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Abstract—The deployment of Global Positioning System (GPS)
sensors in modern smartphones and wearable devices has enabled
the acquisition of high-coverage urban trajectories. Extracting
knowledge from such diverse spatiotemporal data is essential
for optimizing intelligent transportation system operations. Yet
a deeper understanding of users’ mobility patterns also requires
identifying their associated transportation modes. Combined
with growing privacy concerns, the considerable effort involved
in manual data annotation means that GPS trajectories are
in reality not labeled by transportation mode. This poses a
significant challenge for machine learning classifiers, which often
perform best when trained on large amounts of labeled data.
As such, this paper investigates a wide range of time series
augmentation methods aiming to improve the real-world appli-
cability of transportation mode identification. In our extensive
experiments on Microsoft’s Geolife dataset, both discrete wavelet
transform and flip augmentations pushed the transportation
mode identification accuracy of a convolutional neural network
from 85.1% to 87.3% and 87.2%, respectively.

I. INTRODUCTION

The ability to associate users’ mobility patterns with their

corresponding transportation modes is crucial for urban plan-

ning and transportation management [1]–[3]. Knowledge of

the travel mode distribution along urban transportation net-

works can help develop more effective strategies towards opti-

mizing infrastructure utilization, thereby alleviating significant

issues such as traffic congestion [4]–[6]. It can also provide

individuals with better route recommendations, conditioned on

their desired travel mode and destination [7]. With Global

Positioning System (GPS) sensors being installed in modern

smartphones and other wearable devices, acquiring rich GPS

trajectories for transportation mode identification has become

easier than ever.

Most GPS-based transportation mode identification ap-

proaches have been in supervised learning settings. Because

raw GPS trajectories are ill-suited for direct processing by

machine learning models, the seminal work of [8] first com-

puted pointwise motion features such as speed and acceleration

from consecutive pairs of GPS points, before feeding them

to a decision tree classifier. This motion feature extraction

step has since become standard practice in the transportation
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mode identification literature. [2] combined the predictions of

a random forest classifier with a rule-based method. [9] first

trained a sparse autoencoder to extract latent representations

of handcrafted motion features such as speed and accelera-

tion, before feeding them to a Convolutional Neural Network

(CNN) for the final classification. Inspired by computer vision

applications, [10] treated GPS trajectories as image pixels

by mapping GPS points to grid cells and adjusting pixel

intensity according to location stay time. The authors then

trained a CNN to extract high-level representations which were

ultimately fed to a logistic regression classifier. [11] proposed

a deep ensemble of CNNs, while [12], [13] leveraged a single

CNN equipped with the attention mechanism. Others success-

fully used recurrent neural networks based on the Long Short-

Term Memory (LSTM) module, due to their demonstrated

effectiveness in modeling long-term temporal dependencies

[14]–[16].

Despite the aforementioned advances in supervised GPS-

based transportation mode identification methods, the relative

lack of trajectories labeled by travel mode remains a limiting

factor. In reality, GPS trajectories are typically unlabeled,

since GPS sensors do not automatically capture travel mode

information. Another reason is that trajectory annotation is

both time-consuming and labor-intensive [17], with users often

citing privacy concerns [12]. Consequently, how to improve

the performance of transportation mode classifiers when few

labeled trajectories are available is an open problem.

In this direction, some researchers have combined labeled

and unlabeled data in semi-supervised learning [17]–[19],

while others have strictly used unlabeled data in unsupervised

learning [20]. Among the semi-supervised approaches, [17]

jointly trained a convolutional autoencoder and a CNN by

first balancing their losses and then gradually assigning more

weight to the latter’s supervised loss. [18] instead leveraged

a semi-supervised LSTM ensemble trained on multiple views

of the data, including frequency-domain and latent represen-

tations thereof that were learned end-to-end. [19] used the

mixup augmentation technique [21] to train a convolutional

autoencoder on mixed batches of labeled, unlabeled, and syn-

thetic samples by simultaneously minimizing their associated

objective functions. On the other hand, [20] proposed a fully

unsupervised approach whereby a convolutional autoencoder

was equipped with a custom clustering layer and trained
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Fig. 1. Overview of the preprocessing framework for identifying transportation modes. Raw GPS trajectories are first segmented by transportation mode using
the available labels. Then, pointwise motion features are computed for each segment and converted to a 4-channel tensor.

by jointly optimizing a weighted sum of reconstruction and

clustering losses, thus encouraging clustering-friendly repre-

sentations at the autoencoder’s low-dimensional embedding

layer.

To address the limitations caused by the scarce availability

of labeled trajectories, we instead follow a different approach.

Specifically, we explore a collection of time series augmen-

tation methods1 to assess their impact on the performance

of supervised transportation mode classifiers. We provide an

analysis of the underlying principles, effects on classification

performance, as well as hyperparameter selection guidelines

for each method. We conduct a series of comprehensive

experiments on Microsoft’s Geolife [8], [22] dataset, a real-

world dataset of GPS trajectories, showing that both discrete

wavelet transform and flip augmentations are effective meth-

ods towards improving transportation mode identification with

limited data.

The remainder of this paper is organized as follows. Section

II presents our preprocessing steps and formulates the problem

of data-augmented supervised transportation mode identifi-

cation. Section III introduces the time series augmentation

techniques that are investigated towards enhancing GPS-based

transportation mode identification with limited data. Section

IV analyzes our experimental results and provides guidelines

into hyperparameter selection for the above augmentation

methods, while Section V concludes this paper.

II. PRELIMINARIES

This section first presents how we preprocess GPS tra-

jectories into multivariate time series of motion features,

including relative distance, speed, acceleration, and jerk. It

then formulates the problem of data-augmented, supervised

transportation mode identification.

1While image augmentation techniques such as random rotations and
horizontal/vertical shifts have been shown to boost classification accuracy in
computer vision applications, they are not directly applicable to either raw
GPS data or the multivariate time series of motion features that trajectories
are typically converted to.

A. GPS Trajectory Preprocessing

We represent GPS trajectory Ti as a sequence{
p1, p2, . . . , pLTi

}
of length LTi

. Within Ti, GPS

points are denoted by pi = 〈lati, lngi, ti〉, where lati,
lngi indicate the device’s latitude and longitude in decimal

degrees at time ti. The relative distance RDi between pi
and its successor pi+1 can be estimated in meters using the

Vincenty formula [23], denoted as:

RDi = Vincenty (lati, lngi, lati+1, lngi+1) . (1)

Based on RDi and its associated time interval Δti = ti+1−ti,
we follow established literature [16], [17], [22] in calculating

pointwise motion features of speed Si, acceleration Ai and

jerk Ji according to the following equations:

Si =
RDi

Δti
, 1 ≤ i ≤ n, Sn = Sn−1, (2)

Ai =
Si+1 − Si

Δti
, 1 ≤ i ≤ n, An = 0, (3)

Ji =
Ai+1 −Ai

Δti
, 1 ≤ i ≤ n, Jn = 0. (4)

After the above feature extraction steps, we eliminate any

timesteps with velocity or acceleration outliers based on

upper thresholds defined for each transportation mode in

[17]. We finally apply min-max normalization to each of the

four features and stack them into a 4-channel tensor Xi ={
x1, x2, . . . , xLTi

}
, where xi = {RDi, Si, Ai, Ji}.

Since our experiments leverage both recurrent and non-

recurrent neural network architectures, the latter requiring

fixed-size input, we finally split each motion feature tensor Xi

calculated for Ti into �LTi/N� segments of length N . The last

segment is padded with zeros if it has fewer than N timesteps;

in this work, we empirically set N = 240. Please note that

all data augmentation methods discussed and evaluated in this

paper are based on motion feature tensors rather than raw GPS

trajectories.
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B. Problem Formulation

Given labeled dataset D = {(Xi, yi)}ni=1 preprocessed

as per Section II-A and classifier fω(·) parameterized by

trainable parameters ω, we formalize transportation mode

identification as a standard supervised classification problem,

i.e., the problem of obtaining the optimal set of parameters ω
such that the following loss is minimized:

argmin
ω

L(ω) =
1

n

n∑
i=1

�i(yi, fω(Xi)), (5)

�i = −[yi log ŷi + (1− yi) log(1− ŷi)], (6)

where ŷi = fω(Xi), yi are the i-th predicted and ground-truth

transportation modes, and �(·) is the categorical cross-entropy

loss function.

Next, we define the general data augmentation function

Aug(·) that produces synthesized sample X ′ when applied to

Xi, denoted by X ′ = Aug(Xi). Assuming that each sample

is augmented exactly once, the above loss function can then

be rewritten as:

argmin
ω

L(ω) =
1

2n

n∑
i=1

�i(yi, fω(Xi))+

�i(yi, fω(Aug(Xi))).

(7)

In this paper, we study a wide range of data augmentation tech-

niques (see Section III) in place of Aug(·) with the purpose of

evaluating their contribution towards improving transportation

mode identification with limited GPS trajectories.

III. METHODOLOGY

This section details the time series augmentation techniques

that we adopt towards improving the accuracy of transportation

mode classifiers. These include data perturbation, flipping,

mixup [21], mixing, and discrete wavelet transform.

A. Data Perturbation

Data perturbation refers to injecting each input motion

feature tensor Xi with random noise. In practice, this is

achieved via addition with a noise tensor Z of the same

dimensionality. For simplicity, Z is sampled from a Gaussian

distribution; specifically, each z ∈ Z is sampled according to:

p(z;μ, σ) =
1√
2πσ

exp

(
− (z − μ)2

2σ2

)
, (8)

where μ, σ denote the mean and standard deviation of z,

respectively. We determine the values for μ and σ by the mean

and standard deviation of Xi, controlled by hyperparameter k
as follows:

μ = k ·mean(Xi),
σ = k · stddev(Xi).

(9)

For original sample Xi, the synthesized sample can thus be

written as:
X ′ = Xi + Z,

y′ = yi.
(10)

B. Data Flip

In computer vision applications, data augmentation is usu-

ally performed by randomly rotating, cropping, or flipping im-

ages. However, most of the above methods would destroy the

motion features’ temporal correlations and interdependencies.

Considering that each input channel represents a different mo-

tion feature, we simply flip Xi along the temporal dimension

for each channel. The flip operation can be expressed as:

X ′ = {xn, xn−1, . . . , x1} ,
y′ = yi.

(11)

C. Mixup

Originally proposed for computer vision applications,

Mixup [21] expands the training data by mixing pairs of

images and their corresponding labels. The mixup method is

a form of data augmentation which encourages the classifier

fω(·) to learn linear interpolations between pairs of training

samples, generated as follows:

X ′ = λXi + (1− λ)Xj ,

y′ = λyi + (1− λ)yj ,
(12)

where λ is sampled from a beta distribution Beta(α, α)
parameterized by α ∈ (0, ∞). In eq. (12), (Xi, yi) and

(Xj , yj) are two randomly-selected samples from the original

training data with one-hot encoded labels yi and yj . The

mixing hyperparameter α controls the mixing strength between

feature-target pairs; when α ≈ 0, X ′ is identical to Xi, i.e.,

no mixing is performed.

D. Data Mixing

The intuition behind data mixing comes from the fact that

GPS trajectories with the same transportation mode would

have similar trends in terms of motion features. To this end, we

perform a weighted mix of k motion feature tensors having the

same transportation mode and assign the resulting synthetic

sample with the same label as the original ones. In theory,

such a scheme allows for synthesizing an infinite number

motion feature tensors. In this paper, we adopt two data

mixing schemes, namely double-trajectory mixing and multi-

trajectory weight decay mixing. For double-trajectory mixing,

we randomly select two samples with identical transportation

modes and mix them as follows:

X ′ = w1X1 + w2X2, w1 + w2 = 1,

y′ = yi.
(13)

For multi-trajectory weight decay mixing, we randomly select

k trajectories with the same transportation mode and mix them

using gradually smaller weights:

X ′ = w1X1 + w2X2 + . . .+ wkXk,

y′ = yi.
(14)

where
∑k

i=1 wi = 1 and w1 ≥ w2 ≥ . . . ≥ wk. Please note

that double-trajectory mixing is simply a special case of multi-

trajectory weight decay mixing where k = 2.
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E. Discrete Wavelet Transform
Given that motion feature variations can also be distin-

guished in the frequency domain [16], [18], we examine the

effect of augmentation by Discrete Wavelet Transform (DWT)

on the performance of transportation mode identification.

Given time series x(t), DWT results in a multi-resolution

decomposition of the input signal [24] as follows:

x(t) =
∑
b

AM,b2
−M/2ϕ

(
t

2M
− b

)

+
M∑
a

∑
b

da,b(x(t), ψ(t))2
−a/2ψ

(
t

2a
− b

)

= AM (t) +
M∑
a

Da(t),

(15)

where AM,b = 〈x(t), ϕM,b(t)〉 is the approximation coeffi-

cient at decomposition level M and ϕ(t) is an auxiliary scaling

function. In other words, x(t) is decomposed into an approx-

imation signal AM (t) and M detailed signals Da(t). When

augmenting Xi, the synthesized sample X ′ is again associated

with the same transportation mode label, i.e., y′ = yi.

IV. EXPERIMENTS

This section first introduces the real-world dataset of GPS

trajectories that we used for our experiments and describes

our simulation setup. It finally presents our experimental

results and provides hyperparameter tuning guidelines for the

evaluated time series augmentation methods.

A. Dataset Description and Simulation Setup
1) Dataset: All data augmentation methods in Section III

are evaluated on Microsoft’s Geolife dataset [8], [22], which

has been widely used in the transportation mode identification

literature [10], [17], [20]. It contains GPS trajectories collected

by 182 users over five years. Out of these users, 69 users

have labeled parts of their trajectories by transportation mode.

preprocess them as per Section II-A. Following the dataset au-

thors’ recommendation, we select main transportation modes

for identification, namely walking, biking, bus, driving and

railway. After preprocessing all GPS trajectories as per Section

II-A, we obtain a total of 24, 741 labeled samples of length

240 (walking: 7315, biking: 3848, bus: 5964, driving: 4338
, railway: 3278). Following a stratified data split to maintain

the transportation mode distribution, 85% of the above samples

are used for training and validation, while the remaining 15%
are used for testing. Please note that all data augmentation

methods are only applied to the training set.
2) Simulation Setup: We first present our hyperparameter

settings for the time series augmentation methods described

in Section III. Perturbation is applied with k = 0.02, while

Mixup [21] uses α = 0.5. Data mixing expands each data

class by 2000 samples,2 where mixing-1 and mixing-2 denote

2Even though we could generate as many samples per class as required to
eliminate the training set class imbalance, this would lead to a different class
distribution compared to the test set.

TABLE I
ACCURACY PERCENTAGE (MEAN ± STANDARD DEVIATION) FOR

DIFFERENT DATA AUGMENTATION METHODS AND CLASSIFIERS

Augmentation MLP CNN LSTM

Baseline 70.8 ± 1.32 85.1 ± 0.31 76.3 ± 0.28
Perturbation 71.4 ± 0.51 85.9 ± 0.18 76.8 ± 0.23
Flip 71.8 ± 0.92 87.3 ± 0.23 77.4 ± 0.27
Mixup [21] 69.8 ± 0.88 84.2 ± 0.22 75.1 ± 0.31
Mixing-1 72.6 ± 0.72 86.0 ± 0.21 76.9 ± 0.20
Mixing-2 71.3 ± 0.56 85.5 ± 0.19 76.7 ± 0.23
DWT 80.1 ± 0.92 87.2 ± 0.13 78.5 ± 0.18

the double-trajectory mixing and multi-trajectory weight decay

mixing methods, respectively. For the former, we set w1, w2 ∼
Beta(0.5, 0.5), while the latter uses k = 5 (i.e., we mix five

trajectories of the same transportation mode) with w1 = 0.9,

w2 = 0.04, w3 = 0.02, w4 = 0.02, w5 = 0.02.

We evaluate the above time series augmentation methods on

a MultiLayer Perceptron (MLP), a CNN, and an LSTM. (1)

The MLP has three fully connected layers with {512, 128, 5}
neurons. (2) The CNN consists of three one-dimensional (1D)

convolution layers with a kernel size of 3 and {32, 64, 128}
channels, respectively. Each convolution layer is followed by a

max pooling operation with a pool size of 2. The convolution

layers are followed by a flattening operation resulting in 3840
features, followed by a fully connected layer with 960 neurons.

(3) The LSTM has three LSTM layers with {64, 64, 64} units,

respectively. The output of the last LSTM layer is flattened and

fed to two fully connected layers with {256, 5} neurons. For

all three neural networks, all hidden layers are activated using

the Rectified Linear Unit (ReLU) function, while the softmax

activation function is used to predict the transportation mode at

the output layer. Please note that we do not use regularization

methods such as dropout or batch normalization; instead, we

prevent our networks from overfitting by reducing their size

(i.e., number of layers and hidden units) and therefore the

number of trainable parameters. All models are trained for

200 epochs using the Adam optimizer with a learning rate of

0.001. We report the mean classification accuracy calculated

over the last 20 training epochs.

Our experiments were developed using Python 3.7. All

neural networks were built using PyTorch 1.7 and trained on

a server with an Intel Xeon Silver 4210 CPU and an NVIDIA

GeForce RTX 2080 Ti GPU with 11GB of GDDR6 memory.

B. Results

Our experimental results are shown in Table I. With the ex-

ception of Mixup [21], which performed worse than just using

the original samples, all evaluated augmentation methods con-

tributed to improving classification performance. Among them,

discrete wavelet transform and flip augmentations achieved the

best results for our CNN and LSTM models, pushing the for-

mer’s accuracy from 85.1% to 87.2% and 87.3%, respectively.

DWT was also by far the most effective augmentation method

for our MLP, increasing its baseline accuracy of 70.8% to

80.1% . Both mixing-1 and mixing-2 resulted in modest im-
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k = 0.02

k = 0.1

k = 0.2

k = 1

Original

Accuracy
(mean)SpeedNoise

85.1%

85.9%

84.5%

66.5%

80.2%

Fig. 2. Changes in the speed signal of a randomly-selected sample after adding
noise to all training samples with k ∈ {0.02, 0.1, 0.2, 1}. The CNN’s
mean accuracy declines beyond a certain noise magnitude, indicating that
the classifier fails to identify meaningful information within the augmented
samples.

provement, with the former outperforming the latter. Moreover,

perturbation attained nearly identical results to mixing-1. The

above experimental results confirm the potential of time series

augmentation in improving GPS-based transportation mode

identification with limited data.

1) Data Perturbation: As described in Section III-A, the

intuition behind data perturbation is that learning from noisy

counterparts of the original data may help the classifier learn

more general features. However, adding too much noise may

result in unrealistic samples that are hard to learn meaningful

representations from. Fig. 2 shows that perturbation indeed

boosted classification accuracy from 85.1% to 85.9% for

k = 0.02, which is the hyperparameter value used throughout

our experiments. Values of k > 0.1, however, resulted in

significant accuracy degradation.

2) Flip: By simply flipping Xi along the temporal di-

mension for each motion feature, our expectation is that the

generated sample would still realistically correspond to the

same transportation mode. Each feature would demonstrate

the same minimum and maximum values, despite having

different temporal dynamics. According to our results in Table

I, flipping resulted in the highest classification accuracy for

our CNN and LSTM but only modestly benefited our MLP.

This is likely due to the latter not accounting for temporal

dependencies.

3) Mixup: As per Section III-C, mixup [21] generates

synthetic data via a linear combination of paired samples and

their corresponding ground-truth labels. This practice aims

to encourage the classifier to interpolate smoothly between

samples and reduce the effect of adversarial ones. Our hyper-

parameter sensitivity tests, shown in Table II, demonstrate that

mixup did not outperform the non-augmented transportation

TABLE II
HYPERPARAMETER SENSITIVITY OF CNN ACCURACY (MEAN ±

STANDARD DEVIATION) TO MIXUP

Augmentation Accuracy

Baseline 85.1 ± 0.31
Mixup (α = 0.2) 83.9 ± 0.21
Mixup (α = 0.5) 84.2 ± 0.22
Mixup (α = 1) 83.6 ± 0.27
Mixup (α = 10) 82.8 ± 0.46

TABLE III
HYPERPARAMETER SENSITIVITY OF CNN ACCURACY TO DATA MIXING

Augmentation Parameter Settings Mean (%)

mixing-1

w1 = 0.5, w2 = 0.5 84.3
w1 = 0.8, w2 = 0.2 85.6
w1 = 0.95, w2 = 0.05 85.8
w1, w2 ∼ Beta(0.5, 0.5) 86.0

mixing-2

{0.5, 0.3, 0.1, 0.05, 0.05} 82.6
{0.7, 0.1, 0.1, 0.05, 0.05} 83.1
{0.8, 0.05, 0.05, 0.05, 0.05} 85.3
{0.9, 0.04, 0.02, 0.02, 0.02} 85.5

mode identification baseline. However, note that mixup assigns

labels to the synthesized samples by simply blending their

original ones. As such, we expect that it could perform better

in semi-supervised training, where the effect of the generated

labels on the learned representations would be attenuated. This

is out of the scope of this paper and is left for future work.

4) Data Mixing: Although data mixing did not dramati-

cally boost classification accuracy, we found that it resulted in

higher training stability during our experiments. This may be

due to how data mixing is performed, which is via timestep-

wise addition of two or more samples of the same transporta-

tion mode. We hypothesize that this may help the classifier

learn the main motion feature trends of each transportation

mode while simultaneously becoming more robust to trajectory

variations not observed in the original data.

We also analyzed the impact of different data mixing hyper-

parameter settings on classification accuracy; our experimental

results are summarized in Table III. Although mixing the

motion features of either two or five trajectories did increase

model accuracy compared to the baseline, mixing-2 did not

result in significant improvement. This is not surprising, as

mixing more sets of motion features will also incur an increase

in uncertainty.

5) DWT: Here, we explore the effect of extracting features

via different wavelet decomposition functions on classification

accuracy. As shown in Table IV, using different wavelet de-

composition functions did not significantly affect classification

accuracy, with Daubechies wavelets achieving the best results.

This suggests that DWT has the desirable property of not being

particularly sensitive to the choice of wavelet function.

Recall that, according to eq. (15), x(t) can be decomposed

into approximate signal AM (t) and detailed signal Da(t).
Having compared the influence of DWT on classification
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TABLE IV
SENSITIVITY OF CNN ACCURACY TO DIFFERENT WAVELET

DECOMPOSITION FUNCTIONS IN DWT

Wavelet Mean (%) w/ AM (t) Mean (%) w/ Da(t)

Daubechies 87.2 87.0
Symlets 87.0 87.1
Coiflets 86.8 86.9
Haar 87.1 87.0

accuracy when using either AM (t) or Da(t), our experimental

results showed no significant prevalence of one over the other.

This is consistent with recent work indicating that capturing

motion feature trends rather than details may be more impor-

tant when distinguishing among transportation modes [18].

V. CONCLUSION

In this paper, we investigated a range of data augmentation

techniques to improve GPS-based transportation mode identi-

fication performance when limited labeled data are available.

Since the literature typically performs transportation mode

identification on time series of motion features extracted from

GPS trajectories rather than the raw trajectories themselves, we

followed the same procedure and investigated the impact of

several time series augmentation techniques on classification

accuracy. We also provided guidelines into tuning their hy-

perparameters to encourage their use in future transportation

mode identification research. Through a set of comprehensive

experiments on Microsoft’s Geolife, an openly available real-

world dataset of GPS trajectories, we demonstrated that the

simple operation of flipping resulted in the highest accuracy

of 87.3% for a convolutional neural network. In addition,

extracting features in the frequency domain via DWT pushed

classification accuracy from the baseline of 85.1% to 87.2%.

In future work, we will investigate the influence of time

series augmentation methods on the transportation mode

identification accuracy of more sophisticated neural network

architectures, such as generative adversarial networks and

Transformers.
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