.

[10] C. Chen, K. Li, S. G. Teo, X. Zou, K. Wang, J. Wang, and Z. Zeng,
“Gated residual recurrent graph neural networks for traffic prediction,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 485–492, 2019.

[11] S. Fang, Q. Zhang, G. Meng, S. Xiang, and C. Pan, “Gstnet: Global
spatial-temporal network for traffic flow prediction,” in Proceedings of
the Twenty-Eighth International Joint Conference on Artificial Intelli-
gence, pp. 2286–2293, 7 2019.

[12] C. Zhang, J. J. Yu, and Y. Liu, “Spatial-temporal graph attention net-
works: A deep learning approach for traffic forecasting,” IEEE Access,
vol. 7, pp. 166246–166256, 2019.
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