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Abstract—Travel time estimation (TTE) aims to predict travel
duration and provide reliable planning for residential travel
schedules. Trajectories naturally contain sequential features in
form of GPS points with temporal precedence, which can be
leveraged to improve prediction performance. Besides, the spatial
information, i.e. the graph structure of the road network, can well
represent the road highly and is commonly used to capture spatial
information in traffic networks. However, extracting regional
spatial information from trajectory data, in addition to its latitude
and longitude information, poses a significant challenge due to the
inherent format in which the trajectory data is recorded. In light
of this, we propose a Graph-Transformer for Travel Time Estima-
tion (GT-TTE) to utilize a Graph Transformer to adapt effectively
to trajectories’ sequential and spatial characteristics for improved
TTE performance. By traversing the trajectory nodes with GT-
TTE, we construct a graph structure for all trajectory points,
thereby obtaining the relative spatial information of each point.
Further, we obtain a region adjacency empirically more feature-
rich over the sequential data. We evaluate GT-TTE on three
real-world representative datasets and observe improvement by
approximately 17% compared to the state-of-the-art baselines.

Index Terms—Travel Time Estimation, Trajectory, Graph
Learning, Attention Mechanism.

I. INTRODUCTION

Travel Time Estimation (TTE) is pivotal in the realm of
intelligent transportation systems and represents a domain
intricately entwined with vehicle connectivity, which entails
establishing connections between vehicles and other devices.
[1]. It supports a large number of downstream applications,
including but not limited to route planning [2], navigation [3],
and traffic scheduling [4]. Precise travel time estimations can
significantly reduce traffic congestion and improve the user
experience while facilitating trajectory similarity calculation
[5] and travel speed prediction [6]. The potential applications
of TTE make it a valuable tool for optimizing transportation
systems and enhancing urban mobility.
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TTE has been extensively studied with classical time-series
and statistical learning models [7], [8], followed by data-
driven models such as pooled regression tree models [9],
[10]. However, these models are limited in capturing complex
spatio-temporal relationships. In recent years, deep learning-
based models, such as Convolutional Neural Networks (CNNs)
[11] and Recurrent Neural Networks (RNNs) [12] have been
used to extract both spatial and temporal features, respec-
tively. Composite models of CNNs and RNNs [13]–[15] have
been employed to discover spatio-temporal relationships in
transportation data. Besides, Graph Neural Networks have
emerged as a promising approach for learning spatial topology
representations by modeling a city’s road network as a graph,
which better aligns with the geographical structure of the city.

Graph-based learning has shown impressive results in trans-
portation, but incorporating graphs into trajectories remains a
topic of debate. Some studies use map-matching to connect
trajectory data to roads, requiring highly accurate road network
data [16], [17], while others, like [5], create their own graph
structures from trajectory data by exploring the local linkage
between trajectory points. The latter provides a more flexible
and scalability way to construct graphs including the spatial
and temporal information instead of relying on other data
sources. We follow this approach to construct the trajectory
graph in spatial, and improve it by enhancing trajectory
features.

In the meantime, the sequential information also plays a
critical role in transportation tasks. RNNs are commonly used
in traffic tasks due to their ability to process sequential data.
Despite the ability of RNN models to accommodate sequences
of varying lengths using padding and masking techniques [13],
[18], such operations can introduce computational overhead
and undermine computational efficiency [19]. This is particu-
larly evident when applied to trajectory data characterized by
significant disparities between the minimum and maximum
numbers of recorded points.

Differently, this paper employs the Graph Trajectory En-
hancement (GTE) module to capture local spatial features
and the attention mechanism to extract global information,
allowing each trajectory to observe all data points without
truncation or interference and free from the introduced external
operation and other issues.

By the discussion, we find the current TTE faces several
challenges.

• Trajectory data, which captures spatial-temporal informa-
tion for each GPS point, is subject to variability due to
the movement of sampling devices. This type of data,
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while traffic-related, differs from the average speed or
read occupancy data collected by fixed sensors installed
on roads. This variability in trajectory data can pose
unique challenges for TTE to exploit the graph spatial
information.

• RNN-like models can effectively capture sequential de-
pendencies in data but require input data to be in a
sequential format and may require some preprocessing
to standardize the input format. In the case of trajectory
data, the number of recorded data points can vary signifi-
cantly between trajectories, ranging from ten to thousand
or more. Traditional methods of processing such data
involve truncating trajectories into smaller segments of
equal length for estimation. However, such truncation
may change the starting and ending points and may
introduce extraneous information that is irrelevant to the
analysis, which can spoil the accuracy.

To address the above challenges, this paper proposed a
Graph-Transformer for Travel Time Estimation (GT-TTE) with
a Graph Trajectory Enhanced (GTE) method. GT-TTE com-
bines the spatial information embedded in graph structures and
the contextual learning abilities of Transformers, a powerful
synergy capable of capturing and utilizing spatial-temporal de-
pendencies within datasets spanning geographical and tempo-
ral dimensions. The proposed method begins by constructing
a graph representation of the GPS points and extracting spatial
relationships. Prior research, such as the work presented in [5],
has endeavored to develop graph structures for trajectories.
Limitations in terms of enhanced trajectory points exist in
applying the proposed method to TTE due to its original focus
on trajectory similarity. To address this, we restructured a
region-passing graph Areg to improve its suitability for TTE.
We further incorporated Graph Convolutional Network (GCN)
into Transformer, which gathers information from both Areg
and an order graph Aodr to obtain spatial information from
both a local and global perspectives. This approach provides
the added benefit of accommodating data with different lengths
while avoiding interference caused by truncated data.

Our principle contributions can be summarized as follows:

• We propose a Graph-Transformer for Travel Time Esti-
mation (GT-TTE) with a enhanced graph trajectory. GT-
TTE constructs a hierarchical graph by extracting point-
area relationships between GPS points, as distinguished
from the more common models that use the adjacency
matrix of road segments as the graph structure. This
approach aims to improve the efficiency of message
passing in long-distance trajectories and increase the
spatial region information of the trajectory itself without
adding extra data. To the best of our knowledge, this
is the first time a graph creation technique like this has
been performed for a TTE problem, and the accuracy of
the suggested model is noticeably superior to the existing
baseline.

• We propose a trajectory representation that enables effi-
cient batch processing without the need for truncation.

• We optimize the method of constructing trajectory graphs
to better extract spatial features for TTE-Tasks.

• We conduct extensive experiments on three real-life
datasets to evaluate GT-TTE and previous state-of-the-art
methods. Experimental results demonstrate the superior-
ity of GT-TTE in comparison of state-of-the-art baselines.

The rest of this paper is organized as follows. We first
review the background of Graph Convolution Network, Trans-
former, and works for TTE-Task in Sec. II. Then, we present
the preliminaries in Sec. III. Sec. IV elaborates on the
proposed framework. We conduct case studies and provide
analytical discussions in Sec. V. Finally, we conclude this
paper in Sec. VI.

II. RELATED WORK

This section provides an overview of the relevant research
on GCNs and Transformers, and a summary of the approaches
specifically developed for TTE.

A. Graph Convolution Networks

In the field of transportation, Graph Neural Networks
(GNNs) offer a distinct advantage in effectively representing
the non-Euclidean structure of road networks. This charac-
teristic has been demonstrated by T-GCN [20], a GNN model
specifically designed for transportation applications, which has
shown promising results in traffic prediction. Moreover, Graph
Neural Networks have been extended to various variants.
For instance, the Diffusion Convolutional Recurrent Neural
Network (DCRNN) [21] incorporates a diffusion mechanism
for traffic flow prediction, expanding the capabilities of graph
convolutional operators. Additionally, in 2019, attention-based
Spatio-Temporal Graph Convolutional Networks were pro-
posed [22], which introduced attention mechanisms to en-
hance the modelling of spatio-temporal dependencies in graph-
structured data.

The effectiveness of Graph Neural Networks (GNNs) in
traffic prediction has been increasingly demonstrated in recent
studies. However, the applicability of these methods is largely
dependent on the availability of graph-structured data, which
may not be readily accessible in trajectory data. While efforts
have been made to construct graphs from sequential data,
such as sentences, these approaches encounter challenges
when dealing with the distinct spatio-temporal characteristics
inherent in trajectory data [13], [23], [24].

B. Transformer

Transformer, a deep learning model introduced by Vaswani
et al. [25], has revolutionized the field of natural language
processing by addressing sequence transformation tasks. This
model leverages self-attention mechanisms, allowing it to
selectively attend to specific positions within an input sequence
and generate output sequences based on these attentions.
A notable advantage of the Transformer is its concurrent
processing of sequence positions, which leads to accelerated
training and inference compared to traditional recurrent neural
networks that rely on sequential computations.

The Transformer’s robust sequence encoding capabilities
have motivated researchers to explore its application in time
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TABLE I
DEFINED SYMBOLS IN GT-TTE

Symbol Definition
GTE Abbreviation of Graph Trajectory Enhancement.
Attn Abbreviation of Attention, and refer in particular to self-attention.
T A trajectory, which contains a sequence of locations.

Tmeta The own properties of one trajectory like departure time or others’.
Trec A set of GPS points in one trajectory, each GPS point contains the necessary latitude and longitude information as well as some external information.
TD The historical trajectory data.
Tenh The enhanced trajectory by GTE.
Tt The total travel time for prediction.
p GPS point in one trajectory
m The max number of nodes in a sub-quadrant (sub-region).
H The hierarchical graph constructed by Point-region (PR) tree.

dH The dimensional size of the embedding vector.
dm The embedding size of positional encoding.

dmodel The embedding size of trajectory features.
NH The number of virtual nodes (divided regions) included in H
EH The embedding matrix of H

NT , Np The number of features for the trajectory itself and each GPS point.
pr

feat, pfeat The features of the region to which each point belongs, constructed from the PR tree, and the features contained in the point itself.
r, rc An area and the center of the area.

hT
feat, r

T
feat Latitude and longitude information for all GPS points of the entire trajectory and the features of the area they belong to.

Areg, Aodr The Adjacency matrices constructed by region division and sequential information of the trajectory itself.
PEo, PEr Positional encoding and Periodicity encoding.

τ the maximum period of the time unit.

series prediction tasks. For instance, Li et al. [26] proposed a
self-attentive convolutional layer to enhance the Transformer’s
performance in time series prediction. Xu et al. [27] focused
on leveraging the Transformer to model spatial and tempo-
ral dependencies for traffic forecasting. Similarly, Cai et al.
[28] improved traffic forecasting by incorporating spatial and
temporal dependencies while emphasizing the continuity and
periodicity of time series.

In the context of TTE, several studies have addressed the
problem by proposing frameworks with Transformer. Liu et
al. [29] introduced MCT-TTE, an end-to-end framework that
focuses on learning spatio-temporal patterns and estimating
travel time using both the provided path information and
relevant external factors. Jin et al. [30] presented STGNN-
TTE, a spatial-temporal graph neural network framework that
incorporates a spatial-temporal module to capture real-time
traffic conditions and a transformer layer to estimate travel
time for individual links and total routes simultaneously.
Similarly, Ma et al. [31] proposed a multi-attention-based
graph neural network with designed masks and attention heads
to learn both global and local spatial travel patterns specifically
for bus routes. It is worth noting that these approaches leverage
graph structures constructed based on the city’s road network,
yet they do not explicitly extract spatial information directly
from the trajectory data itself.

C. TTE

In the domain of travel time estimation, models of various
flavors have been explored over time. Initially, classical time
series models like ARIMA [7] were commonly used for
this task. As computational intelligence advanced, machine
learning techniques such as gradient-boosting regression trees
[10] and multiple regression trees gained popularity, allowing
for better handling of non-linear data. However, these methods
often required substantial feature engineering efforts.

With the advent of big data, deep learning models such as
Long Short-Term Memory (LSTM) [32] and Gated Recurrent

Units (GRU) [33] gained prominence due to their ability to
capture sequential features effectively. To incorporate spatial
information, hybrid models combining Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs)
were proposed [13]–[15].

More recently, attention-based mechanisms have emerged
as a significant development in travel time estimation.
Transformer-based approaches have been introduced to con-
sider spatio-temporal dependencies and leverage multi-scale
static and dynamic structures, leading to improved prediction
performance [5]. These approaches leverage attention mecha-
nisms to selectively focus on relevant information and have
shown promising results in capturing complex patterns in
travel time estimation.

Graph-based methods have also been developed for TTE
tasks, as TransTTE, GCT-TTE, and Graph TTE, where the
road network structure is used as a fundamental feature of
the graph to enhance the geographical information. In these
works,the graph are defined as G = {V,E}, each road in the
network is treated as a node and V = {v1, v2, ..., vN} is a set
of nodes, where N is the number of roads. E is a set of edge
and an edge eij = (vi, vj) ∈ E indicates the vertex vi ∈ V
links to the vertex vj ∈ V . The adjacency matrix A ∈ RN×N

represents the connection relationship of the nodes, which is
composed of 0 and 1.

Expanding upon existing studies, we present a novel ap-
proach that leverages the transformer architecture to incorpo-
rate the inherent graph structure of trajectories. Unlike the
prevailing graph structure, our method aims to extract per-
sonalized spatial information for individual trajectory points,
thereby enhancing the overall semantic understanding of the
trajectory. By considering the sequential order of the points
and integrating temporal information, we effectively encode
the temporal dynamics and capture rich contextual information
within the trajectory. This innovative approach, referred to as
the Graph Trajectory Enhancement (GTE) Method, enhances
the representation and semantic understanding of trajectories
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for improved analysis and prediction tasks.

III. PRELIMINARY

This subsection presents the trajectory data definition, the
TTE and the corresponding notation and problem definitions
to facilitate a more comprehensive explanation of the TTE-
Task and the final problem objectives in our work. Table I
provides the definitions of all symbols used in this study.

a) Definition 1 (Trajectory): A trajectory, denoted as
T , comprises n multi-dimensional GPS points (for symbolic
definition explicitly, and n is not the same in different trajecto-
ries). Each point contains information about its longitude and
latitude, and additional external data such as time and distance
interval (Chengdu161) or timeID/weekID (Chengdu14/Porto1).
Additionally, each trajectory may also record its own departure
time, total distance, and total travel time, which we refer to
as Tmeta, as well as the content of points records, referred to
as Trec. Hence, each trajectory T can be represented as the
combination of Tmeta and Trec. The formulation for trajectory
T can be expressed as follows:

T = {Tmeta, Trec}, (1)

Trec =


p0.lng p0.lat · · · p0.ext
p1.lng p1.lat · · · p1.ext
. . . · · · · · · · · ·

pn−1.lng pn−1.lat · · · pn−1.ext

 , (2)

where pi.lng and pi.lat are the i-th GPS point’s longitude and
latitude. pi.ext is the external information of the i-th GPS
point. Tmeta ∈ R1×NT and Trec ∈ R(n)×Np . NT represents
the cardinality of the feature set within Tmeta, whereas Np

signifies the cardinality of the feature set within a GPS point
encapsulated in Trec.

b) Definition 2 (Hierarchical Graph): A hierarchical
graph H is constructed using historical trajectory data TD.
By splitting and matching all trajectory points into a region
hierarchy, we create an abstract hierarchical graph H = {V},
where V is a virtual node of each region. By randomly
walking on H, we may obtain the node representation, which
also serves as the regional information representation for
each trajectory point. Section IV-B1 provides information on
constructing a hierarchical graph H.

c) Definition 3 (Trajectory Graph): For any trajectory T ,
we could construct a trajectory graph GT = {V,E} through
the hierarchical graph H. Here, V represents the set of all
trajectory GPS points in the specify trajectory T , while E
represents a set of edges. In graph G, eij = 1 if vi, vj ∈ T
and vi, vj both belong to Vk; else, it equals 0. Vk is a virtual
node for a region in the hierarchical graph H.

d) Definition 4 (Travel Time Estimation): Travel Time
Estimation aims to predict the total amount of time required
to travel between two locations using the latitude and longitude
information of each GPS point included in a trajectory along
with other non-time-related information.

Tt = fmodel(T ), (3)

1The datasets will be introduced in V-A1

where Tt represents the prediction target, specifically the
Total Travel Time. The function fmodel encompasses the
GTE (Graph Trajectory Enhancement) module, GCN (Graph
Convolutional Network), and Attention block within a unified
framework. This framework serves to map the original infor-
mation contained in trajectories to the target travel time.

In GT-TTE, the process can be delineated as follows:
initially, a hierarchical graph H is constructed using historical
trajectory data TD. This graph is the foundation for obtain-
ing enriched trajectory data Tenh, which effectively captures
significant local spatial information about the trajectory T .
Moreover, graph H allows the construction of the regional
connectivity relations matrix Areg. By integrating the localized
enhancement provided by Tenh and the global enhancement
derived from Areg, the travel time Tt for the trajectory T is
estimated. This process can be mathematically represented as
follows:

H = fGTE(TD), (4)
Tenh, Areg = EnhanceData(H), (5)

Tt = fGT-TTE(fAttn(Tenh, Areg)), (6)

where fGTE denotes the GTE method, and fAttn represents the
Self-Attention layers. EnhanceData means that extracting the
data from H. The model’s objective is to predict the total travel
time Tt based on the given trajectory T .

IV. GRAPH-TRANSFORMER FOR TRAVEL TIME
ESTIMATION

In this section, we introduce the details of GT-TTE. The
model consists of three critical modules: graph-based tra-
jectory enhancement, Graph Convolution Networks, and the
attention. Among them, The graph convolution networks is
coupled with trajectory enhancement because it is only with
the latter that we can apply the former to trajectories.

A. Overall pipeline

As illustrated in Fig. 1, the green part is the process of
the GTE module extracting information from original trajec-
tories. Each dataset requires only a single execution of the
module, after which the output can be utilized repeatedly.
After integrating the long trajectory information, the improved
trajectories obtained via GTE are fed into the subsequent
GCN and Attn to yield the final prediction results. Specifically
speaking, GT-TTE comprises three main components. Firstly,
the raw trajectory data is input into the graph-based trajectory
enhancement module to obtain enhanced spatial and temporal
information. The module generates a graphical representation
of the trajectory data that captures the local spatial relation-
ships between each trajectory point. Additionally, the GTE
module encodes the sequence of positions in the trajectory,
thereby capturing the temporal relationships between GPS
points. This approach allows the trajectory data enhanced by
the GTE module to be processed in parallel using a graphical
convolutional network without truncating the trajectory data.
Moreover, GT-TTE integrates an attention mechanism to pro-
vide global semantics for the trajectory.
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Fig. 1. (Left) The framework of the Graph Trajectory Enhancement (GTE). (Right) The framework of GT-TTE.

B. Graph Trajectory Enhancement
In this work, we employ structured data in the form of a

graph to represent the irregular trajectory data. This storage
format allows for batch processing of trajectory data of varying
lengths without needing to align trajectory lengths. However,
graphical modelling of trajectory data is not readily available.
In the following subsection, we will first outline the process
of modelling trajectory data into graphical data.

1) Spatial Construction:

Fig. 2. The hierarchical graph H’s construction process. Divide the region
into four quadrants recursively until fewer than m GPS points included in.
Each region is abstracted as a virtual node like the orange node in the right
part.

a) Structure Construction: We adopt TrajGAT’s ap-
proach [5] for graph-based data manipulation. To model the
trajectory data as a graph, we first use Point-region (PR)
quadtree [34] to construct a hierarchical spatial representa-
tion of the data, as illustrated in Fig. 2, which displays a
trajectory’s location and direction information on a map. The
PR quadtree algorithm recursively divides the area into four
equal quadrants, with each quadrant containing no more than
p GPS points. The steps for constructing the PR quadtree are
as follows:

• First, the latitude and longitude of all GPS points are
extracted from their respective trajectories, and duplicate
points are removed (for instance, if the same GPS point
exists in both trajectory T1 and T2, only one will be
saved).

• Divide the region into four quadrants recursively until
fewer than m GPS points are under each quadrant.

• Temporarily excluding the real nodes (depicted as light
grey squares), we retain the relevant information (such as

the longitude and latitude of the central location and the
weight and height of each quadrant) about the divided
regions (represented by light orange dots, also referred
to as virtual nodes) to create the hierarchical partitions
denoted by H.

• We consider H as a hierarchical graph and apply
node2vec [35] to capture its tree-like topology. Specif-
ically, we randomly sample a set of paths from H and
learn the embedding vector eH ∈ R1×dH for each virtual
node by simultaneously exploring various surrounding
nodes while retaining as many existing neighbouring
nodes as possible. Here, NH is the number of the
virtual nodes (or divided regions) and dH represents the
embedding size.

As depicted in Fig. 2, the entire region is partitioned into
16 grid cells, with each cell containing no more than m = 2
GPS points. The resulting embedding matrix EH ∈ RNH×dH ,
where NH = 16. The Structure Construction’s process is
shown in Alg. IV-B1a. The additional symbols given in the
algorithm are redefined for clear demonstration. As mentioned
in paper Section III, each Trajectory T contains n GPS points
(n is not same in different T ). In the process of Graph
Trajectory Enhancement (GTE), the input data are the set of
unduplicated GPS points P = {p0T0

, . . . , piTj
, . . .} extracted

from all trajectory data. piTj
means the i-th GPS point in the

j-th Trajectory. The GPS point include the basical geometry
information latitude p.lat and longitude p.lng. So, we could
get the boundary information of the experimental region
BD = {min(p.lat),min(p.lng),max(p.lat),max(p.lng)}
and then we could define the experimental region by rc =
{pc.lat, pc.lng, rc.width, rc.height}, where rc means the cur-
rent region which represented by it’s center point’s pc location
(latitude and longitude), and rc.width / rc.height of its’ width
/ height. Then the number of points contained in current region
rc is denoted as m̂. The output of the module is a Point-
Region QuadTree PRQT represent the whole experimental
region which is recursively divided into sub-region(sub-tree)
until the leaf nodes(regions) only contains no more than m
points.

b) Trajectory Local Semantic Enhancement: Based on
the above mentioned procedures, a virtual node representing
a sub-area was identified to which each actual node in the
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Algorithm 1 PRQT
Input:

The points set P in all Trajectories.
The boundary information BD of current region rc.

Output:
The Point-Region QuadTree PRQT which leaf
nodes(regions) contain less than m GPS points.

1: if the number of points in current region rc.m̂ ≤ m then
2: return current region

ric = {pc.lat, pc.lng, rc.width, rc.height}
3: else
4: return {PRQT(Sub rc

1), PRQT(Sub rc
2),

PRQT(Sub rc
3), PRQT(Sub rc

4)}
5: end if

graph belongs. Such a virtual node stores its region centroid’s
latitude and longitude information and region width and height
information prfeat ∈ R1×4, where prfeat ∈ R1×4 denotes the
GPS point p belonging to the region r and containing features
[rc.lng, rc.lat, r.width, r.height], and rc is the center location
of r. Furthermore, we have the embedding vector eH of virtual
nodes (sub-regions) obtained through random walk. Then we
concatenate the latitude and longitude information of the
factual node with additional information about the belonging
region to form the spatial information of the real node as
pfeat = [p.lng, p.lat, rc.lng, rc.lat, r.width, r.height]. For the
trajectory T , hT

feat =
[
Trec[:, : 2]∥rTfeat

]
∈ R(n+1)×6, where ∥

refers to the concatenate spatiation, rTfeat ∈ R(n)×(dH+4) is the
feature of the regions including the spatial information and
embedding vectors. We have also created links between nodes
in the same region and since get a region adjacent matrix
Areg ∈ An×n.

A B C D E F G H J K

A
B

C
D

E
F

G
H

J
K

1 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1

Adjacent of regions

A B C D E F G H J K

A
B

C
D

E
F

G
H

J
K

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0

Adjacent of trajectory's order
The adjs' construction

Fig. 3. (Left) The adjacent matrix constructed by the sub-regions after
GTE module. (Right) The Adjacent matrix shaped by the order position in
trajectories.

Fig. 3 illustrates the two adjacent matrices of the toy
trajectory T shown in Fig. 2. The left one is the region adjacent
Areg, which is composed by the links between the nodes from
the same regions. The right one is an order sparse adjacent
Aodr, which is obtained by leveraging the inherent sequential
information present in the trajectory data. We construct two
adjacency matrices that are very sparse, essentially to create
a fast-shareable channel in long trajectories, so that the tra-
jectory information is not lost during the transmit process.
It assigns all GPS points to the appropriate areas, creating

virtual nodes for each one. Facilitating cross-node sharing
over short distances through the high-level region to which
the sub-region belongs helps mitigate challenges related to
information transfer forgetting in lengthy trajectories. As such,
even though the area and sequence matrices are extremely
sparse, they are essential to GT-TTE for sharing the graph
embedding. The sparse adjacency matrices and the graph
embedding complement each other.

2) Constructing Temporal Encoding: Two types of tempo-
ral encodings are utilized in this study. One is the sequential
order of the information contained in one trajectory. The other
is the periodicity information included in datasets, such as the
day of the week, the time of the day, and so on.

a) Positional Encoding: The order in which each GPS
point presents in the trajectory is regarded as its position
number i, i ≤ n. The positional encoding is formulated as
follows:

PEo =

{
sin (i/(1000

i
dm )) if i is even

cos (i/(1000
i

dm )) if i is odd
, (7)

where dm is the embedding dimension, and PEo ∈ Rn×dm .
Given that the majority of trajectories consist of 100–400
points, the denominator 1000 is sufficient to obtain distinct
encodings for each location in the trajectory data instead of
the original 10000 as used in [25].

b) Periodicity Encoding: Trajectory data typically incor-
porates structured temporal information, such as GPS points
recorded at specific time intervals throughout the day or on
specific days of the week. These temporal patterns exhibit
periodicity, regularly occurring within intervals of 24 hours
or a week. Exploiting this periodicity provides valuable addi-
tional temporal context to the trajectory data. The Periodicity
Encoding is computed as

PEr = sin
2πi

τ
, (8)

where PEr ∈ Rτ is a set of numbers that indicate different
moments in the period τ . Symbol τ represents the duration
or length of a single period within a given time frame, e.g.,
τ = 24 in the time of a day or τ = 7 in the day of a week.

Depending on the practical implications, PEr can be
included as the supplementary information pt.ext for the
trajectory or added to PEo as the sequential position-time
information for the entire trajectory. In our study, we apply
the both for local (GTE) and global (attention mechanism)
enhancement, respectively.

C. Graph Convolution Network

As previously mentioned, a recursive spatial subdivision
technique was utilized to divide the space into sub-quadrants,
from which additional spatial information was extracted and
integrated into the analysis. We identify the quadrant domain
for each GPS point and concatenate the point’s latitude, lon-
gitude, and quadrant information. Furthermore, intra-quadrant
connections have been established for each node, denoted as
Areg. However, to facilitate messages passing across different
quadrants for obtaining global enhancement, we construct Aodr
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by leveraging the inherent sequential information embedded
in the trajectory data, shown in Fig. 3 (right), enabling us to
combine data about neighbour nodes using Areg plus Aodr.

In each GCN layer, we denote the input adjacent matrix as
A. The graph Laplacian matrix can be computed as

L = I−D− 1
2 ÂD− 1

2 (9)

where I is the identity matrix and Â = A + I. D =
diag(

∑
j Aij) is the diagonal in-degree matrix. For graph

convolution operation, we have

H(l+1) = σ(LH(l)θ(l)), (10)

where l is the layer index, H l stands for the output of the l-th
layers, θl represents the l-th layer’s parameters, and σ(·) is
the sigmoid function, respectively.

D. Self-Attention Mechanism

Self-attention is a specific attention mechanism that en-
ables the modelling of the dependencies among items within
the input sequence [25], [36]. It evaluates the relationships
between individual elements within a sequence and assigns
weights to each element based on its relevance or importance
concerning the other elements. This mechanism can be viewed
as a self-focusing process, where each element in the sequence
pays attention to the other elements to capture the contextual
information more effectively, allowing for a comprehensive
understanding of the global relationships and dependencies
presented in the sequences.

In GT-TTE, we leverage the self-attention mechanism to
capture the global relational features among GPS points within
a certain trajectory. For a single self-attention layer, we begin
with the input data XT ∈ Rn×dmodel , which represents the
embeddings derived from the point records Trec ∈ Rn×Np

included in a single trajectory T (as defined in III-0a). Sub-
sequently, we employ learnable parameters WQ,WK ,WV ∈
Rdmodel×dmodel to obtain the query, key, and value (Q/K/V )
matrices:

Q = XT ·WQ,K = XT ·WK , V = XT ·WV (11)

The attention function is performed as follows [30]:

Attention(Q,K, V ) = Softmax((
QK⊤
√
d

) · V ), (12)

where d is a normalization factor and its value is consistent
with the feature dimension of Q. The query (Q) and key (K)
matrices are used to identify the correlation between points.
Based on this correlation, a weighted addition is performed
on the value (V ) matrix. This process aims to reconstruct the
features using non-local correlations, thereby learning global
contextual features.

On top of it, a multi-head self-attention mechanism is
further employed to capture more intricate relationships among
GPS points. It divides the input data XT into multiple heads
to focus on different parts of the sequence in parallel and
learn diverse representations [37]. The multi-head attention
mechanism is formulated as follows [38]:

TABLE II
DATASET DESCRIPTION

Datasets Chengdu16 Chengdu14 Porto

Travel Time (StD†) 425.16 237.37 173.88
Travel Time Mean 586.80 703.49 595.00
#† of Traj for training 170680 731693 736974
# of Traj for validation 23881 99672 130800
# of Traj for testing 90375 239039 262424
longitude mean 104.08 104.06 -8.62
longitude StD 0.0215 0.0362 0.0096
latitude mean 30.68 30.65 41.16
latitude StD 0.0190 0.0315 0.0061

†: StD is the abbreviation of Standard Deviation, # is the representation
of numbers.

MultiHead(Q,K, V ) =
∥∥∥
h=1,...,Nh

headhW
O, (13)

headh = Attention(Xh
T ·Wh

Q, Xh
T ·Wh

K , Xh
T ·Wh

V ), (14)

where Multihead(Q,K, V ) is the final output of the multi-
head self-attention layer that is integrated from the output of a
single headh via a learnable matrix WO ∈ Rdmodel×dmodel . Nh is
the number of heads. Xh

T is the h-th part of the trajectory data
XT . Wh

Q,W
h
K ,Wh

V ∈ R
dmodel

Nh × dmodel
Nh are weight matrices

specific to each attention head.

V. CASE STUDIES

In this section, a comparative analysis is conducted between
the proposed GT-TTE method and the existing state-of-the-art
approaches to travel time estimation tasks. This experimental
evaluation gives insights into the distinct characteristics and
distribution patterns exhibited by the three datasets under con-
sideration. Moreover, a comprehensive analysis is performed
to evaluate the impact of the various components compris-
ing GT-TTE, revealing the effectiveness of Graph Trajectory
Enhancement (GTE). Finally, experimental evaluations are
carried out on trajectories of diverse lengths to showcase the
exceptional performance of GT-TTE in accurately estimating
full trajectories and its notable predictive capabilities for
medium trajectories.

A. Experimental Settings

1) Datasets: We employed three real-world datasets in
our experiments. The detail information of the datasets are
displayed in Table II.

• Chengdu16: This dataset is collected between Nov 1st,
2016 and Nov 30th, 2016 from taxis in Chengdu, China2.

• Chengdu14: This dataset is collected between Aug 3rd,
2014 and Aug 29th, 2014 from taxis in Chengdu, China.
We process the data in accordance with the previous
literature [18]3.

• Porto: This dataset aggregates the trajectories of 442
taxis collected in Porto, Portugal for the entire year from

2The dataset could be downloaded after requesting approval via https://
outreach.didichuxing.com/app-vue/KDD CUP 2020.

3The datasets could be downloaded from https://drive.google.com/file/d/
1KiiSnx5x6f8B-pkkZEk7QYHIHg7I-zp8/view
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July 1, 2013 to June 30, 2014. Similarly, we remove all
incomplete trajectories and calculate the total travel time
of each trajectory, as described in the previous literature
[18]3.

2) Baselines: We conducted a comparative analysis involv-
ing 10 baseline methods, which can be categorized into two
main groups: statistical learning-based methods [39], [40] and
deep learning-based methods [13], [18], [41]–[44]. 4

• AVG [39]. This method estimates the travel time by
calculating the historical average of trajectories with the
same starting/ending points during the test phase.

• LR [39]. This method trains a linear regression model
to represent the relationship between taxi trajectory and
travel time based on the location of the origin and
destination.

• GBM [39]. This method estimates travel time using
gradient boosting decision tree models, which take into
account the departure time, day of the week, GPS coor-
dinates, and taxicab geometry.

• TEMP [40]. This method estimates travel time using the
average travel time of neighboring trips from a large
dataset of historical data.

• WDR [41]. This method uses deep learning techniques to
extract handcrafted features from raw trajectory data and
incorporates information about road segments to estimate
travel time.

• DeepTTE [13]. This method uses 1-D convolution and
LSTM networks to estimate travel times from raw GPS
trajectories in combination with some other external
features.

• STNN [42]. This method uses fully connected neural
networks to predict travel time by estimating the distance
between an origin and destination GPS coordinate and
then combining this prediction with the time of day.

• MURAT [43]. This method utilizes multi-task represen-
tation learning to improve the performance of travel time
estimation by jointly learning the primary task (i.e., travel
time estimation) and other auxiliary tasks (e.g., travel
distance).

• Nei-TTE [44]. This method uses GRU to capture features
from road network topology and speed interactions and
divides the entire trajectory into multiple segments to
estimate travel time.

• MetaTTE [18]. The method employs meta-learning to
improve the accuracy and generalization of the travel time
estimation task for multiple cities.

• DCRNN [21]. A traffic predicting model capturing the
spatial dependency with bidirectional random walks on
the graph.

• GCT-TTE [45]. The method applies different data modal-
ities capturing different properties of an input path.

4The evaluation results for the chengdu14 and porto datasets were obtained
from the study [18]. It should be noted that MetaTTE, which was trained
on both datasets alternately to improve generalizability originally. To ensure
experimental fairness, the results presented in Table III were obtained using
the MetaTTE code provided by the authors but trained separately for each
dataset.

• TransTTE [46]. The method applies the Graphomer ar-
chitecture to accelerate the training process and consider
the peculiar properties of road trips.

3) Evaluation metrics: We adopt the following three met-
rics to evaluate the performance of models:

• Mean Absolute Error (MAE):

MAE =
1

m

m∑
i=1

∣∣∣(Yi − Ŷi)
∣∣∣ (15)

• Root Mean Squared Error (RMSE):

RMSE =

√√√√ 1

m

m∑
i=1

(Yi − Ŷi)2 (16)

• Mean Absolute Percentage Error (MAPE):

MAPE =
100%

m

m∑
i=1

∣∣∣∣∣ Ŷi − Yi

Yi

∣∣∣∣∣ (17)

where Yi and Ŷi are ground truth and predicted speed, and
m is the number of samples. MAE and RMSE quantify the
absolute size of the difference between the ground truth and
the predicted value, whereas MAPE measures the relative
magnitude (as a percentage). These metrics with lower values
indicate superioty.

4) Configure settings: All experiments are conducted on a
Linux server with Intel E5-2620v4 CPUs and GeForce RTX
2080Ti GPUs. All baselines and the proposed model are built
with Pytorch 1.7.0 and Python 3.8.3.

5) Parameters settings: In our work, we set the feature
embedding dimension of the input to the whole framework as
dmodel = 32, and the embedding size of the position dm = 32.
The normalization factor d = dmodel

Nh = 4, where Nh = 8. The
max nodes in a sub-quadrant m = 50 in Chengdu Dataset
and m = 25 in Porto. The training epoch is set to 100, and
we apply the early stopping strategy as follows. If the optimal
performance on the validation phase has not been updated in
the last 5 epochs, the model stops training and transitions to
the testing phase to obtain the final results.

B. Performance Evaluation

Table III presents a comprehensive comparison of the
performance of various baselines across the three datasets.
Notably, GT-TTE exhibits superior performance on almost
all datasets, particularly MAPE, which offers a more com-
prehensive representation of a model’s efficacy, being less
influenced by the mean or extreme values of the dataset. The
best-performing method is highlighted in Bold and the runner-
up is decorated with an underline.

The results consistently demonstrate a universal advantage
of deep learning-based approaches over statistical learning-
based approaches. This can be attributed to deep learning
methods’ widespread applicability and effectiveness in lever-
aging additional semantic information and capturing the inher-
ent sequential dependencies present in the input data. Specif-
ically, deep learning models such as Deep-TTE and Meta-
TTE, equipped with LSTM architectures, exhibit superior
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TABLE III
PERFORMANCE COMPARISON OF DIFFERENT APPROACHES. MAPE IS REPORTED IN PERCENTAGE (%)

Datasets

Chengdu16 Chengdu14 Porto

MAE RMSE MAPE(%) MAE RMSE MAPE(%) MAE RMSE MAPE(%)

AVG 124.59 234.56 30.25 442.20 8443.60 39.71 182.64 1128.21 26.66
LR 150.36 259.65 32.12 516.23 1204.99 49.09 194.40 279.20 33.90
GBM 129.65 235.25 28.65 454.50 1121.32 41.67 148.53 209.07 24.59
TEMP 128.43 221.41 27.15 334.60 761.05 39.70 174.44 260.81 28.73

WDR 120.48 228.31 29.47 433.99 1024.92 29.74 164.04 244.41 22.84
STNN 115.58 198.27 26.33 427.33 1011.88 30.08 226.30 331.75 35.44
MURAT 108.48 171.95 27.84 396.01 994.95 29.29 165.91 177.83 27.10
Nei-TTE 112.14 168.43 27.14 414.16 1038.71 30.04 106.30 183.03 15.23
DeepTTE 93.56 147.27 13.66 413.09 926.04 24.22 84.29 90.29 14.79
MetaTTE 35.61 70.91 11.10 235.89 726.13 25.53 1.79 2.50 0.34

DCRNN 38.72 120.65 12.22 270.18 543.90 23.98 1.98 2.49 0.31
GCT-TTE 46.13 73.94 11.31 202.67 458.52 19.32 1.65 2.14 0.24
TransTTE 39.24 71.32 10.86 188.46 320.55 18.79 1.83 2.34 0.26

GT-TTE (Ours) 37.36 104.57 6.58 104.52 144.62 16.52 0.24 0.35 0.0355

performance by effectively encoding and utilizing information
from the initial segments of the sequences.

Meanwhile, the notable performance advantage of GT-TTE
can be attributed to the inclusion of the GTE component,
which augments the trajectory with localized spatial infor-
mation and incorporates the sequential characteristics of the
trajectory itself in the analysis. By constructing Aodr, GT-TTE
enables information to flow between virtual nodes (regions),
thereby providing a global-enhanced perspective for trajectory
time estimation. The performance improvements achieved by
GT-TTE over the runner-up methods are substantial, with
approximately 40%, 31%, and 89% improvement observed
across the three datasets5. Notably, the dataset Porto ex-
hibits a particularly significant improvement with GT-TTE. To
gain insights into the factors contributing to this improved
performance, a further investigation was conducted on the
distribution characteristics of the three datasets.

According the comparison between the graph-based mod-
els, we can see that the graph-based model type performs
somewhat better than the other models. It is noteworthy that,
whereas DCRNN [21], GCT-TTE [45], and TransTTE [46]
employ a graph with the road segment connectivity case as
an element, the region connectivity case, Areg , is substituted
for the graph in our instance without any further information
derived from the hierarchical graph H. While graph-based
models have advanced significantly, GT-TTE has an advantage
in long-distance information transfer and fusion because of the
hierarchical graph H that GTE generated and the trajectories
following the augmentation of spatial information from H.

C. Data Analysis

Fig. 4 illustrates the distribution of total travel time,
GPS points, and their ratio for three datasets (Chengdu16,
Chengdu14 and Porto). (The latter two datasets were treated

5Measured by the MAPE metric S1−S0
S1

∗100(%), where S0 represents the
performance of GT-TTE and S1 represents the performance of the runner-up
method.

following the methods described in literature [18], with travel
times to be 315–1174 seconds for chengdu14 and 315–945
seconds for Porto.) The first column shows the significantly
different distributions of total travel time for the three datasets,
suggesting variations in traffic patterns, route choices, or other
factors. The second column presents the distribution of the
number of GPS points contained in each trajectory, with the
Porto dataset exhibiting a relatively trajectories’ lengths. The
third column is the logarithm of the ratio between the first two
columns.

Fig. 4 depicts that the Porto dataset demonstrates a more
concentrated distribution of the number of GPS points com-
pared to the chengdu14 and chengdu16 datasets. Additionally,
the logarithm of the ratio between the travel time and the
number of GPS points, as shown in the third column, indicates
a pronounced correlation between the travel time and the
number of GPS points for the Porto dataset.

It is noteworthy that the quantity of GPS points per tra-
jectory constitutes concealed information within track data.
Most models do not utilize the sequential information of track
numbers since it is presumed to be encompassed in track
data. However, GT-TTE utilizes a positional encoding method
to identify trajectory sequence information, which assists in
predicting travel times. This is especially pertinent in the Porto
dataset, where the total travel time correlates strongly with the
number of trajectory records.

D. Ablation Study

We conducted a series of ablation experiments to evaluate
the efficacy of our proposed graph trajectory enhancement
(GTE) in improving TTE-Task and the effectiveness of At-
tention modules. Specifically, we decomposed our approach
into the following components for analysis.

• GT-TTE(baseline): Eliminate all components and only
utilize the trajectories’ features contained in the raw data.
The resulting model can be viewed as a fully-connected
layer.
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Fig. 4. Data distribution. Each row represents a dataset (Chengdu16, Chengdu14, Porto). Column A: the distribution of the total time (label) for trajectories.
Column B: the distribution of the number of recorded GPS points in a trajectory. Column C: the distribution of the logarithm-ratio between the first two
columns (C = log(A

B
)).

• GT-TTE(+Attn): Incorporated an Attention mechanism
into the baseline model.

• GT-TTE(+GTE): Incorporated the Contextual Trajectory
Augmentation block into the baseline model.

• GT-TTE(ALL): the proposed model include GTE and
Attention mechanism.

As Table IV shows, the inclusion of Attention mechanism
and GTE are significantly improved the performance of the
model compared to the baseline. Notably, our results with
underlines indicate that GTE led to a greater improvement in
model performance compared to the other methods evaluated.
When these two methods are combined, the performance with
Bold is maximized, yielding optimal results. It should be noted
that the extent of improvement varies across different datasets
and components. The results presented in Table IV reveal
that including the GTE component significantly enhances
the performance of the Chengdu16 and Porto datasets. This
considerable improvement observed in the Porto dataset may
be attributed to its pronounced correlation between travel
time and the number of recorded points. In contrast, the
Chengdu16 dataset exhibits a wide distribution compared to
the Chengdu14 dataset, resulting in limited predictive effec-
tiveness of the GT-TTE(baseline). However, given the smaller
number of trajectory entries in the Chengdu16 dataset com-
pared to the others, as indicated in Table II, the incorporation
of the GT-TTE component leads to an increase in local spatial
information, thus playing a crucial role in improving the model
performance through the enhancement of data quality and the
re-excavation of spatial relationships.

The Attn component is also crucial in aggregating the
contextual information within a single trajectory, allowing for
a global perspective. However, when dealing with trajectory
data containing more GPS recording points (such as the
Chengdu16 and Chengdu14 datasets), the expressive power
of the information diminishes more fiercely as it passings
through multiple layers. Consequently, relying solely on the
global focus provided by the Attn component leads to mod-
est improvements in model prediction compared to the GT-
TTE(baseline), but its effectiveness remains constrained.

In contrast, the GT-TTE model, by combining the GTE and
Attn components, leverage the strengths of each to overcome
their respective limitations and achieve superior performance.
The local enhancement of GTE provides detailed spatial infor-
mation, while the global perspective of Attn ensures a compre-
hensive understanding of the entire trajectory. By integrating
these two components, GT-TTE effectively compensates for
their shortcomings and achieves the best overall performance.

E. The Influence of Hyperparameter dH

dH is the embedding size of features. In this subsection, we
tested the experimental results with dh varying from 8 to 128.
The results are shown in Table. VI.

TABLE VI
EFFECT OF dH ON PERFORMANCE (MAE / RMSE / MAPE)

dH Chengdu16 Chengdu14 Porto

8 40.84/99.93/10.29 104.06/178.90/16.64 1.89/2.36/0.30
16 38.23/98.47/7.23 115.24/190.88/18.07 0.14/0.18/0.02
32 37.36/104.57/6.58 104.52/144.62/16.52 0.24/0.35/0.03
64 87.32/129.35/12.33 170.24/204.88/29.07 39.19/50.18/7.15

128 90.68/138.23/13.68 168.09/202.75/27.12 39.54/53.96/7.18

We empirically examined the impact of the hyperparameter
dh for each dataset. The ideal dh is 16 on the Porto dataset
and 32 on the Chengdu14 and Chengdu16 datasets. This may
be because the Porto dataset’s distribution is more centralized
and the feature representation does not require additional
dimensions. We tested the experimental results with dh varying
from 8 to 128. In the Porto dataset, however, good results are
still achievable when dh equals 32. Furthermore, performance
on all three datasets declines with increasing dh, so overall,
dh equal to 32 is a suitable setting.

F. Performance on Trajectories of Different Lengths

In this section, we evaluate the effectiveness of our method
on predicting travel times for trajectories with varying lengths.
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TABLE IV
THE PERFORMANCE OF DIFFERENT COMPONENTS IN GT-TTE. MAPE IS REPORTED IN PERCENTAGE (%)

Datasets

Chengdu16 Chengdu14 Porto

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

GT-TTE(baseline) 232.30 347.59 100.82 203.33 240.28 32.24 143.49 172.88 25.41
GT-TTE(+GTE) 47.74 124.35 9.33 136.35 182.94 22.46 0.3337 0.4042 0.0653
GT-TTE(+Attn) 234.05 354.00 80.23 170.64 205.63 27.01 39.29 50.63 7.09
GT-TTE(Ours) 37.36 104.57 6.58 104.52 144.62 16.52 0.2434 0.3508 0.0355

TABLE V
THE PERFORMANCE OF DIFFERENT MODELS ON VARYING LENGTH IN TRAJECTORIES (SHOWN IN MAE / RMSE / MAPE(%))

Seconds Range DeepTTE MetaTTE GT-TTE

Short(<315s) 89.04 / 92.96 / 52.72 196.74 / 283.99 / 59.13 10.44 / 21.29 / 9.26
Medium(315s-1174s) 198.12 / 212.36 / 28.31 147.42 / 182.68 / 25.18 35.92 / 71.65 / 5.42
Long (>1174s) 236.22 / 306.02 / 13.27 219.66 / 324.03 / 17.07 190.41 / 315.99 / 10.63
Total 93.56 / 137.27 / 13.66 35.61 / 70.91 / 11.1 37.36 / 104.57 / 6.5

Specifically, the trajectories were categorized into three dis-
tinct groups as regards their total travel time: Short trajec-
tories, characterized by a total duration of fewer than 315
seconds; Medium trajectories, which fell within the range
of 315 to 1174 seconds; and Long trajectories, with a total
duration exceeding 1174 seconds [13], [18]. Considering the
more comprehensive data available in the chengdu16 dataset
compared to the other two, we conduct experiments on the
chengdu16 dataset and compare our GT-TE with MetaTTE and
DeepTTE, demonstrating the second and third highest MAPEs
in Table. III, respectively.

Table V exhibits the performance of three models in
terms of MAE, RMSE and MAPE, when varying the time
of trajectories. It is obciously that DeepTTE and MetaTTE
exhibit relatively promising performance only in case of long-
trajectory data, while their performance on short and medium
trajectories is limited. Additionally, it is noteworthy that their
optimal performance can be achieved only when utilizing the
entire trajectory dataset. In contrast, GT-TTE demonstrates
exceptional predictive performance for trajectories of varying
total time length, particularly notable improvements observed
for medium trajectories. The prevalence of medium trajectories
in everyday life underscores the usefulness of GT-TTE, while
its ability to achieve optimal performance across trajectories
of varying time lengths highlights its generalizability. The
superior performance of GT-TTE across diverse trajectory
lengths can be attributed to the GTE module’s capability to
enrich local information, coupled with the Attn component’s
handling of the trajectory’s global characteristics.

G. Performance on complexity

For evaluating the model’s complexity, we employ floating
point operations. The table. VII demonstrates that GT-TTE has
a limited number of parameters and extremely low FLOPs. It
should be noted that we only count the number of parameters
and FLOPs during the inference process, the data enhancement
method carried out by the GTE module is not included because
it can be done just once and then reused repeatedly. We

TABLE VII
THE COMPLEXITY AND PARAMETERS OF SEVERAL METHODS.

FLOPs(M) Parameters(K)
Chengdu16 Chengdu14 Porto

DeepTTE 1532 726 505 295
DCRNN 3728 1453 954 379

GCT-TTE 1011 682 579 342
TransTTE 987 569 344 228

GT-TTE 347 118 87 33

only use the encoder-only mode throughout the inference
procedure.The following table displays the number of layers
that are included in GT-TTE.

TABLE VIII
THE NUMBER OF MODEL LAYERS.

3*Embedding linear layer

3*Encoder
2*GCN layer

1*Attention layer
3*Linear layer

1*Out linear layer

VI. CONCLUSION

In this paper, we propose a Graph-Transformer for Travel
Time Estimation (GT-TTE) based on trajectories augmented
with spatio-temporal information. Specifically, we introduce
the Graph Trajectory Enhancement (GTE) technique to learn
the trajectory as a graph, amplify the regional characteristics
of the recorded points, and produce a sequence of embedding
vectors for the regions to differentiate spatial information and
capture attributes in the local domain. Moreover, to preserve
the global features of the trajectories, we employ an attention
mechanism that allows each trajectory to attend to its own
global recording points. Furthermore, we also constructed
a regional adjacency matrix based on the GTE method in
addition to the spatial features. We incorporated the matrix
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with the positional encoding to offer the graphical spatio-
temporal adjacency data of the trajectory.

To assess the effectiveness of GT-TTE, we conducted a
series of comprehensive case studies on three datasets based on
real-world scenarios. The simulation results indicate that the
GT-TTE approach significantly outperforms the state-of-the-
art baselines. A dataset distribution analysis shows that GT-
TTE can significantly improve the accuracy of trajectory time
prediction by abstracting order and temporal information from
the datasets. Additionally, we performed ablation experiments
on the GT-TTE approach. The results of these experiments
revealed that the proposed GTE augmentation method has a
more significant impact on increasing prediction accuracy than
the attention mechanism. Lastly, we analyzed the prediction
performance of the DeepTTE, MetaTTE, and GT-TTE models
across different travel times. The results highlight the effec-
tiveness of GT-TTE in medium trajectory time prediction and
its generalization capabilities in predicting the performance of
all trajectories. While offering enhanced spatial information,
the construction of trajectory graphs remains a complex under-
taking. The efficiency and ease with which additional spatio-
temporal information can be incorporated play a crucial role
in achieving more accurate trajectory time predictions. In our
future research, we will delve deeper into this aspect to explore
methods that facilitate the quick and effective application of
such information.
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