
FedVAE: Trajectory privacy preserving based on
Federated Variational AutoEncoder

Yuchen Jiang1, Ying Wu1, Shiyao Zhang2, and James J.Q. Yu3
1Department of Computer Science and Engineering, Southern University of Science and Technology, China

2Research Institute for Trustworthy Autonomous Systems, Southern University of Science and Technology, China
3Department of Computer Science, University of York, United Kingdom

E-mails: {12232418, 12059004}@mail.sustech.edu.cn, zhangsy@sustech.edu.cn, james.yu@york.ac.uk

Abstract—The use of trajectory data with abundant spatial-
temporal information is pivotal in Intelligent Transport Systems
(ITS) and various traffic system tasks. Location-Based Services
(LBS) capitalize on this trajectory data to offer users person-
alized services tailored to their location information. However,
this trajectory data contains sensitive information about users’
movement patterns and habits, necessitating confidentiality and
protection from unknown collectors. To address this challenge,
privacy-preserving methods like K-anonymity and Differential
Privacy have been proposed to safeguard private information in
the dataset. Despite their effectiveness, these methods can impact
the original features by introducing perturbations or generating
unrealistic trajectory data, leading to suboptimal performance in
downstream tasks. To overcome these limitations, we propose a
Federated Variational AutoEncoder (FedVAE) approach, which
effectively generates a new trajectory dataset while preserving the
confidentiality of private information and retaining the structure
of the original features. In addition, FedVAE leverages Varia-
tional AutoEncoder (VAE) to maintain the original feature space
and generate new trajectory data, and incorporates Federated
Learning (FL) during the training stage, ensuring that users’ data
remains locally stored to protect their personal information. The
results demonstrate its superior performance compared to other
existing methods, affirming FedVAE as a promising solution for
enhancing data privacy and utility in location-based applications.

Index Terms—Federated learning, privacy preserving, trajec-
tory generation, variational autoencoder

I. INTRODUCTION

With the increasing popularity of GPS-embedded devices,
data collection, and data mining technologies, a vast amount
of trajectory data has been generated [1]. This data is widely
utilized in various domains, including travel time prediction
[2] and location-based services [3]. These applications serve
as crucial components in enabling the adaptive development
of ITS. However, the collection of trajectory data raises signif-
icant privacy concerns as it may contain sensitive information
about users’ daily lives [4]. If the data is not adequately
protected, it can be susceptible to misuse and unauthorized
access, potentially leading to privacy breaches and harm to
individuals. Therefore, it is crucial to prioritize the protection
of users’ privacy when utilizing such data.

Recently, there has been a growing interest in the develop-
ment of privacy-preserving methods for GPS trajectory data.
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[5] propose a method based on the K-Anonymity technique
to generate new trajectory data from real datasets. Addition-
ally, Differential Privacy (DP), introduced by [6], has been
utilized to protect against possible attacks by applying Laplace
Noise to location data. However, these methods often modify
trajectory data, which could introduce bias and compromise
the integrity of the entire database. Therefore, it is important
to balance privacy preservation and data utility. To achieve
this, we turn to machine learning methods that are efficient
in extracting the features of the dataset. It is assumed that
the dataset is generated from underlying latent space so that
models can capture the latent representation of the dataset.
Therefore, we need a generative model that approximates the
data probability distribution by Bayesian inference as well as
generating an entirely new dataset. Thus, the Variational Au-
toEncoder (VAE) model is proposed to generate a new dataset
with a similar feature space and data distribution compared
with the original dataset. Besides, Federated learning (FL)
provides a way to maintain user privacy in centralized data
settings for deep learning models. The training process occurs
locally on devices or edge servers, allowing the model to
learn from decentralized data without sending individual data
to a central server. This approach strikes a balance between
utilizing valuable data for model training and preserving
user privacy, making it a promising framework for privacy-
preserving deep learning in real-world applications [7].

In this paper, we address the privacy-preserving task for tra-
jectory datasets by employing the federated learning approach
alongside trajectory generation methods. To contextualize our
research, we comprehensively review and compare existing
privacy-preserving methods specifically tailored for trajectory
datasets. We also explore various trajectory data generation
approaches and delve into the realm of federated learning,
providing a crucial foundation for the subsequent methodology
introduction. We take advantage of the FL framework and VAE
model to propose a novel methodology, Federated Variational
AutoEncoder (FedVAE), for generating new trajectory data
based on actual data while preserving user privacy. We evalu-
ate our approach in both privacy and utility metrics. Especially,
our approach is evaluated in a practical downstream task,
namely, traffic mode identification (TMI), to demonstrate its
utility. The experimental results showcase the exceptional data
utility of the generated dataset while maintaining user location
privacy. The workflow of the proposed theme is illustrated



in Figure 1. By federated learning, local clients participate
in VAE training and synthesize new trajectory datasets from
well-trained VAE that can be safely used by the central
server and shared with data users. Highlights of this paper
are summarized as follows:

• Our work represents the first attempt to apply the FL
training framework to the trajectory generation problem,
incorporating considerations for both privacy preservation
and maintaining the original feature space.

• FedVAE offers a decentralized learning and generative
method, which not only keeps original data locally but
also provides a completely new dataset with high utility
and low risk of privacy leakage for subsequent uses.

• The proposed approach can be extended to other privacy-
preserving downstream tasks in ITS. Our work con-
tributes to the field by addressing the privacy concerns
associated with trajectory data generation, opening av-
enues for further research in privacy-preserving machine
learning techniques.

The remainder of this paper is organized as follows. Section
II introduces the related work on trajectory privacy preser-
vation, trajectory generation, and federated learning. Sections
III and IV present the problem definition and the proposed
method. Section V and VI show the experimental setup and
analysis together with discussions about the proposed model,
while Section VII concludes the paper and provides directions
for future research.

Figure 1. The workflow of the proposed theme.

II. RELATED WORK

A. Trajectory Privacy preserving

Over the past few decades, researchers have proposed vari-
ous approaches to address the challenge of preserving location
privacy in LBS. These approaches can be broadly classified
into two main architectures: centralized and non-centralized.

In a centralized architecture, a centralized entity is employed
to protect location privacy. The most widely used method

is K-anonymity [8], which ensures that each data point is
indistinguishable from at least k-1 other data points [9], [10].
It is commonly applied in sensitive databases to prevent the
identification of unique users through queries. On the other
hand, non-centralized architectures include obfuscation-based
methods, such as introducing perturbations into collected or
quantizing locations [6], as well as cryptographic-based meth-
ods [11]. However, these approaches have their drawbacks. For
example, finding a trusted third party for centralized methods
and cryptographic-based methods [11] is a challenging task.
Besides, obfuscation-based methods can be vulnerable to
background knowledge attacks [12], where attackers can apply
additional information to de-anonymize users.

To summarize, previous methods for preserving privacy in
trajectory data overlooked semantic information, resulting in a
loss of dataset utility. Additionally, approaches involving cryp-
tographic or clustering operations are unsuitable for handling
sparse and large datasets. Hence, a trajectory generation-based
method is proposed using a VAE model, maintaining the origi-
nal feature space and producing new data. In line with real-life
scenarios, FL is applied to the training process, ensuring users’
data is kept locally and not exposed to other devices, thus
protecting users’ privacy and improving operational efficiency.

B. Trajectory generation

Trajectory generation methods are utilized to enhance the
feature space in sparse data or reduce noise in noisy datasets,
making the data more informative and useful for subsequent
tasks. There are several methods for generating trajectory data.
[13] generates new trajectory data by space discretization
and synthesis according to mobility patterns and movable
constraints. [14], [15] use machine learning to generate a new
dataset from the original dataset. However, they are unsuitable
for our goal of maintaining the original feature space, which
is important in subsequent tasks. Besides, training GAN-based
models can be challenging due to gradient vanishing and
explosion issues. Therefore, we turn to VAE-based models,
generally used for data augmentation [16]. They focus on both
reconstruction and distribution loss, making them effective for
data generation.

C. Federated Learning

In the conventional machine learning paradigm, data is
typically sent to central servers for training. However, this
raises concerns about privacy and data security. To address
these concerns, FL has emerged as a solution to facilitate com-
munication between local clients and central servers without
transferring the original data [17]. The key idea is that the
clients contribute to the model training process by uploading
their local updates of the model’s gradients to the servers
instead of sharing raw data. Then these updates are aggregated
on the servers to create a comprehensive model. This approach
ensures the privacy and security of the data, as the raw data
remains on the client’s local devices.

In the context of FL, a commonly used approach is federated
averaging (FedAVG) [18]. In FedAVG, the locally trained
models are weighted according to the size of the respective



local dataset. During each communication round, the clients’
weight updates of their local models are transmitted to the
central server. The server then averages these updates and
sends the resulting average back to the federation of clients.
This averaged value is then used to initialize the next round
of the training process. In our work, we deployed FedAVG
as our fundamental training framework due to its simplicity
and communication-efficiency advantages, particularly when
training on mobile and edge devices in trajectory data appli-
cations. Considering real-life scenarios, communication over-
head needs to be viewed during federated learning [19].
Joint-Announcement Protocol [20] is proposed to handle the
large-scale scenario where the FedAVG algorithm is hard to
converge because of expensive communication overhead.

III. PRELIMINARY

This section provides several preliminary definitions related
to our research target: GPS trajectory and the concepts of fed-
erated learning, including local clients and the central server.
Additionally, we define our research problem as the generation
of trajectories while preserving privacy and addressing one
downstream problem of travel model identification.

Definition 1 (GPS Trajectory):
Let P denote a sequence of consecutively sampled GPS

points, i.e., P = {p1, . . . , pm}, where pi = [lati, loni, ti], i ∈
{1, . . . ,m}, represents the latitude and longitude of the GPS
point at the time step ti, indicating the device’s (or the user’s)
location at that time.

Definition 2 (Local Clients):
Let C =

{
C1, C2, ..., Ck

}
denote a set of local clients

(i.e., individual mobile devices) with k groups. Each local
client Ci possesses a distinct set of GPS trajectories denoted
as D =

{
D1,D2, ...,Dk

}
, which satisfied Di ∩ Dj = ∅.

Organizations treat the collection of distributed models F ={
F1, F2, ..., Fk

}
as local models. These models are trained

independently and simultaneously, utilizing the training data
stored in the respective GPS trajectory sets D.

Definition 3 (Central Server): The central server, serving
as a third-party entity, resides in the cloud infrastructure.
Its primary function is to aggregate the local models F
contributed by individual clients in order to generate a global
model F̂ . Subsequently, the central server disseminates this
global model to all or part of participating local clients.

Problem 1 (Trajectory Generation): Given a sequence of
consecutively GPS points P , generate a new trajectory P ′ that
is similar to P but does not reveal the user’s identity, which
is formulated as P f(·)→ P ′.

Problem 2 (Travel Model Identification): Given a sequence
of GPS points Pm, we can then reform the GPS segment where
labelm represents the mode of transportation for segment k.
We aim to train a function g(·) to identify the mode of
transportation for each trajectory segment, which is formulated
as Pm

g(·)→ labelm.
In summary, the goal of this paper is to generate a new

trajectory P ′ that is similar to P but does not reveal the
user’s identity in each client Ck. The gradient of the in-
dividual client’s model fk is uploaded to a central server

for aggregation. The central server then updates its global
model F̂ based on the aggregated gradients. The updated F̂
is then disseminated to all or part of the participating local
clients F for further training. The training process iterates until
convergence of the global model is achieved, ensuring that
further improvements are made through multiple iterations.

IV. METHODOLOGY

In this section, we introduce the proposed VAE model for
trajectory generation within the local client, which describes
the mechanics of VAE. We also present the federated learn-
ing framework, which enables the training process, thereby
achieving communication-efficient training.

A. Local VAE Model for Trajectory Generation

We propose a VAE model for generating new trajectory
data in the local clients, as illustrated in Figure 2. It consists
of two fundamental components: an encoder and a decoder.
The encoder module aims to capture the underlying latent
representation of the input data (i.e., GPS trajectory and travel
mode labels). In contrast, the decoder module focuses on
generating synthetic data that aligns with the distribution of
the original training data from the latent vector.

Figure 2. Local VAE model for trajectory generation.

1) Encoder module: Given a collection of GPS trajectories,
we first pass them into Recurrent Neural Network (RNN)-
based layers to capture the sequential features. Additionally,
linear layers are employed to incorporate auxiliary features
such as traffic modes and related attributes into the model.
The resulting encoder produces a latent representation z,
which is further transformed via a non-linear function to
produce a probability distribution pθ(x) over the latent space.
Subsequently, a set of generative latent vectors is sampled from
the distribution and passed into the decoder module to generate
synthetic trajectory data.

However, directly computing the probability distribution
pθ(x) is computationally challenging due to its complexity.
To overcome this issue, Bayesian inference is employed by
incorporating a prior distribution pθ(z) and the true posterior



distribution pθ(x|z) [21]. In this paper, we assume a standard
Gaussian distribution as the prior distribution pθ(z). The true
posterior distribution is then approximated using variational
inference [21], [22] by minimizing the Kullback-Leibler (KL)
divergence between pθ(x|z) and an approximate posterior
distribution qϕ(x|z). Instead of directly using a variational
distribution, we employ an inference model parameterized by
ϕ to generate the mean µ and variance σ of the approximat-
ing variational distribution. This allows us to formulate the
minimization process as follows:

ln pθ(x) = Lθ,ϕ(x) + KL(qϕ(z|x)||pθ(z|x)), (1)

where ln(·) is the natural logarithm operator.
This form can be obtained by averaging the objective

function over all data as:

Lθ,ϕ(x) = Eqϕ(z|x)[ln pθ(x|z)]−KL(qϕ(z|x)||pθ(z)). (2)

The first term in Eq. 2 corresponds to the reconstruction
loss, which quantifies the negative log-likelihood of the input
data x given the latent vector z. It measures how well the
decoder reconstructs the original input. The second term rep-
resents the regularization term, which computes the Kullback-
Leibler (KL) divergence between the posterior distribution
qϕ(z|x) and the prior distribution pθ(z). This regularization
term encourages the posterior distribution to closely match the
prior distribution closely, thereby preventing the model from
overfitting and ensuring a more structured latent space.

We can obtain an unbiased estimation of Eq. 2 by sampling
z ∼ qϕ and performing stochastic gradient ascent to optimize
it. However, a challenge arises when updating the model’s
weights due to the inability to differentiate the sampling op-
eration from a Gaussian distribution during backpropagation.
To address this, we employ the reparameterization trick [23].
It involves sampling ϵ from a standard Gaussian distribution
ϵ ∼ N(0, I) and constructing the latent vector as z = µ+ σϵ.

2) Decoder module: After sampling from the posterior
distribution z ∼ qϕ, the decoder module is responsible for
reconstructing the original input data x from the latent vector
z. The decoder module is composed of RNN-based layers
and linear layers. The RNN-based layers and the linear layer
decode the latent vector z into trajectory decoding T̂ri and
feature recovery ˆEmi respectively, which are subsequently fed
into the linear layers to reconstruct the original input data.

3) Optimization: Our loss function comprises two com-
ponents: the reconstruction loss Lr and the Kullback-Leibler
(KL) divergence loss Lkl, as mentioned in Section IV-A1. The
KL divergence loss ensures the alignment between the latent
vector space and a standard Gaussian distribution, regulating
the distribution difference. The reconstruction loss consists of
two parts: the trajectory generation loss and the embedding
feature loss. Our paper focuses on the downstream task of
traffic mode identification. Hence, the trajectory generation
loss is defined as the Mean Squared Error (MSE) between
the trajectory decoding T̂ri and the original trajectory Tri.
Meanwhile, the embedding feature loss is calculated as the
Cross-Entropy Loss (CEL) between the embedding feature

Emi and the feature recovery ˆEmi. The optimization target
L of the proposed model is formulated as follows:

L = Lr + Lkl

=
1

n

n∑
i=1

(Tri − T̂ri)2 −
n∑

i=1

Emi log(Êmi)

+ KL(qϕ(z|x)||pθ(z)),

(3)

where log(·) is the logarithm operator.
We employ a truncated function in our trajectory generation

loss to improve the generalization of newly generated trajecto-
ries. We establish a threshold to ensure that the reconstruction
loss remains within a reasonable range for real-life scenarios.
When the reconstruction loss surpasses this threshold, it is
truncated to zero, resulting in only the KL divergence loss
(Lkl) being utilized for model updates. In this study, we
set the threshold to 0.000625 for MSE reconstruction loss,
corresponding to a geographic distance error of fewer than 4
kilometers for the reconstructed trajectories.

B. Global Federated Training Framework

Figure 3. Federated training theme.

Figure 3 shows the whole training framework. Details are
described below:

1) Initialization: The central server has an initial central
model and each local client has an initial local model. During
each epoch, the model of each client is initialized with the
weights of the central model.

2) Training: The training process is distributed across client
servers instead of central servers. As described above, to
minimize the amount of raw data stored on central servers,
clients contribute to the model training process by uploading
their local updates of the model’s gradients.

3) Aggregation: Subsequently, the central server uses the
FedAVG algorithm to update the model’s weights from clients’
gradients. The federated framework ensures that the original
data is not directly collected by the central server while still
enabling the successful training of the global model necessary
for our specific objectives.

4) Communication overhead: Considering realistic situa-
tions, communication overhead needs to be discussed. When
the client number is small, a small-scale federated learning
model is built up by the FedAVG algorithm. When large-scale



scenarios occur with a large number of clients, FedAVG is hard
to converge due to expensive communication overhead. Thus,
Joint-Announcement protocol [20] is applied. When facing
large-scale scenarios, local clients will check in with cloud
servers to ensure connectivity before training. The central
server randomly selects a certain percentage of clients in the i-
th round training. The protocol avoids failures between clients
and the central server, reducing communication overhead and
execution time in federated training.

V. EXPERIMENT

In this section, we introduce the dataset, competing baseline,
experiment set, and evaluation metrics in detail. We analyze
the results in terms of privacy analysis with anonymization,
trajectory statistics between the original trajectory data and
the generated data, as well as the utility application in the
downstream task TMI.

A. Dataset

We employ Microsoft’s Geolife dataset [24], [25] for our
experiment, which is extensively utilized for traffic mode
identification [26]. The dataset comprises both labeled and
unlabeled data, collected from a total of 182 users, including
69 users with labeled data and 113 users with unlabeled
data. For five years, the users record their traffic mode data
in the form of Global Positioning System (GPS) points and
timestamps, along with the corresponding traffic mode, which
encompasses activities such as walking, biking, and bus transit.

Moreover, the collection of raw data from users varies in
length, thus requiring pre-processing steps such as cutting and
padding. According to the Geolife dataset, we divide each tra-
jectory into sub-sequences of length 100, which is a reasonable
length that contains enough traffic mode information, and pads
shorter sequences with zeros. Additionally, a mask matrix is
constructed to record padded segments and distinguish valid
and invalid parts for loss computation by binary values. For
unpadded segments, the mask is a sequence of ones with a
length of 100.

B. Competing Baseline

To demonstrate the applicability of FedVAE, we adopt three
representative methods for traffic mode identification, which
are K-Neighbor and MLP and Semi-supervised Convolutional
AutoEncoder. We also select three privacy-preserving methods
for trajectory data and compare their performance in the traffic
mode identification task. It is noticed that the performance is
evaluated by accuracy and variance in TMI tasks.

• Perturbation. This approach randomly perturbs each lo-
cation point so that the privacy information will be
ambiguous.

• Mixzone [5]. Mixzone aims to find a spatiotemporal zone
in which multiple trajectories traverse. Then mixing and
perturbing operations are applied to these trajectory data
so that the adversaries can not identify each trajectory.

• K-Anonymity [10]. This method generates another k− 1
trajectory based on K-Anonymity. It generates k − 1

points around each selected sensitive point with private
information like homes and workplaces. It randomly
connects these k − 1 location point pairs with other
nonsensitive location points into k − 1 trajectories to
protect the original trajectory.

Besides, we controlled the hyper-parameters of these base-
line methods to get the optimal performance. From the given
range of parameters, we test their performances in the TMI
task to judge the best parameter combination. For Mixzone,
we choose the best pair of hyper-parameters with k as 6,
which stands for the number of users passing through the
zone, and L-limit as 0.1, which controls the length limit of
each trajectory included in the zone. As for K-Anonymity,
we choose k as 5, which represents the trajectory anonymous
degree, to achieve optimal performance.

C. Experiment settings
We implemented our model using PyTorch. The model is

trained on the server with 2.1 GHz Intel Xeon CPU E5-2620
v4 CPUs, 128G RAM, and nVidia 2080Ti 11G GPUs. The
model is trained using Adam optimizer with an initial learning
rate of 0.01, and the learning rate turns to 0.001 when 500
epochs are finished. The batch size is set to 2000. We split
the whole dataset into train, test and validation sets with the
rate of 8:1:1 to avoid over-fitting. The model is trained for
2000 epochs, and early stopping is applied when the loss is
not changing anymore.

Besides, for the federated training stage, we set the client
number as 69 to meet the real-world situation, as our dataset
includes 69 users with labeled data. FedAVG algorithm to-
gether with the Joint-Announcement protocol is used to handle
large-scale training scenarios. The hyperparameters in the
model are the same for each local client.

D. Evaluation Metrics
We employ three metrics to evaluate the performance of

the proposed models. Firstly, privacy protection performance
is evaluated in terms of anonymized level, by comparing
similarity across different travel modes. Lower similarity indi-
cates a higher anonymized level. Additionally, we evaluate the
statistical properties of the generated and original trajectory
distributions using KL divergence. A lower KL divergence
signifies a more similar distribution of trajectories between
them. Furthermore, we compare the experiment results and
show the improvement between our and the best of others.

Privacy metric: The dataset’s privacy level is evaluated
by the similarity of the original and generated one. Higher
similarity means a higher risk of attacks as attackers can
identify the user of the trajectories when generated trajectories
are similar to the original one. We evaluate the similarity
by applying relative distance between GPS points on the
trajectory. Given two trajectories P and P ′ and their traffic
mode, we define their similarity of them:

Similarity(P,P ′,mode) = α
βmode

1
ndist(P,P ′)

= α
βmode

1
n

∑n
i=1 dist(pi, p

′
i)

(4)



Table I. Comparison of privacy-preserving methods for TMI task performance. (Similarity represents the privacy protection
metric (↓). Utility is measured by accuracy (↑) and variance (↓)).

Metric Base model
Privacy-preserving model

Baseline Perturbation MixZone K-Anonymity FedVAE (ours) Improved by

Similarity - 0.81 0.51 0.74 0.20 60.78%

Utility
K-Neighbor 57.87% ± 0.01 70.03% ± 0.02 56.98% ± 0.01 58.49% ± 0.01 82.53% ± 0.02 17.85%
MLP 47.98% ± 0.07 64.26% ± 0.08 41.26% ± 0.10 43.96% ± 0.05 78.35% ± 0.02 21.93%
Semi-Supervised 73.28% ± 0.01 83.82% ± 0.02 76.09% ± 0.01 81.36% ± 0.02 91.04% ± 0.01 8.61%

where dist computes the geographic distance between two
GPS points in the trajectories. α is the proportionality coef-
ficient, and βmode measures the varying scale of similarity
based on different traffic modes. In this paper, trafficmode =
{bus, car,walking,biking, subway}, and βmode is set accord-
ingly {0.5km, 1km, 0.05km, 0.2km, 3km} for each mode. To
simplify, α is set to 1. 1

Trajectory statistics: We investigate the trajectory distribu-
tion between the original and generated trajectory. We examine
the similarities between the synthetic and original trajectories
through KL, a non-parametric method of comparing two one-
dimensional distributions.

Data utility: We evaluate the utility of the generated dataset
through its performance in downstream tasks. This paper
focuses on the TMI task as our downstream task due to
its prevalent application in real-world scenarios [27], [28].
Specifically, we employ classification accuracy and standard
variance of the TMI task as metrics to evaluate the utility
of the generated dataset. Higher accuracy and lower variance
indicate better performance in the TMI task.

E. Experiment Analysis

Table I provides a comprehensive comparison of various
privacy-preserving methods utilized in the context of the TMI
task. The evaluation revolves around two key metrics: Similar-
ity, which reflects the level of privacy protection (lower values
indicate better privacy anonymization), and Utility, which is
assessed through classification accuracy (higher values are
desirable) and variance (lower values are preferred) in the TMI
task. The evaluation experiments are conducted several times
and the average of results are recorded.

Privacy Analysis: As shown in Table I, the proposed Fed-
VAE model achieves the most substantial privacy preservation
with a low Similarity value of 0.20, outperforming other
models. It demonstrates a remarkable 60.78% enhancement
in privacy protection. FedVAE generates synthetic trajectories
with minimal similarity to the original data. By creating
entirely new trajectories, the model reduces the risk of privacy
attacks and protects individual user information effectively.

Utility Analysis: The utility of the generated trajectory
datasets is evaluated using the travel mode classification ac-
curacy and its variance, as depicted in Table I. The proposed
FedVAE model demonstrates superior accuracy across all base
models, achieving values of 82.53%, 78.35%, and 91.04%

1It is noted that K-Anonymity generates additional trajectories instead of
modifying original trajectories. Therefore, we compute the similarity between
the original trajectory and other k − 1 trajectories.

for the K-Neighbor, MLP, and Semi-Supervised base mod-
els, respectively. These accuracy values indicate the FedVAE
model’s effectiveness in generating synthetic trajectories that
preserve utility for various models in the TMI task.

Figure 4. KL divergence comparison among four generated
trajectory datasets and the original dataset.

Trajectory Statistics: Figure 4 presents a comparison of
the data distribution between the original dataset and the
generated dataset. The color difference exhibited in the figure
signifies variations in data distribution. Notably, the majority
of trajectories in the dataset fall within the range of over 20km
or under 10km, owing to the specific traffic modes and real-
life traffic scenarios considered. Across all methods, except
for MixZone, the generated trajectories exhibit similar distri-
bution patterns to the original dataset. The proposed FedVAE
model successfully captures the essential characteristics of the
original dataset, preserving trajectory distances in alignment
with real-life traffic situations. In addition, it can capture the
latent representation of the dataset and approximate the data
probability distribution, leading to the lowest KL divergence
between the generated dataset and the original dataset.

VI. DISCUSSION

1) Model Scalability: In addition to the aforementioned
experiments, we have also conducted tests on our method
to evaluate its stability in the federated learning structure,
which is crucial for ensuring its continued effectiveness as
the number of clients increases or decreases. The model suc-
cessfully converged regardless of the variation in the number



of clients. The results are shown in Table II, which guarantees
the scalability of the model.

Table II. Scalability test.

Client Number 2 5 10 20 30 50 70

Fitted Epochs 34 96 215 457 723 1264 1529

2) Application: Based on the statistics in Table I, several
methods achieve better accuracy than the baseline in the
unique models. Since noises exist in the original dataset,
data-enhanced methods can improve the robustness and utility
of the dataset. Perturbation successfully achieves it, but it
faces challenges in selecting appropriate noise scales and is
vulnerable to attacks. Furthermore, the MixZone method and
the K-Anonymity method have the potential risk of decreased
performance. Our method successfully learns the representa-
tion of the dataset and achieves the best results.

VII. CONCLUSION

In this research, we proposed a FedVAE model to address
privacy-preserving tasks for trajectory datasets, which com-
bines federated learning and VAE techniques to maintain the
original feature space and ensure privacy protection when gen-
erating synthetic trajectories. Our comprehensive experiments
and analysis show that FedVAE outperforms other privacy-
preserving models, achieving the lowest similarity value which
indicates its effectiveness in the privacy protection task, and
the highest travel mode identification accuracy which exhibits
great utility in a downstream task. Furthermore, the generated
trajectories showed similar patterns when compared with the
original trajectory data.
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