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Abstract—The existing Federated Learning (FL) systems en-
counter an enormous communication overhead when employing
GNN-based models for traffic forecasting tasks since these models
commonly incorporate enormous number of parameters to be
transmitted in the FL systems. In this paper, we propose a FL
framework, namely, Clustering-based hierarchical and Two-step-
optimized FL (CTFL), to overcome this practical problem. CTFL
employs a divide-and-conquer strategy, clustering clients based
on the closeness of their local model parameters. Furthermore,
we incorporate the particle swarm optimization algorithm in
CTFL, which employs a two-step strategy for optimizing local
models. This technique enables the central server to upload only
one representative local model update from each cluster, thus
reducing the communication overhead associated with model
update transmission in the FL. Comprehensive case studies
on two real-world datasets and two state-of-the-art GNN-based
models demonstrate the proposed framework’s outstanding train-
ing efficiency and prediction accuracy, and the hyperparameter
sensitivity of CTFL is also investigated.

Index Terms—Federated learning, communication efficiency,
graph neural networks, traffic forecasting.

I. INTRODUCTION

N the era of big data, people’s travel experience signif-

icantly benefits from real-time and accurate traffic states
which is derived by massive recorded data [1]. To achieve
higher accuracy, data-driven approaches such as machine
learning (ML) and deep learning (DL) have been preferred
in traffic forecasting tasks. Among various data-driven ap-
proaches, Graph Neural Networks (GNN)-based approaches
are acknowledged as the state-of-the-art, which are well-
suited to the spatial extracting of transportation networks and
contribute to the successes of GNN-based methods in traffic
forecasting.

Commonly, the training of conventional GNN-based models
is centralized, which creates significant privacy concerns when
multiple data providers are involved. Federated Learning (FL)
has arisen as a solution to the privacy concerns associated
with centralized training. FL protects data providers’ privacy
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Fig. 1. Number of incorporated parameters of traffic prediction models on
different datasets. STGCN [2], MTGNN [3], and DCRNN [4] are GNN-based
models.

by enabling distributed training without requiring original data
transfer and by storing data providers’ data locally.

While the majority of optimization methods for FL systems
are developed and evaluated using traditional ML/DL learning
models [5], it is not surprising to generalize the FL to GNN-
based models. Nonetheless, much research studies on GNNs
and FL demonstrate a practical concern. Specifically, for FL,
the majority of FL systems adopt the averaging algorithm
(i.e., FedAvg [6]) to develop the global model, which requires
multiple participants to upload their local models to the central
server. This results in a significant increase in network commu-
nication costs and storage requirements for the central server.
Compared with the conventional DNN models that handle
regular grid-like data, the GNNs that handle high-dimensional
and sparse graph-structured data is more computationally
intractable and, at the same time, require more parameters
as shown in Figure 1. The employment of the GNN-based
models will significantly increase the overall computing and
communication costs to FL systems [7]. Additionally, for
existing data collection nodes in intelligent transportation
systems, such as roadside units (RSUs), and mobile devices,
may operate in places with unreliable networks. Such network
environments pose a challenge for achieving real-time data
processing in any FL systems. Existing research towards the
communication optimization of FL includes gradient compres-
sion [8], asynchronous update [9], etc. However, as indicated
above, most of these approaches are developed and tested
considering conventional ML/DL tasks and models, the gen-
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eralizability of which is dubious. Furthermore, there are few
feasible communication-efficient solutions that merge GNN-
based traffic forecasting approaches into FL. These approaches
either result in a considerable amount of information being
lost during the compression process or are incompatible with
large-scale and real-time systems.

To fill this research gap, we propose a novel FL framework,
named CTFL, for GNN-based spatial-temporal traffic forecast-
ing tasks in this paper. In CTFL, we adhere to the concept
of dispersed FL and propose a hierarchical FL architecture
and a clustering approach for grouping clients. Specifically,
the proposed clustering algorithm is based on the local model
similarity of the clients, and we seek to group clients with
comparable model parameters into the same cluster. Then, we
integrate particle swarm optimization (PSO) algorithm that
devises a two-step approach for local model optimization.
Specifically, this technique seeks to determine the optimal
local model through fitness evaluation, which requires the
client to upload only a measured fitness value to the server
installed in each cluster rather than the model parameters. As a
result, the CTFL allows for uploading only one representative
local model update from each cluster to the central server,
significantly reducing the communication cost associated with
model update transmission in the FL system.

The highlights of this paper are summarized below:

o We propose a communication-efficient framework, CTFL,
for traffic speed forecasting tasks under FL.

o A parameters similarity-based clients clustering is pro-
posed based on parameters similarity computation.

« A two-step local model optimization approach is designed
based on the PSO algorithm.

o Comprehensive case studies on two real-world traffic
datasets are conducted to demonstrate the efficacy of the
proposed CTFL framework.

The rest of this paper is organized as follows. We elaborate
on the proposed CTFL framework in Section II. Section III
presents the results and discussion of the case studies. This
paper is concluded in Section IV with a summary of potential
future studies.

II. METHODOLOGY
A. Problem Definition

1) Traffic Forecasting on Graphs: We represent a trans-
portation network as an undirected graph, G = (V, &, A),
where V is the set of nodes and each of them is defined as a
road segment, £ is the set of edges, and A € RIVIXIVI is the
adjacency matrix of G. V v;,v; € V, we have [A; ;] = 1
if v; and v; are connected, and O otherwise, where [A; ;]
is the entry of A that represents the connectivity between
node v; and node v;. This is a common formulation among
spatial-temporal traffic forecasting [2], [4]. The traffic data
observed on G is denoted as a graph-wide feature matrix
X e RVIXF where F is the dimension of involved features
(i.e., traffic records) of each node. Let vector X! ¢ RIVI
denote the traffic data observed at time ¢ € F, the objective

is to learn a predictor f(-) that can develop graph-wide
traffic predictions X'+, Xt+2 X!*s in the following s
time stamps (i.e., the prediction time horizon is s), given
historical traffic observations of 7' stamps (i.e., the historical
time horizon is T).

2) Federated Learning Scenario: In this paper, a practi-
cal FL scenario is considered for the proposed framework.
Specifically, we define G as the converted graph of the entire
transportation network of an area. This area is divided and
conquered by multiple organizations' (e.g., companies, gov-
ernments, and individuals). Let C = {C1,Cs,...,Ch} denote
the organization set where M is the number of organizations.
Each organization maintains a number of sensor stations (i.e.,
multiple nodes in the graph) that collect data on traffic.

To enable each local organization to fully exploit the spatial
correlations, all of them can access the complete topological
information of G freely but keep their respective traffic data
unrevealed to others for privacy concerns. Furthermore, this
study is based on the common assumption that there are no
overlapping sensor stations between any two organizations
[10], [11]. The central server distributes a copy of the adopted
GNN-based model to each organization. The organizations
treat the received model as local models and train them
simultaneously and locally utilizing the stored training data
and the topology. Saying “simultaneously” is because we
only focus on the synchronous update that the organizations
communicate with the server regularly for model updates by
synchronous updates.

B. Framework Overview

As illustrated in the lower half of Fig. 2, CTFL involves
two phases, namely, the organization clustering phase and
FL phase. In the organization clustering phase, following a
“divide-and-conquer” strategy, the organizations are clustered
into multiple clusters by their learned spatial-temporal infor-
mation. This clustering algorithm will be presented in Section
II-C. In the FL phase, we propose a novel Particle Swarm
Optimization (PSO)-based algorithm for local model training,
which will be detailed in Section II-D.

C. Parameters Similarity-based Organizations Clustering

Because of the datasets’ homogeneity in time-series and
spatial correlations, the difference between the learned param-
eters of their models is indistinctive for some organizations.
Aggregating homogenous models cannot contribute to devel-
oping a generic global model, which also incurs a superfluous
communication overhead by transmitting such homogenous
model parameters to the central server, especially when there
is a large number of participated organizations [12]. To address
this issue, inspired by the similarity-based clustering algo-
rithms proposed in [13], and the hierarchical and dispersed
FL structure introduced in [14], we propose a parameter
similarity-based approach to clustering the organizations.

Specifically, the clustering decision is determined by the
similarity of organizations’ model parameters. Considering

'In this paper, “organization” and “client” are used interchangeably.
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Fig. 2. The schematic of CTFL. In the Federated Learning Phase, the solid line represents the model parameters transmission while the dash line represents

the fitness scalar transmission.

the high dimensional characteristics of the GNN-based model
parameters, we adopt Principal Component Analysis (PCA)
to reduce the dimension of model parameters and the K-
means algorithm to achieve the clustering. To obtain the model
parameters for similarity computing, we first pre-train the
local models of each organization. For organization C; and
its data X; € RIVI*7 we use a portion of its historical data
X# € RIYIXF" which is randomly sampled from the time
series windows, satisfying F* < F is the sampled dataset®.
Subsequently, X7 is used to train the local model, and we
regard the learned model parameters 6 as the pre-learned
model parameters. Treatin % the model parameters as a high-
dimensional vector 8 — 0;', we use PCA to project the high-
dimensional é;h into a lower dimensional space:

R; = PCAx ,2(0]), 1)
where R; is the lower-dimensional vector of 07 after di-
mension reduction; PCA(-) denotes the PCA process and
S~ 0? is the summative variance of all individual principal
components3 .

Next, following the K-means algorithm, given a number of
clusters k satistying k << M, we randomly select £ organiza-
tions as the initial cluster centroids. For each organization, we
seriatim compute the similarity between its model parameters
vector and the cluster centroids’ ones. Particularly, for any two
organizations C; and C;, the distance between their lower-
dimensional model parameter vectors R; and ﬁj is defined
as

d
sim; ; := sim(ﬁi,ﬁj) = Z(ﬁzm - ﬁj [1])2,
=1

2

where d is the dimension of R and [ is the index number.
Whereafter, we assign the organization to the cluster whose
centroid has the highest parameter similarity with it. This
optimization proceeds iteratively until the optimal solution is
found, i.e., the assignments no longer change.

2The number of random sampling time points, i.e., F'*, are set the same
for each organization.
3We empirically set 3~ 02 = 0.9 to avoid information loss.

D. Two-step Local Model Parameters Optimization

We devise a two-step parameter optimization approach
integrating particle swarm optimization (PSO) algorithms [15]
for model training in CTFL. PSO is an iterative optimization
algorithm, which has comprehensive capacities for global
optimization along with easy execution, fast convergence, and
robustness. PSO has a lower computational cost due to the
use of simple mathematical operators, both in terms of speed
and memory [16]. The PSO algorithm incorporates a group
of particles, namely, a swarm. Each particle is considered a
solution to the global problem, with a specified position, speed,
and fitness value determined by an optimization function.
Specifically, the particle’s speed controls the next location it
will reach. The fitness value is used to determine the particle’s
performance. To get the global optimal solution, the particles
interact with one another frequently in order to fine-tune
themselves.

Step 1: Therefore, in a local training epoch, we first use
PSO to optimize the model parameters iteratively:

¢1) ’ (pTDZJ - ’D;r,j)
+U(0,2) - (cby — 7

VPSO : g 97 i * 7

J

where ¢, j denotes the ¢-th client in the j-th cluster' T denotes
the 7-th iteration; w denotes the inertia constant; v ; denotes
the position of the particle of C; ; at iteration T and thus "TH

—T+1 —T 7
v =w v ; +U(0,

3)

can be regarded as the computed speed at iteration 7; cb rep-
resents the “cluster best” of cluster Pj; U(0,¢,) and (7(0, $2)
denotes two vectors of random values uniformly sampled from
[0, ¢1] and [0, ¢2] respectively, which are initialized at each
iteration for each particle. We denote the pso-optimized model
parameter by 0? 5

Step 2: Subsequently, we further optimize ;" by a con-
ventional gradient descent approach iteratively, which can be
formulated as

VGD : 0% « 6%

— - VL, A, X, ).

0,5

4)

We finally use Htsj to denote the two-step-optimized model
parameter for client C; ;’s local model .
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TABLE I
PREDICTION ACCURACY COMPARISON.

MAPE(%)/ STGCN MTGNN
RMSE PeMSD4  PeMSD7  PeMSD4  PeMSD7
Centralized 4.75/4.78  6.93/5.11  4.72/4.93  7.02/5.33
FedAvg 4.79/4.82  6.90/5.13  4.73/4.90  6.99/5.29
FedQSGD  8.31/7.16 15.56/8.30 5.73/5.55 11.62/7.19
FedTopK  16.70/11.44 29.02/13.76 11.51/8.92 23.27/11.45
CTFL 4.84/4.87  7.08/5.25 4.79/4.91  7.08/5.23

To find the optimal local model, we introduce a fitness
scalar among the clients, which is obtained by the forecasting
performance of the two-step optimized local model on a
section of randomly sampled data, and the performance is
measured by Mean Absolute Percentage Error (MAPE) (See
Eq. (7)). After receiving all the fitness scalars from clients,
the cluster server then performs a fitness evaluation that seeks
for the smallest one among the scalars, and the corresponding
client denotes the fittest organization. Subsequently, the cluster
server asks the fittest client to upload its model parameters (by
sending a token) to the central server and store it temporarily
as cb”;.

According to the divide-and-conquer strategy of CTFL, a
sub-global model with 0_})"“ is first developed for different
clusters by fitness evaluation. Thus, we can directly select the
local model developing the smallest fitness scalar as the sub-
global model rather than aggregating all local models. From
the perspective of communication optimization, only one client
is asked to upload the model parameters in such a case, which
obviously reduces the overall communication cost. Then, we
aggregate the sub-global models from different clusters in the
central server to update the global model using FedAvg:

eglobal _ % Z é}aest7 5)
jEk
where #8°Pal denotes the updated model parameters of the
global model. Thereafter, in the model broadcasting step,
instead of directly assign the global model to the clients, we
let the cluster server to average the previously stored cb™; and
the received global model by

—

1, = o
ch; = 5(eb”; + gelobal), (6)

Then, the cluster server broadcasts CT)]- to included clients for
the next iteration of local model optimization. Thus, we send
an aggregation of the global update and the cluster best to the
clients, making the PSO algorithm work more smoothly [17].

III. EXPERIMENTS

A. Dataset and Configurations

In the case studies, two real-world datasets are adopted
for investigation, i.e., PeMSD4 and PeMSD7. PeMSD4 and
PeMSD7 are two public datasets published by California
Department of Transportation*, which contains traffic speed
data of Bay area from 307 sensor stations in the first two

“https://pems.dot.ca.gov/
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Fig. 3. Learning curves of CTFL and baselines.

months of 2018 and Los Angeles from 228 sensor stations
in the May and June of 2012, respectively. We develop the
traffic graph topology of the two datasets based on sensor
stations’ distance following [2]. The data points in both two
datasets are with a 5-min sampling interval. We adopt Z-
score to normalize the speed values and linear interpolation
to recover missing data points. For each dataset, the training,
validation, and test sets are correspondingly constructed, each
containing 60%, 20%, and 20% of all data, respectively. For
traffic speed forecasting, the past time window is set to 60
minutes, and we use them to predict the speed in the next 45
minutes. MAPE and RMSE are used as the accuracy metrics.
In particular, MAPE is considered as a preferable one (see
[18], [19] for examples), which is defined as

1| X, — X,
MAPE = — A
pPiEa-

n
=1

x 100%, (7)

where X; and X; are observed and predicted traffic speeds at
time i, respectively.

We include two state-of-the-art GNN-based models in our
case studies: 1) STGCN [2] which is a GNN-based and
CNN-based model which integrates graph convolutions with
1D convolutions; 2) MTGNN [3] which is a GNN-based
and CNN-based model which leverages mix-hop propaga-
tion, adaptive graph, and dilated inception to exploit spatial-
temporal dependencies. The hyperparameters and architectures
of the two models, as well as the optimizers used, are based
on the best settings accessible in the relevant literature.

Unless other stated, for fairness, we set the global epoch
Egionar = 30 and the mini-batch size B = 50 for all case
studies. Furthermore, we set the number of local training
epochs Fioca1 = 1 for all the FL-based approaches to make
them compared with the centralized training approach fairly.
To simulate the FL training scenario for CTFL, we construct
the respective dataset of different organizations. In particular,
we first partition the whole traffic graph into M sub-graphs
for M organizations using Metis partitioner [20]. Then we
select the traffic data of included sensors (nodes) in a sub-
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graph and construct the dataset for the corresponding organi-
zation. Due to the constraints of computing resources, we let
M = 8, k = 3 (for CTFL). The default setting of PSO is
w, $1,¢2 = 0.1,1,4. CTFL and the baseline approaches are
implemented with PyTorch using half-precision (i.e., float16)
tensors in this work.

B. Learning Performance Comparison

In this case study, we configure the aforementioned two
GNN-based models to CTFL and evaluate the traffic fore-
casting accuracy performance on the two datasets, respec-
tively. We also compare the performance between CTFL
with four baseline approaches: 1) Centralized: Centralized
training algorithm (i.e., training without FL); 2) FedAvg:
Naive unweighted FedAvg algorithm [6]; 3) FedQSGD: Fe-
dAvg algorithm integrating with gradient compression [8],
and QGSD 4-bit is adopted in our simulations; 4) FedTopK:
FedAvg algorithm integrating with k-sparsification for gradient
sparsification [21], and k = 1 for sparsification is adopted in
our simulations.

Table I summarizes the prediction accuracy results of CTFL
and baselines. Figure 3 presents the corresponding learning
curves, and Figure 4 illustrates the data transmission volume
for the FL-based approaches. A few conclusions can be
drawn from the results. First, the GNN-based models can
obtain satisfying prediction accuracy with the proposed CTFL
framework, which is comparable to FedAvg and centralized
approaches. This is attributed to the learning efficacy of the
proposed two-step local model updating approach in CTFL;
the integrated PSO algorithm can efficiently calibrate the
local models with global optimal, while the conventional GD
algorithm can further guide the local models in the correct
direction of convergence. Furthermore, as shown in Figure 4,
achieving such accuracy performance, CTFL develops lower
communication overhead compared to FedAvg; this proves that
CTFL can achieve a significant trade-off between communi-
cation overhead and accuracy performance.

While FedQSGD and FedTopK approaches can incur even
fewer communication overhead (See Figure 4) due to their
adopted gradient compression and sparsification algorithms,
we can find obviously poor convergence and accuracy perfor-
mance developed by these two approaches. Especially for the
FedTopK approach, the model fails to converge when adopting
STGCN on PeMSD7. This is due to that remarkably spatial-
temporal information learned and embedded by the model
parameters are undermined during the processes of gradient
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Fig. 5. The sensitivity of learning performance to cluster number k.

compression/sparsification when using these approaches. Al-
though we find promising results presented in their original
literature [8], [21], it is worth noticing that these results
are developed using simpler or Euclidean modeling-based
approaches (e.g., logistic regression and CNN-based models).
That is to say, unless there is further well-pointed optimization,
these gradient compression- or sparsification-based approaches
cannot achieve promising results using GNN-based models on
at least complex tasks such as traffic forecasting.

C. Ablation Test

1) Hyperparameter Sensitivity Test: We first assess the
learning performance against the number of clusters k>. In
this simulation, we set &k = 2,3,4 for CTFL and compare the
learning performance under this group of settings. From the
simulation results shown in Figure 5, we find that the smaller
number of involved clusters, the slower the learning curves
converge. This result can be explained by the fact that a larger
number of clusters can accelerate the convergence speed since
the global model can aggregate learned information from more
local models according to the proposed scheme.

In addition to the number of clusters &, it is also interest-
ing to investigate the impact of the hyperparameters of the
PSO algorithm in CTFL, i.e., inertia constant w, acceleration
constants ¢ and ¢o. Specifically, we let w € {0.05,0.1,0.2},
¢1 € {0.5,1,2,3,4} and ¢ € {2,3,4,5,6} to conduct a grid-
search to identify the best portfolio. The simulation results®
imply that CTFL is limitedly sensitive to the different selection
of hyperparameters in the PSO algorithm. In particular, the
MAPE ranges for the two models are 6.90%—7.20% (STGCN)
and 6.84% — 7.14% (MTGNN). While the grid-search results
do not demonstrate a clear pattern to determine a better
hyperparameters portfolio, such fine-tuning work can slightly
improve the framework performance.

2) Variants Test: In the proposed framework, two core
approaches, namely, parameters similarity-based organizations
clustering and two-step local model parameters optimization,
are orchestrated to achieve communication-efficient and ac-
curate collaborative traffic forecasting. In this case study, we
conduct a test to identify the contribution of these compo-
nents to the overall framework performance. Particularly, two

SNote that since the performance results on two datasets demonstrate a
similar pattern, for conciseness without loss of generality, we only present
the framework performance on PeMSD7 dataset in the following simulations.

%Due to the page limitation, the complete result of this test is not presented.
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variants are constructed based on the original CTFL design as
follows:

o CTFL-AC (Adaptive-Clustering): The proposed cluster-
ing approach is implemented iteratively in the FL phase
by the central server.

o CTFL-FP (Full-PSO): In the proposed two-step optimiza-
tion for local models, the GD optimization is removed,
and only the PSO is used (i.e., one-step optimization).

The original CTFL framework is denoted by CTFL-OG in this
case study. Figure 6 shows the simulation results.

Comparing CTFL-OG and CTFL-AC, we observe that the

performance difference is minuscule; nonetheless, the latter’s
design renders it costing more communication and computing
overhead due to its repetitive clustering computation. This
result indicates that the design of one-off clustering in the
proposed approach can provide the same level of performance
as the iterative one with less overhead. Comparing CTFL-
OG and CTFL-FP, we can observe that the variant CTFL-FP
does not converge. The PSO algorithm cannot solely drive the
model to correct convergence direction without the support of
gradient descent, which implies the necessity of a two-step
optimization strategy in CTFL.

IV. CONCLUSION

In this paper, we propose a novel FL framework for
collaborative GNN-based spatial-temporal traffic forecasting.
Compared with the existing FL frameworks, the proposed
CTFL employs a dispersed and hierarchical architecture by
using a clustering approach to cluster the clients into different
groups based on their parameters’ similarity. We also devise
a two-step approach for the local models’ optimization in the
proposed framework, which follows the idea of particle swarm
optimization. This scheme enables the model parameters from
only one client of each cluster to be uploaded to the central
server, which remarkably cuts down on the communication
cost of model update transmissions in the FL. The case
studies indicate that, compared with the baselines, CTFL can
achieve the trade-off between efficient model communication
and accurate model performance. In the future, we will involve
more GNN-based models and datasets in the case studies to
evaluate the generalizability of the proposed framework.
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