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Abstract— Existing traffic flow forecasting technologies
achieve great success based on deep learning models on a
large number of datasets gathered by organizations. However,
there are two critical challenges. One is that data exists in the
form of “isolated islands”. The other is the data privacy and
security issue, which is becoming more significant than ever
before. In this paper, we propose a Federated Learning-based
Gated Recurrent Unit neural network framework (FedGRU)
for traffic flow prediction (TFP) to address these challenges.
Specifically, FedGRU model differs from current centralized
learning methods and updates a universe learning model
through a secure aggregation parameter mechanism rather than
sharing data among organizations. In the secure parameter
aggregation mechanism, we introduce a Federated Averaging
algorithm to control the communication overhead during pa-
rameter transmission. Through extensive case studies on the
Performance Measurement System (PeMS) dataset, it is shown
that FedGRU model can achieve accurate and timely traffic
prediction without compromising privacy.

I. INTRODUCTION

Urban residents, taxi drivers, business sectors, and govern-

ment agencies have an immediate requirement on accurate

and timely traffic flow information [1]. Such information

can help the traffic sector to alleviate traffic congestion,

control traffic light, and improve the efficiency of traffic

operations and residents for developing better traveling plans

[2]. Traffic flow prediction (TFP) is to provide such traffic

flow information by using historical traffic flow data to

predict the future [3]. TFP is regarded as a critical technology

of the deployment of Intelligent Transportation System (ITS)

subsystems, particularly the advanced traveler information,

online car-hailing, and traffic management systems.

In the previous TFP literature, Convolutional Neural Net-

works (CNN), Recurrent Neural Networks (RNN), and their

variants have achieved gratifying results in predicting traffic

flow. Such centralized machine learning methods are typi-

cally utilized to predict traffic flow by training with sufficient

sensor data from mobile phones, cameras, radars, etc. In this

context, these methods generally require data aggregation

among public agencies and private companies. Indeed, the
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general public witnessed partnerships among public agencies

and mobile service providers such as DiDi Chuxing, Uber,

and Hellobike in recent years. These partnerships extend the

capability and services of companies that provide real-time

traffic flow forecasting, traffic management, car sharing, and

personal travel applications.

Nevertheless, it is often overlooked that the data may

contain sensitive private information (e.g., user’s traveling

track, home address etc.), which leads to potential privacy

leakage. Therefore, different organizations should store their

user data locally and avoid exchanges to protect users’

privacy, which makes it challenging to train an effective

model with the valuable data. While the assumption that

an organization owns all the data is widely made in the

literature, the acquisition of massive user data is not possible

in real applications respecting privacy. To predict traffic flow

in ITS without compromising privacy, reference [4] intro-

duced a privacy control mechanism based on “k-anonymous

diffusion,” which can complete taxi order scheduling with-

out leaking user privacy. Le Ny et al. in [5] proposed a

differentially private real-time traffic state estimator system

to predict traffic flow. However, these privacy-preserving

methods cannot achieve the trade-off between accuracy and

privacy, rendering degraded system performance.

To address the data privacy leakage issue, we incorporate a

privacy-preserving machine learning technique named feder-

ated learning (FL) [6] for TFP in this work. In FL, distributed

organizations cooperatively train a globally shared model

through their local data without exchanging the raw data.

To accurately predict traffic flow, we propose an enhanced

federated learning algorithm with a Gated Recurrent Unit

neural network (FedGRU) in this paper. Through FL and

its aggregation mechanism [7], FedGRU aggregates model

parameters from different geographically located organiza-

tions to build a global deep learning model under privacy

well-preserved conditions. Furthermore, contributed by the

outstanding data regression capability of GRU neural net-

works, FedGRU can achieve accurate and timely traffic flow

prediction for multiple organizations.

The main contributions are summarized as follows:

• We propose a novel privacy-preserving algorithm that

integrates emerging federated learning with a practical

GRU neural network for traffic flow prediction. Such

an algorithm provides reliable data privacy preservation

through a locally training model without raw data

exchange.

• We introduce a Federated Averaging (FedAVG) algo-

rithm in the secure parameter aggregation mechanism



which runs Stochastic Gradient Descent (SGD) on a

selected subset of all organizations to aggregate model

parameters to update the global model.

• FedGRU is a standard, stable, and extensible FL frame-

work for ITS. As a privacy-preserving framework, it not

only achieves accuracy close to traditional models but

also can be combined with other and future state-of-the-

art deep learning models.

The remainder of this paper is organized as follows.

Section II reviews the literature on short-term TFP and

privacy research in ITS. Section III defines the Centralized

TFP Learning problem and Federated TFP Learning problem

and proposes a security parameter aggregation mechanism.

Section IV presents the FedGRU framework. Section V

discusses the experimental results. Concluding remarks are

described in Section VI.

II. RELATED WORK

A. Traffic Flow Prediction

Traffic flow prediction (TFP) has always been a hot issue

in ITS, which can improve the efficiency of real-time traffic

control and urban planning. Although researchers have pro-

posed many new models and methods, they can generally be

divided into two categories: parametric and non-parametric

models.

1) Parametric models: Parametric models predict future

data by capturing existing data feature within its parameters.

M. S. Ahmed et al. in [8] proposed the Autoregressive Inte-

grated Moving Average (ARIMA) model in the 1970s to pre-

dict short-term freeway traffic. Since then, many researchers

have proposed variants of ARIMA such as Kohonen-ARIMA

(KARIMA), subset ARIMA, seasonal ARIMA, etc. These

models further improve the accuracy of TP by focusing on

the statistical correlation of the data.

2) Non-parametric models: With the improvement of

data storage and computing, non-parametric models have

achieved great success in TFP [9]. Davis and Nihan et

al. in [10] proposed k-NN model for short-term traffic

flow prediction. Lv et al. in [1] first applied the stacked

autoencoder (SAE) model for TFP. Furthermore, SAE adopts

a hierarchical greedy network structure to learn non-linear

features and has better performance than support vector ma-

chines (SVM) [11] and feed-forward neural network (FFNN)

[12]. Considering the temporal correlation of the data, Ma et

al. in [13] and Tian et al. in [14] applied Long Short-Term

Memory (LSTM) to achieve accurate and timely TFP. Fu

et al. in [15] first proposed GRU neural network methods

for TFP. In recent years, due to the success of convolutional

networks and graph networks, Yu et al. in [16], [17] proposed

graph convolutional generative autoencoder to address the

real-time traffic speed estimation problem.

B. Privacy Research in Intelligent Transportation Systems

In ITS, many models and methods rely on training data

from users or organizations. However, with the increasing

privacy awareness of users and organizations, direct ex-

changes of data between users or organizations are advocated

against the law. Brian et al. in [18] designed a data sharing

algorithm based on information-theoretic k-anonymity prin-

ciple. However, this algorithm may leak privacy during data

sharing operations. Furthermore, the EU has promulgated

GDPR, which means that as long as the organization has the

possibility of revealing privacy in the data sharing process,

such data transactions violate the law.

Although researchers have proposed some privacy-

preserving methods to predict traffic flow in the literature,

they still cannot meet the requirements of GDPR. In this

paper, we explore a powerful privacy-preserving method with

GRU for traffic flow prediction.

III. PROBLEM DEFINITION

We use the term “organization” throughout the paper to

describe entities in TFP, such as urban agencies, private

companies, and detector stations. We use the term “client” to

describe computing nodes that correspond to one or multiple

sensors in FL and use the term “device” to describe the sen-

sor in the organizations. Let C = {C1, C2, · · · , Cn} and O =
{O1, O2, · · · , Om} denote the client set and organization set

in ITS, respectively. Each client has q organizations. Each

organization has ki devices and their respective database Di.

We aim to predict the number of vehicles with historical

traffic flow information from different organizations without

sharing raw data and privacy leakage. We design a secure

parameter aggregation mechanism as follows:

Secure Parameter Aggregation Mechanism: Detector

station Oi has N devices, and the traffic flow data collected

by the N devices constitute a database Di. The deep

learning model constructed in Oi calculates updated model

parameters pi using the local training data from Di. When

all detector stations finish the same operation, they upload

their respective pi to the cloud and aggregate a new global

model.

According to Secure Parameters Aggregation, no traffic

flow data is exchanged among different detector stations. The

cloud aggregates the gradients uploaded by organizations to

obtain a new global model without exchanging data.

In this paper, t and vt represent the t-th timestamp in the

time-series and traffic flow at the t-th timestamp, respec-

tively. Let f(·) be the traffic flow prediction function, the

centralized and federated TFP learning problems are defined

as follows:

Centralized TFP Learning: Given organizations O, each

organization’s devices ki, and an aggregated database D =
D1 ∪D2 ∪D3 ∪ · · · ∪DN , the centralized TFP problem is

to calculate vt+s = f(t + s,D), where s is the prediction

window after t.

Federated TFP Learning: Given organizations O and

each organization’s devices ki, and their respective database

Di, the federated TFP problem is to calculate vt+s = fi(t+
s,Di) where fi(·, ·) is the local version of f(·, ·) and s is

the prediction window after t. Subsequently, the produced

results are aggregated by a secure parameter aggregation

mechanism.





Algorithm 1: Federated Averaging (FedAVG) Algo-

rithm.

Input: Organizations O = {O1, O2, · · · , ON}. B is

the local mini-batch size, E is the number of

local epochs, α is the learning rate, ∇L(·; ·)
is the gradient optimization function.

Output: Parameter ω.

1 Initialize ω0 (Pre-trained by a public dataset);

2 foreach round t = 1, 2, · · · do

3 {Ov} ← select volunteer from organizations O
participate in this round of training;

4 Broadcast global model ωo to organization in

{Ov};
5 foreach organization o ∈ {Ov} in parallel do

6 Initialize ωo
t = ωo;

7 ωo
t+1 ( ωo

t+1 ← LocalUpdate(o, ωo
t );

8 ωt+1 ←
1

|{Ov}|

∑

o∈Ov

ωo
t+1;

9 LocalUpdate(o, ωo
t ): // Run on organization o ;

10 B ← (split So into batches of size B);

11 if each local epoch i from 1 to E then

12 if batch b ∈ B then

13 ω ← ω − α · ∇L(ω; b);

14 return ω to cloud

(ii) Each organization o trains data locally and updates ωo
t

for E epochs of SGD with mini-batch size B to obtain

ωo
t+1, i.e., ωo

t+1 ← LocalUpdate(o, ωo
t );

(iii) The cloud aggregates each organization’s ωt+1 through

a secure parameter aggregation mechanism.

FedAVG algorithm is a critical mechanism in FedGRU to

reduce the communication overhead in the process of trans-

mitting parameters. This algorithm is an iterative process.

For the i-th round of training, the models of the organizations

participating in the training will be updated to the new global

one.

2) Federated Learning-based Gated Recurrent Unit neu-

ral network algorithm: FedGRU aims to achieve accurate

and timely TFP through combining FL and GRU without

compromising privacy. The overview of FedGRU is shown

in Fig. 1. It consists of four steps:

i) The cloud model is initialized through pre-training that

utilizes domain-specific public datasets without privacy

concerns;

ii) The cloud distributes the copy of the global model to

all organizations, and each organization trains its copy

on local data;

iii) Each organization uploads model updates to the cloud.

The entire process does not share any private data, but

instead sharing the encrypted parameters;

iv) The cloud aggregates the updated parameters uploaded

by all organizations by the secure parameter aggregation

mechanism to build a new global model, and then

distributes the new global model to each organization.

Algorithm 2: Federated Learning-based Gated Re-

current Unit neural network (FedGRU) algorithm.

Input: {Ov} ⊆ O, X , Y and H . The mini-batch size

m, the number of iterations n and the

learning rate α. The optimizer SGD.

Output: J(ω), ω and W r
v ,W

z
v ,W

h
v .

1 According to X , Y , H and Equations (8)–(12),

initialize the cloud model J(ω0), ω0, W r0
v , W z0

v ,

Wh0

v , and H0
v ;

2 foreach round i = 1, 2, 3, · · · do

3 {Ov} ← select volunteer from organizations to

participate in this round of training ;

4 while gω has not convergence do

5 foreach organization o ∈ Ov in parallel do

6 Conduct a mini-batch input time step

{xv
(i)}m

i=1;

7 Conduct a mini-batch true traffic flow

{yv
(i)}m

i=1;

8 Initalize ωo
t+1 = ωo

t ;

9 gω ← ∇ω
1
m

∑m

i=1

(

fω(x
(i)
v )− y

(i)
v

)2
;

10 ωo
t+1 ← ωo

t + α · SGD(ωo
t , gω);

11 Update the parameters W r0
v , W z0

v , Wh0

v ,

and H0
v ;

12 Update reset gate r and update gate z;

13 Collect the all parameters from {Ov} to update

ωt+1. (Referring to the Algorithm 1.);

14 return J(ω), ω and W r
v ,W

z
v ,W

h
v

Given voluntary organization {Ov} ⊆ O and ov ∈ {Ov},
referring to the GRU neural network in Section IV-A, we

have:

ztv = σ(W (zv) + U (zv)ht−1
v ) (8)

rtv = σ(W (rv) + U (rv)ht−1
v ) (9)

ht′
v = tanh(Wxt

v + rtv ⊙ Uht−1
v ) (10)

ht

v = ztv ⊙ ht−1
v + (1− ztv)⊙ ht

′

v (11)

where X = {x1
v, x

2
v, ..., x

n
v}, Y = {y1v , y

2
v , ..., y

n
v }, H =

{h1
v, h

2
v, ..., h

n
v} denote ov’s input time series, ov’s output

time series and the hidden state of the cells, respectively.

According to Equation 3, the objective function of FedGRU

is as follows:

argmin
ω

J(ω) = min
∑|Dv|

i=1

∑T

t=1

1

2
(yd − ytv)

2
(12)

The pseudocode of FedGRU framework is presented in

Algorithm 2.

V. EXPERIMENTS

A. Dataset Pre-Processing and Evaluation Method

In this experiment, the proposed FedGRU is applied to

the real-world data collected from the Caltrans Performance

Measurement System (PeMS) [20] database for performance

demonstration. The traffic flow data in PeMS database was






