FedOVA: One-vs-All Training Method for
Federated Learning with Non-IID Data

Yuanshao Zhu,' Christos Markos,? Ruihui Zhao,> Yefeng Zheng,3 and James J.Q. Yu!”
!Department of Computer Science and Engineering, Southern University of Science and Technology
2Faculty of Engineering and Information Technology, University of Technology Sydney
3Tencent Jarvis Lab
yasozhu @ gmail.com, christos.k.markos @ gmail.com, zacharyzhao@tencent.com,
yefengzheng @tencent.com, *yujq3 @sustech.edu.cn

Abstract—Federated Learning (FL) is a privacy-oriented
framework that allows distributed edge devices to jointly train
a shared global model without transmitting their sensed data
to centralized servers. FL aims to balance the naturally con-
flicting objectives of obtaining massive amounts of data while
protecting sensitive information. However, the data stored lo-
cally on each edge device are typically not independent and
identically distributed (non-IID). Such data heterogeneity poses a
severe statistical challenge for the optimization and convergence
of the global model. In response to this issue, we propose
Federated One-vs-All (FedOVA), an efficient FL algorithm that
first decomposes a multi-class classification problem into more
straightforward binary classification problems and then combines
their respective outputs using ensemble learning. Experiments
on several public datasets show that FedOVA achieves higher
accuracy and faster convergence than federated averaging and
data sharing. Furthermore, our approach can support practical
settings with a large number of clients (up to 1000 clients) in
FL.

I. INTRODUCTION

Federated Learning (FL) [1] is a collaborative model train-
ing scheme that leverages large amounts of data distributed
over multiple edge devices, without the latter sharing locally
sensed data with any centralized entity. Concretely, edge
devices (or clients) are asked to iteratively upload model
updates to a centralized server, thereby jointly training a
shared global model [2], [3]. On the other hand, the server is
responsible for coordinating the distributed training process: it
aggregates the local model updates uploaded by the clients in
each training round, using them to optimize the global model.
FL has spawned a series of emerging applications for on-
device inference, such as Google Keyboard [4], smart voice
assistants [5], and anomaly detection for time series data [6].

Recently, a communication-efficient model update aggrega-
tion algorithm, i.e., Federated Averaging (FedAvg) [1] (see
Algorithm 1) was introduced to address the communication-
related challenges in the FL framework. However, FL still
faces statistical challenges. On the one hand, the FedAvg-based

This work was supported by the General Program of Guangdong Basic
and Applied Basic Research Foundation No. 2019A1515011032 and by the
Guangdong Provincial Key Laboratory of Brain-inspired Intelligent Compu-
tation No. 2020B121201001. James J.Q. Yu is the corresponding author.

978-0-7381-3366-9/21/$31.00 ©2021 IEEE

variant aggregation algorithms rely on Distributed Stochas-
tic Gradient Descent (D-SGD) [7], which is widely used
to iteratively train deep learning models under the setting
of independent and identically distributed (IID) sampling of
training data. The purpose of using the IID sampling method to
learn from the training samples is to ensure that the stochastic
gradient is an unbiased estimate of the full gradient [8], [9].
It is unrealistic to ensure that the local data on each edge
client is always IID in practice. On the other hand, research
indicates that data heterogeneity, i.e., non-IID distributions,
may decelerate convergence [10], which is not conducive to
obtaining a robust shared model.

Many factors can lead to the non-IID distribution, in
this paper, we focus on addressing the problem of non-IID
distribution caused by missing partial classes. There exist
many works on mitigating the non-IID issue of FL, which
address this issue by designing additional framework mecha-
nisms. For example, a data sharing mechanism is designed
in [7], [8] to improve FedAvg for non-IID data settings.
It involves distributing a small amount of globally shared
data containing examples of each class, thereby introducing a
trade-off between accuracy and centralization. However, this
approach unintentionally discloses the client’s private data as
the dataset is publicly shared, hence violating FL’s privacy
protection requirement. Another popular solution is to design
a performance-oriented client selection mechanism to improve
the performance of FL on non-IID data. [11] proposed FedCD,
an aggregation method that can clone and delete models to
dynamically group devices with similar data, thereby selecting
the clients with high-quality updates to mitigate the non-
IID issue. However, the server needs to calculate the model
quality score in each round to decide whether to clone or
delete it, which introduces additional computational overhead
to the system. [12] proposed Favor, an experience-driven game
framework that can intelligently select clients to participate
in each round of training to balance the bias introduced by
non-IID data and accelerate convergence. Nonetheless, in real-
world applications, applying reinforcement learning within
resource-constrained FL environments may be impractical.

Motivated by the above challenges, we aim to answer the
following question: how to design a novel training algorithm

Fig. 1. The OVA method decomposes an n-class classification task into n
binary classification tasks.

from the perspective of learning paradigm under the limitation
of clients’ non-IID data to achieve model performance com-
parable to that of the benchmark FL in [1] without bringing
new problems to FL? Recall that, the non-IID problem in
FL means that each client cannot obtain enough labels of
multiple classes through data sharing to train a high-precision
multiclass classification model, which limits the scalability
of the FL framework. This implies that we cannot directly
train a multiclass model on the client. To this end, our insight
is to decompose a federated multiclass classification task on
non-1ID data into multiple binary classification tasks on the
client-side by using the One-vs-All method. Therefore, in
this paper, we design the Federated One-vs-All (FedOVA)
algorithm by incorporating the idea of the One-vs-All method
and the FedAvg training scheme. Such an algorithm can
work effectively with the non-1ID data in FL by decomposing
the multi-classification task into multiple binary classification
tasks.

In this work, we design a simple but elegant training
algorithm FedOVA to address the non-IID problem in FL.
Different from existing solutions, FedOVA addresses the non-
IID problem from the perspective of learning. Specifically,
the benefits that FedOVA brings to the framework are: (1)
It improves the performance and convergence speed of the
FL framework; (2) It does not bring additional operations
to the FL framework. In addition, we conduct a series of
comprehensive case studies on several public datasets (i.e.,
F-MNIST, CIFAR-10, and keyword spotting datasets) that em-
pirically demonstrate the effectiveness of the proposed method.
Specifically, FedOVA significantly outperforms FedAvg on
established computer vision and natural language processing
tasks, in both classification accuracy and convergence time.

II. PRELIMINARIES

In this section, we provide an overview of the federated
learning pipeline and the One-vs-All method.

A. Federated Learning Pipeline

In FL, we consider a server S and a set of clients K
participating in training of a shared global model F'(-). We
assume that each client holds an IID or non-IID dataset
Dy. Let {(w;x) be the loss function at the client side for
data sample x, where w € R? denotes the model’s trainable

Algorithm 1 Federated Averaging (FedAvg) Algorithm
Server:
1: K is the client set
2: Initialize parameters w
3: for eachround t =1,...,7T do
4. K + (Sample a subset of clients from K)

0

5: for each client k£ € IC; in parallel do
6: wi™! < ClientUpdate (k, w®)
7 end for
t+1 1 t+1
8w e > wy
ke,
9: end for

ClientUpdate (&, w):
1: n is the learning rate, Dy is the local dataset and V/(-)
is the local loss function.

2: for each epoch e =1,...,FE do

3: B < (split Dy, into batches of size B)
4: for batch b € B do

5: w4+ w—nVLi(w)

6: end for

7: end for

8:

return w to server

parameters. Thus, we let L(w) = E,.p[f(w;z)] be the loss
function at the server side. In particular, the client holds the
data locally and only periodically exchanges updates with the
server to optimize the following objective function:

K
ngnﬁ(w), where £(w) := Zpkﬁk(w), (1)
k=1

where K is total number of clients and pj is a user-defined
term indicating the relative influence of each client on the
global model, with 3, pp = 1.

To minimize the above objective function, the server and
clients cooperatively run a T-round FL protocol. The main
steps of this FL training protocol are follows:

o Step 1 (Initialization): In the t¢-th training round, the
server randomly selects a subset of clients K; from the
client set KC to participate in training, and sends them the
initialized global model parameters w®.

o Step 2 (Local Training): Each client executes the
ClientUpdate(k,w!) function to obtain the model up-
dates. Using a local optimizer such as Adam, each client
trains the received global model w? on the local dataset
Dy, and uploads the updates Aw}, to the server.

o Step 3 (Aggregation): The server collects all updates
uploaded by the clients and runs an aggregation algorithm
(e.g., FedAvg [1], Algorithm 1) to obtain the optimized
global model w*.

Note that the above steps are repeated in the same order until
the global model converges.

B. One-vs-All Method

For an n-class classification task, we assume that it has a
labeled dataset D = {z;,y;}_, where y; is the label of =;

and y; € {1,2,...,n}, N is the total number of samples.
As shown in Figure 1, the OVA method needs to train n
binary classifiers f;(-),7 € {1,2,...,n}, and each classifier
discriminates one class from others on the dataset D. Each
classifier can be expressed as follows:

fi(z) = P(y = i|z;wi), (2)

where w; is the parameters of classifier f;(-). When we need to
request a prediction of a new instance, OVA gives us result by
using these n binary classifiers to obtain the confidence that the
instance belongs to the current class. Specifically, we select the
one with the highest confidence as the final prediction result
for this new instance. Such a method is formalized as follows:

j= argmax fi(). 3)
ie{1,2,....,n}

C. Discussion

It is important to note that, although OVA is a general-
purpose approach to multi-class classification that has been
used for decades, existing OVA-based works have focused
on centralized learning. In this work, we instead leverage
distributed OVA to tackle the open problem of distributed
multi-class classification under non-IID data. Specifically, we
take advantage of the independence of each binary classifier in
OVA and incorporate it into FL to propose a novel algorithm,
called FedOVA. This algorithm is able to solve the non-IID
data problem in FL efficiently, which will be described in
Section III. To the best of our knowledge, this is the first
work that integrates FL and OVA to address FL. with non-IID
data.

However, there are some essential differences between cen-
tralized learning and federated learning which raise several
design challenges: (1) Different from the server in centralized
learning that can access the raw data, the server in federated
learning cannot access the raw data of the client due to
privacy protection requirements, and thus cannot distribute
appropriate classifiers f; to the client; (2) Due to the limitation
of the client’s computing resources, when introducing the OVA
method, we should not impose too much additional computing
burden on the client and server.

III. FEDERATED ONE-VS-ALL ALGORITHM

In this section, we present a detailed training procedure on
how to combine OVA and FL, i.e., FedOVA (see Algorithm
2). Then we explain why FedOVA can address the statistical
challenges of federated optimization with non-IID data in a
multi-classification task.

A. Overview of FedOVA Algorithm

We assume that there is a server responsible for coordination
and a client set K in FL where each client has a local dataset
Dy, k € {1,2,...,K} and the total number of classes is n.
The training process of FedOVA is to repeat the following
steps for communication round 1 to 7"

o Step 1 (Initialization): For each round of training, the

server randomly selects a subset /C; of client set K to

participate in FL training with the fraction C. Then, the
server broadcasts the binary classifier model parameters
wf to these clients, where ¢ denotes the classifier ID, i €
{1,2,...,n}.

e Step 2 (Local Training): After receiving the binary
classifier model parameters w,f, the client initializes some
of the OVA component classifier models according to its
own local data label distribution, i.e., w!, <« w!. For
example, for F-MNIST dataset, if client & ,only has label
“1” and label “2”, then this client initializes parameters
of classifiers f; and f5. For each binary classifier, the
goal is to minimize the following objective function:

1
argﬁgnﬁ(w)zm S Uy filzsw), @

{zi,y:}€Dx

where D), denotes the local dataset that contains training
samples (z;,y;), w is the parameter of binary classi-
fier, and £(-,-) is a loss function (i.e., £(y;, f(zi;w))
= 1(2;"w—y;)). Each client performs stochastic gradient
descent to optimize the classifier by using the local
dataset and then sends the updates back to the server.

o Step 3 (Aggregation): Since each client trains only some
of the classifiers, not returning parameters for all of
them, and each classifier is independent of each other, we
can perform asynchronous updates to reduce the compu-
tational burden. The server groups returned parameters
according to their corresponding binary classifier models
and then aggregates the parameters of each group G;. For

model f;, the aggregation process can be formulated as:

1
Wit = @i Z why. (5)
" keGt

Note that the above steps are repeated until the final ensemble
classifier achieves convergence.

FedOVA aims to train an expert binary classifier for each
class, hence solving the problem of difficulty in the conver-
gence of training multi-classifier models with non-1ID data.

B. Strengths of the FedOVA Algorithm

Conventional OVA combined with FL can be used to solve
non-IID data problems due to the following advantages of
FedOVA:

o Independent classifiers. FedOVA is based on the idea
of ensemble learning to combine a series of classifiers.
Unlike the multi-class classifier ensemble, each classifier
of FedOVA is specialized in distinguishing a specific
class. such a design can ensure low error correlation
among different classifiers, thus enhancing the diversity
among classifiers and improving the overall classification
accuracy [13].

o Competitive classification accuracy. As an ensemble
learning scheme, FedOVA is capable of achieving high
classification accuracy. [14], [15] has shown that when
its binary classifiers are well tuned, OVA can achieve

-——

- (!
: Model update > 1 1 |Classifier !
! Model weight | | |forclass I [
:Clientl@\ Lo :
| S o - | | |
[S~ I || Classifier :
1 So o .
: A | | |for class 2 argmax f; (x) :
. - 1
:CllentZ@ —-=_ i i o !
: 1 !
1 J . .
| coe vy @ i~ | Classifier Predicted label: y |
| .- Binary 1,/| for class n !
! Client k @ classifier | !
| P
| 1
: Local dataset : l\ K
1 | T -
FL training Predicting

Fig. 2. Overview of the FedOVA algorithm, which trains n binary classifiers and selects the output of the most confident classifier as the prediction result.

Algorithm 2 Federated One-vs-All (FedOVA) Algorithm

Server:
1: K is the client set
2: Initialize n component models {f1,..., fn}
3: Initialize parameters of all component models w
4: for eachround t =1,...,7T do

0
m

5. K; < (Sample a subset of clients from K)
6: Send the parameters w!, i € {1,2,...,n} to K,
7. for each client k € K; do
8: ClientUpdate (k, w})
9: end for
10. for each group of component model
fi€{fi,-- fu} do
1: witt o 2 Wik
" keGt
12: end for
13: end for
Client:

1: for each component model f; € {f1,..., fn} do

2: Update component model parameters w; based on its
local data

3: end for

4: return w; to server

accuracy on par with any other multi-classification ap-
proaches.

o No requirement for all sample classes. Since each
component classifier in FedOVA assigns samples that
do not belong to the current class to others, missing
negative sample classes does not significantly affect the
classifier performance [16]. Besides, when new label
classes emerge, FedOVA only needs to create a new
classifier for each new emergent label, which allows
adaptation to new environments without drastic changes
during FL training.

o Asynchronous updates. There is no redundancy among
the component binary classifiers in FedOVA, each is
trained without affecting the other. Therefore, during the
FL training process, component binary classifiers can be
independently updated once they have finished training,
thus increasing client-server communication efficiency.

IV. EXPERIMENTS EVALUATION

In this section, we conduct simulation experiments on three
representative public datasets to validate the performance of
FedOVA under non-IID data setting. All simulation exper-
iments were developed using Python 3.7 and PyTorch 1.7
[17] and run with an Nvidia GeForce RTX2080 Ti GPU and
an Intel® Xeon® Silver CPU. All experiments are executed
sequentially to mimic distributed training.

A. Experimental Setup

We conduct extensive experiments on three established
datasets, namely F-MNIST [18], CIFAR-10 [19] and the
Speech Commands dataset [20]. The first two are image
datasets with 10 classes and have been widely adopted for
FL benchmarks. The Speech Commands dataset contains 35
classes, where each sample is a 1-second long audio stored in
the WAV format. For consistency, we select 10 commonly used
keywords to generate a KeyWord Spotting (KWS) dataset.
Each dataset is split into training and test sets. We assign
training samples to K = 100 clients according to non-
IID configurations and train n = 10 Convolutional Neural
Networks (CNNs) as binary classifiers. By default, we select
20% of clients for training at each round, i.e., C = 0.2. Each
client trains on its local dataset Dy for 5 epochs with a batch
size of 15 (i.e., ' = 5 and B = 15). The specific experimental
settings of the dataset are as follows:

o F-MNIST: F-MNIST consists of 60, 000 training samples
and 10,000 test samples. We employ an architecture in

Classifier-1 Classifier-3 Classifier-5 Classifier-7 Classifier-9 —— FedOVA
Classifier-2 Classifier-4 Classifier-6 Classifier-8 Classifier-10 —— FedAvg
90 20
90 80
80
.80 —~70 —
X X X70
270 60 <
5 50 5 2 £ 50
40 2 g 40
30 30 30
20 20 20
10 10 10
0 50 100 150 200 250 300 0 50 100 150 200 250 300 0 50 100 150 200 250 300
Communication round Communication round Communication round
Fashion-MNIST CIFAR-10 KWS
Fig. 3. Performance of FedOVA with non-IID data, each client has samples from only two classes, non-I1ID-2.
TABLE I
ACCURACY COMPARISON UNDER DIFFERENT NON-IID CONFIGURATIONS (%).
Dataset F-MNIST CIFAR-10 KWS
Configuration non-IID-2 non-IID-3 non-IID-5 non-IID-2 non-IID-3 non-IID-5 non-IID-2 non-IID-3 non-IID-5
FedAvg 84.3 85.8 89.9 63.5 66.3 72.5 80.5 82.4 86.0
FedOVA 894 90.3 91.7 67.8 69.1 73.2 84.6 86.4 89.2

[1] using two convolutional layers with 16 and 32 chan-
nels, respectively. Each convolutional layer is followed
by a 2 x 2 max pooling layer and activated using the
ReLU function.

o CIFAR-10: We adopt a popular CNN architecture
VGG11 [21] on CIFAR-10 and distribute the 50,000
training images to K clients for simulation.

o KWS: We select 10 keywords (i.e., “one”, “two”, “three”,
“four”, “five”, “down”, “left”, “right”, “stop”, “go”) from
the Speech Commands dataset as a KWS dataset. We
extract 50 x 16 Mel Frequency Cepstral Coefficients
(MFCCs) as features by sampling each audio. We thereby
obtain 21,452 samples, of which 20,000 are used for
training and the rest for testing. We utilize a 3-layer CNN
architecture with 16, 32, and 64 channels, respectively.
Each convolutional layer is followed by a 1 x 2 max
pooling layer. Finally, there is a fully-connected layer
with 256 units. All convolution and fully-connected layers
are ReL.U-activated.

Remark: All of our deep learning architectures here are not
aimed at the state-of-the-art results, as our goal is to evaluate
our algorithms rather than obtain the best accuracy on every
task.

For the non-IID configuration, we use the parameter 1 <
! < 10 to indicate the number of unique labels held by the
client. For instance, non-1ID-2 means that each client has 2
distinct labels. This is achieved by grouping the training data
by label and dividing each group into (I x K)/n partitions,
finally assigning [partitions with different labels to each client.

B. FedOVA Performance

First, we evaluate the performance of FedOVA with non-IID
data against FedAvg. For experimental consistency, we adopt
the same data distribution method for each dataset and send
the training data to 100 clients according to the non-I1ID-2
configuration. Our experimental results are shown in Figure
3. We can clearly observe that FedOVA is able to achieve
higher accuracy than FedAvg on all dataset tasks, and is able to
achieve faster and more stable convergence. This result shows
that FedOVA significantly outperforms FedAvg in the same
scenario, which also demonstrates FedOVA’s excellent perfor-
mance in the context of non-IID data distribution. Meanwhile,
Figure 3 also provides a strong explanation for such good
performance of FedOVA. FedOVA trains 10 binary classifiers
asynchronously, each with high accuracy in distinguishing
the current class from other classes. Moreover, the internal
binary classifiers in FedOVA are independent of each other
and have low error correlation, and the binary classifiers are
insensitive to missing samples in some classes. Therefore, a
multi-classifier robust to non-IID scenarios can be constructed
by ensemble these component classifiers.

To better investigate the performance of FedOVA under non-
IID data distributions, we conduct a series of simulations with
different non-IID configurations, i.e., we test non-1ID-[for [€
{2,3,5}. The simulation results are demonstrated in Table I.
Whether using the FedOVA or FedAvg algorithm, the accuracy
improve as the number of label classes in the client’s local
dataset increases. However, there are still two points worth
of attention: The first is that different non-IID configurations

TABLE II
COMPARE TO THE METHOD [8] WITH DIFFERENT DATA SHARING RATE
(B). ACCURACY IS REPORTED IN PERCENTAGE (%).

Dataset F-MNIST CIFAR-10 KWS
Data sharing (8 = 5%) 86.3 65.3 82.6
Data sharing (8 = 10%) 88.1 67.5 83.5
FedOVA 89.4 67.8 84.6

have a dramatic impact on the performance of the FedAvg
algorithm but do not have a significant influence on FedOVA.
The second is that the FedOVA is also able to achieve superior
performance compared to FedAvg in each non-IID scenario.
These two observations fully illustrate the robustness of our
method for non-IID environments.

C. FedOVA vs. Data Sharing

In this subsection, we compare our approach with the data
sharing approach in [8], which is one of the most popular
methods for performing federated learning with non-IID data.
We set the number of clients X = 100, C = 0.2, and
use non-IID-2 as our experimental configuration. We define
B = Dgpare/ Dy as the sharing rate, which represents the ratio
of the data shared by the server to the local data. We randomly
sample the global dataset to get the shared dataset Dy and
send it to each client, where Dy = Dy, x 3. Then, we conduct
simulation experiments to compare the performance of the data
sharing strategy and FedOVA under different sharing rate /3
settings. As shown in Table II, our approach still outperforms
the data sharing strategy at a sharing rate of 5% and 10%.
Only when the server has a large global dataset and shares
more data with the client, the performance of data sharing
strategy can outperform FedOVA. However, the increased data
sharing leads to a higher risk of privacy leakage, clearly
not in compliance with the privacy-preserving requirements.
Furthermore, if (is too large, the generalization performance
of the model is undermined. In contrast, our approach does
not require sharing any data and provides complete privacy
protection.

D. Large Scale Clients and Small Scale Samples

Considering the large number of clients that are common
in FL, we evaluate the performance of the FedOVA algorithm
with a large-scale setting and compare it with FedAvg. We
hold the total number of training samples constant and increase
the number of clients significantly (i.e., K increases from 100
to 1000 in F-MNIST and CIFAR-10; since the amount of
KWS data is too limited, we set K = 500), so the amount
of local data per client will be reduced accordingly. For each
round of training, we set C' = 0.2 and select K x C clients to
participate. We then set the average of the last 20 rounds as
the final accuracy. The experimental results are summarized
in Table III. It appears that the use of FedAvg leads to a
substantial decrease in accuracy as the number of clients
increases; crucially, this is not the case with FedOVA. The
reason is that our method adopts the idea of OVA to train a

TABLE III
ACCURACY VS. NUMBER OF CLIENTS K (%).

Dataset F-MNIST CIFAR-10 KWS

K 100 1000 100 1000 100 500
FedAvg 843 831 635 612 805 759
FedOVA 894 889 67.8 663 84.6 824

60 — E=5B=15
9]
550 -------- E=5,B=50
E=5,B=100
40 ---- E=5,B=w
304, ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300

Communication round
(a) Accuracy comparison with different batch size settings.

-------- E=1,B=15
— E=5,8=15
40 E=20,8=15
304 ‘ ‘ ‘ ; ‘
0 50 100 150 200 250 300

Communication round
(b) Accuracy vs. the number of training epochs.

Fig. 4. Performance of FedOVA with different settings of the epochs (£) and
batch size (B).

number of binary classifiers and the increase in the number
of clients also increases the robustness of the binary classifier
to different environments. In this way, it is still possible to
achieve a competitive results with fewer data.

E. Hyperparameter Analysis

In this subsection, we investigate the effect of different
hyperparameter settings to empirically validate the feasibility
of our algorithm in cases that resembles real-world scenarios.
We conduct experiments on the F-MNIST dataset, mainly to
study the impact on the accuracy and convergence of the
algorithm with different training epochs E of the client and
the batch size B. For illustration purposes, we smoothen the
curve and set the accuracy of the next 10 rounds as the value
of the curve on each communication round.

We can see from Figure 4(a) that when fixing the same
training epoch (E = 5) for the client, the algorithm can
achieve a similar accuracy rate with different batch size
(B =15, 50, 100, oo; oo means training with all the data on
the client in one epoch). However, as the batch size in each

epoch gradually increases the convergence of the algorithm
will slow down. This result indicates that performing more
gradient descent updates during each training round helps
improve the convergence speed of the model, enabling the
model to reach a satisfactory performance in a short period
of time. The results in Figure 4(b) further verify this point.
When we reduce the training epoch, there is also a decrease
in the convergence speed of the model in the same period of
time. The above results are also in agreement with [1].

However, we can not use a large epoch and a small batch
size without limitations, which increase the computational
burden of the edge devices. In addition, a large number of
epoch (i.e., the client does not communicate with the server
for a long time) can increase the risk of the local model be
attacked.

V. CONCLUSION

In this paper, we propose FedOVA, an OVA-based FL train-
ing algorithm that significantly improves the performance of
FL in non-IID data scenarios. In our extensive experiments on
established computer vision and speech recognition datasets,
FedOVA consistently outperforms FedAvg under various non-
IID configurations. Our results also show that FedOVA con-
verges faster with less fluctuation in accuracy, thereby reducing
the negative impact of non-IID data on model convergence.
Finally, our experimental results suggested that FedOVA can
be applied to large-scale user scenarios, especially in the case
of a large number of clients (up to 1000 clients) with small
amounts of data each.

A limitation to FedOVA is that it will not be possible to train
binary classifiers when each client has only one type of label,
since training each binary classifier requires both positive and
negative samples. In fact, all existing methods will perform
poorly in this extreme context.

In future work, we will further analyze the characteristics
of each component classifier in FedOVA and attempt to find
an optimal training approach to improve the performance of
each model. Furthermore, we will continue to investigate how
to combine this scheme with asynchronous training to obtain
better adaptation to real scenarios.

REFERENCES

[1] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial Intelligence and Statistics. PMLR, 2017, pp. 1273—
1282.

[2] P. Abeysekara, H. Dong, and A. K. Qin, “Distributed machine learning
for predictive analytics in mobile edge computing based iot environ-
ments,” in 2020 International Joint Conference on Neural Networks
(IJCNN), 2020, pp. 1-8.

[3] S. Ji, S. Pan, G. Long, X. Li, J. Jiang, and Z. Huang, “Learning
private neural language modeling with attentive aggregation,” in 2019
International Joint Conference on Neural Networks (IJCNN), 2019, pp.
1-8.

[4] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beaufays, S. Augen-
stein, H. Eichner, C. Kiddon, and D. Ramage, “Federated learning for
mobile keyboard prediction,” arXiv preprint arXiv:1811.03604, 2018.

[5]1 D. Leroy, A. Coucke, T. Lavril, T. Gisselbrecht, and J. Dureau, “Feder-
ated learning for keyword spotting,” in IEEE International Conference
on Acoustics, Speech and Signal Processing. 1EEE, 2019, pp. 6341-
6345.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]

[21]

Y. Liu, S. Garg, J. Nie, Y. Zhang, Z. Xiong, J. Kang, and M. S.
Hossain, “Deep anomaly detection for time-series data in industrial
I0T: A communication-efficient on-device federated learning approach,”
IEEE Internet of Things Journal, 2020.

F. Sattler, K.-R. M. Simon Wiedemann, and W. Samek, “Robust and
communication-efficient federated learning from non-i.i.d. data,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 9,
pp. 3400-3413, 2020.

Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-IID data,” arXiv preprint arXiv:1806.00582, 2018.
C. Briggs, Z. Fan, and P. Andras, “Federated learning with hierarchical
clustering of local updates to improve training on non-IID data,” in 2020
International Joint Conference on Neural Networks (IJCNN), 2020, pp.
1-9.

X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of FedAvg on non-1ID data,” in International Conference on Learning
Representations, 2020.

K. Kopparapu, E. Lin, and J. Zhao, “FedCD: Improving performance in
non-IID federated learning,” in KDD Workshop on Artificial Intelligence
of Things, New York, NY, USA, 2020.

W. Hao, D. N. Zakhary Kaplan, and B. Li, “Optimizing federated learn-
ing on non-IID data with reinforcement learning,” in /EEE Conference
on Computer Communications, 2020, pp. 1698-1707.

S. Hashemi, Z. M. Ying Yang, and M. Kangavari, “Adapted one-versus-
all decision trees for data stream classification,” IEEE Transactions on
Knowledge and Data Engineering, vol. 21, no. 5, pp. 624-637, 2009.
R. Rifkin and A. Klautau, “In defense of one-vs-all classification,”
Journal of Machine Learning Research, vol. 5, no. Jan, pp. 101-141,
2004.

M. Galar, A. Fernandez, E. Barrenechea, H. Bustince, and F. Herrera,
“An overview of ensemble methods for binary classifiers in multi-class
problems: Experimental study on one-vs-one and one-vs-all schemes,”
Pattern Recognition, vol. 44, no. 8, pp. 1761-1776, 2011.

Z. Zhang, B. Krawczyk, S. Garcia, A. Rosales-Perez, and F. Herrera,
“Combining one-vs-one decomposition and ensemble learning for multi-
class imbalanced data,” Knowledge-Based Systems, vol. 106, no. Aug.15,
pp. 251-263, 2016.

A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
PyTorch,” in Advances in Neural Information Processing Systems, Long
Beach, CA, USA, 2017.

H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-MNIST: A novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Technical Report, University of Toronto, 2009.

P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

