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Abstract— How to obtain accurate travel time predictions is
among the most critical problems in Intelligent Transportation
Systems (ITS). Recent literature has shown the effectiveness of
machine learning models on travel time forecasting problems.
However, most of these models predict travel time in a point
estimation manner, which is not suitable for real scenarios.
Instead of a determined value, the travel time within a future
time period is a distribution. Besides, they all use grid structure
data to obtain the spatial dependency, which does not reflect the
traffic network’s actual topology. Hence, we propose GCGTTE
to estimate the travel time in a distribution form with Graph
Deep Learning and Generative Adversarial Network (GAN). We
convert the data into a graph structure and use a Graph Neural
Network (GNN) to build its spatial dependency. Furthermore,
GCGTTE adopts GAN to approximate the real travel time
distribution. We test the effectiveness of GCGTTE with other
models on a real-world dataset. Thanks to the fine-grained spa-
tial dependency modeling, GCGTTE outperforms the models
that build models on a grid structure data significantly. Besides,
we also compared the distribution approximation performance
with DeepGTT, a Variational Inference-based model which had
the state-of-the-art performance on travel time estimation. The
result shows that GCGTTE outperforms DeepGTT on metrics
and the distribution generated by GCGTTE is much closer to
the original distribution.

I. INTRODUCTION

Recently, the continuously increasing number of vehicles
and the expansion of road length have led to many critical
challenges in the transportation system, e.g., the complex
traffic scheduling and potential traffic congestion [1]. Thus,
a robust and reliable Intelligent Transportation System (ITS)
is urgently needed. One of the most critical issues of building
ITS is to construct a precise travel time forecasting model for
the roads in traffic networks, as it can provide an essential
data guarantee for the decision-making of ITS [1].

However, building a robust travel time forecasting model is
non-trivial. The main challenges in solving this problem are
twofold. First, it is crucial to choose the proper approach to
process the raw data and build the spatial dependency since
each road’s real-time traffic status is highly related to its
topology structure. Existing works mainly use the position
information of trajectory to model the spatial dependency
[2], or partition the data into grids, and use spatial features
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of grids to obtain their spatial dependency [3]. Typically,
spatial features of grids are input into a Convolutional
Neural Network (CNN)-based model to construct its spatial
dependency. However, traffic network has a graph topology
structure rather than a grid structure. Since that, the grid
structure data can not fully reflect the traffic network’s
underlying topology, and it possibly leads to a performance
degradation [4].

Second, in existing literature on travel time forecasting, the
proposed models primarily present point estimation results.
However, the travel time within a period of time shall be
formulated as a distribution [5]. For example, if we want to
predict the travel time from campus to the subway station
at 7 am every Monday, it is evident that the travel time
can be influenced by various factors, e.g., bad weather and
traffic congestion. Nonetheless, the point estimation models
only provide a single value output, which can not show
travel time’s underlying distribution. In this case, forecasting
travel time with a prediction model that produces travel time
distribution results is more reasonable. Therefore, the point
estimation model has a natural limitation for its lack of
distribution estimation ability. Unfortunately, it is difficult
to approximate the travel time distribution entirely since
it is intractable. For instance, a classical way for approxi-
mating distribution is to use Monte Carlo sampling method
[6]. However, distribution approximation methods based on
Monte Carlo sampling are computationally expensive and
may possibly lead to an overfitting problem [6].

To solve the above problems, we propose GCGTTE, a
deep learning model based on the Graph Neural Network
(GNN) and Generative Adversarial Network (GAN). The
main contributions of this paper are as follows:

« We propose a novel travel time distribution estimation
model built with graph deep learning and GAN. The
results show that our model achieves better performance
over baselines for travel time estimation task on a real-
world dataset.

« Rather than a point estimation method, we approximate
the underlying actual travel time distribution in an
adversarial training style. Moreover, we conduct a case
study by comparing GCGTTE with other models to
explain the effectiveness of GCGTTE.

e We propose a practical embedding learning technique,
which makes the model robust when handling sparse
data.

The rest of this paper is organized as follows. Section II gives
a brief introduction of literature related to this work. Section



III presents the details of the proposed GCGTTE. Section IV
presents the experimental setting, the results on real-world
dataset, and a detailed analysis on the experimental results.
The conclusion and future work are presented in Section V.

II. RELATED WORK

In traditional models, travel time is treated as a numer-
ical value or distribution derived from existing historical
trajectory data. Statistic models like Historical Average (HA)
and Auto-Regressive Integrated Moving Average (ARIMA)
[7] take the travel time forecasting as a time sequence
forecasting task. They build temporal relation on the his-
torical travel time data to predict its future value. However,
while this method is useful in the short-term forecasting
scenario, it is vulnerable when the model needs to predict in
a non-stationary and complex environment [7]. Also, these
methods suffer from a performance decline when the data is
sparse [8]. There are also works attempting to estimate the
distribution of travel time for a given route. For examples,
[9] adopts Gaussian Markov Random Field to forecast travel
time distribution of arterial networks. Spatio-Temporal-based
Route Recovery System (STRS) [10] derives the distribution
by trajectory regression, it comprises a forecasting module
of travel time distribution and an inference module based on
its spatial transition relation.

Recently, data-driven deep learning models are widely
adopted in this field [2]. Deep learning models pay more
attention to use neural network structure to model spatial and
temporal dependencies. For spatial dependency modeling,
Previous work mostly capture the correlation with a CNN
structure. For example, [11] leverages the convolutional
model based on grid structure data to capture spatial depen-
dency between close regions for traffic condition forecasting.
CNN’s framework simplifies the data preprocessing and
makes the training easier to implement as it relaxes the
constraints of spatial relations, but this comes at a cost
on fine-grained information loss. For instance, this method
can not distinguish the turnings if the related locations
are mapped into some regions. To tackle this problem, [2]
proposed Geo-C'onv layer which adopts CNN layers for
mapping longitude and latitude of GPS points in a route.
However, this method still has limitations. As Geo-Conv
layer performs convolution operation directly on geographic
information, this method relies highly on the amount of data.
When the data is sparse or there are significant missing
data, the performance is notably undermined. Modeling of
temporal dependency also occupies an important position
for these deep models trained by historical data. [12] con-
structs temporal dependency from temporal closeness and
periodicity of traffic status. However, this empirical temporal
dependency modeling method also brings noise when the
dataset is not suitable for its prior assumption about temporal
dependency. Since that, [13] uses Recurrent Neural Network-
based models to build a more general model by using Long
Short-Term Memory (LSTM) cells [14] and Gated Recurrent
Unit (GRU) cells [15] to memorize the temporal status.
In a word, all these temporal dependencies are based on

the assumption that the spatial dependency is temporally
invariant in the same time slot (e.g., 6:00 pm-7:00 pm every
Monday). However, This assumption is not in line with the
practice because many random variables such as the weather,
accidents, etc. also affect the traffic status.

Considering this fact, [11] proposes DeepGTT, which
build temporal dependency based on the real-time traffic
condition. DeepGTT adopts the idea of Bayesian inference
to forecast the travel time distribution of a given route as
a whole. Though it effectively forecasts time distribution
through Bayesian modeling, there are still two major prob-
lems in DeepGTT. The first problem relates to its spatial ex-
traction methods. As we discussed before, a pipeline of grid
structure process does not meet the real road traffic structure.
As an alternative, Graph Neural Network (GNN) [16], which
is derived from graph spectral theory [17], is a favorable
deep learning structure that extracts features in the way that
better suits road network topology. The second problem is its
training objective. Though DeepGTT can learn distribution
through a deep Variational Inference learning method. The
training of Variational Inference process focuses more on
better point-wise prediction rather than approximating the
ground truth distribution [18]. Besides, this is also one reason
why the images generated by Variational Autoencoder (VAE)
are often fuzzy compared with the images generated by GAN
[19]. It does not fully understand the distribution but pays
more attention to the point-wise numerical approximation
[20].

III. METHODOLOGY

In this section, we first introduce the definition of the travel
time estimation problem. Then we introduce the road repre-
sentation layer and sptial dependency modeling, as GCGTTE
inferences travel time based on these two mechanisms. We
show how to obtain the route time estimation at the end of
this section. The learning algorithm of GCGTTE is presented
in Algorithm 1.

A. Definition

a) Definition 1. Road Network: Road network is a
directed graph G = (V, E) comprise of interwined roads.
V = {v1,v9,...,vn} is the set of nodes (locations in the
transportation network where traffic information like speed
can be detected) in road network. F = {ej,ea,...,ep} is
the set of roads in traffic graph network. For its sparsity, we
use adjacent matrix as the data structure to store the road
network. Let the adjacent matrix be M € RNV _If there is
a road between node v; and vj, M(i,j) = 1. Otherwise
M(i,j) = 0. For road e; in G, its n types categorical
information is represented as {cg,c1, - ,Cn}

b) Definition 2. Trajectory: A raw GPS trajectory traj
is a set of sequence sample points p, = (lat;, lon;, T;) from
the underlying route of a moving vehicles, where lat;, lon;,
t; represents the latitude, longitude, and timestamp of the
i-th point, respectively.

c¢) Definition 3. Route: R; = {e;,..., ey} is a set of
roads, which represents an ordered path sequence of a route.
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Fig. 1. Overview of GCGTTE.

B. Road Representation Layer

Road representation layer is used to extract the corre-
sponding road’s latent representation, which is used as one
main factor to inference travel time. In the road representa-
tion layer, we compute the embedding of roads’ categorical
features first. Then, we perform the graph convolutional
operation with real-time traffic information of nodes through
road network G. Finally, by concatenating the graph learning
results as the road’s external features with its categorical
features embedding, we obtain the final representation s; for
road r;.

a) Embedding Learning: For categorical information
features, we use embedding layers to embed different fea-
tures for two purposes: (1) Convert the categorical features
from a static text representation into a low-dimensional
categorical numerical representation; (2) Embed the categor-
ical features that share similar semantic representation with
closer distance in the embedding space. Embedding learning
layers transform categorical features to an embedding value
by performing a matrix multiplication with weight matrix
W € RV*®_ Comparing with the one-hot encoding method,
embedded features em is more computationally efficient as
they effectively reduce the size of input dimension.

b) Spatial Dependency Modeling: The spatial depen-
dency modeling of road networks is a fundamental problem
in traffic forecasting-related tasks. We adopt Graph Convolu-
tional Network (GCN) to build the spatial dependency for its
superior ability on extracting graph structured data’s spatial
features. Inspired by work [4], we adopt a two-layer GCN
structure to aggregate the spatial information, which can be
formulated as follows:

Xoo =0 (M\ Relu (M\XWO) W1> 1)

where M is the symmetric normalized laplacian of M =
M + 1. Wy and W7 are the weight matrices of the first and
second GCN layer, respectively. o(-) represents the sigmoid
activation function.

C. Distribution Approximation Algorithm

a) Theoretical Analysis: A key issue in travel time
forecasting is to approximate its distribution with a proper

Algorithm 1: GCGTTE training procedure.

Input: Train dataset: (s;,#;)},, Embedding Layers:
Embed(-; 0cy, ), Generator: G(-;6¢),
Discriminator: D(-;p), GCN Network:
GC(-;6cc), Road Network Adjacent Matrix:
M, Real-time Traffic Information: X, Node
Attributes C.

Output: Parameter set: {6g, Oem, o}

Initialize 0, Ocm, 0p, 8o Wwith random weights

repeat

Select time period ¢, real-time traffic info X,

Xgc = o (M Relu (MX,Wo ) W1

em = Embed(C)

s = concat(Xgc,em)

for {(Sl,tz) |t1 = t} do

Choose s;’s adjacent node n; and ng
for k-steps do

Sample z from noise prior p(z)

Generate t; = G((s;, 2) ;0¢)

Obtain {s;,ts}

Update 6p via equation 3
Sample z from noise prior p(z)
Generate t; = G((s;, 2) ;0¢)

Obtain s;,

| Update 6 via equation 3

Update 0., 0o

until model converges;

approach. We divide the distribution methods into two types:
Variational Inference (VI)-based approaches and generative
adversarial training-based approaches. An example of a VI-
based deep learning model is DeepGTT [11], it approximates
the distribution by putting a prior distribution assumption
on the data and use it as regularization. Its distribution
are learned as a Gaussian with mean value y and standard
deviation value ¢. The inference process of a VI-based model
can be expressed as follows:

P(ti | si) =N (u(si),o(si)) 2)

N(-) represents a Gaussian distribution, p(s;) and o(s;) are
mean value and standard deviation value learned from s; with
two fully-connected layers, respectively. In our experiment,
we follow the same structure in [11] to learn p(s;) and
o(s;). We can see that VI-based models achieve distribution
approximation by fitting limited data to a Gaussian distri-
bution or a mixed Gaussian distribution in an explicit way.
Though it avoids using computationally expensive methods
like Monte Carlo sampling to approximate the distribution
directly, this approach typically leads to two problems: (1)
the utilization of VI leads to information loss inevitably and
introduces redundant information in the learning process.
(2) VI-based models do not fully understand the distribu-
tion as its optimization pays more attention to the point-
wise numerical approximation [20]. Alternatively, adversarial
training methods give a different insight into distribution



approximation by learning the distribution implicitly. Let p,
denote the PDF of a random variable and pg,¢, denote the
travel time distribution in dataset. Then the objective function
of GAN is given by

min max V(D,G) = Egpy, (s)llog D(s)]

FEznp. (2 [log(1 - D(G(Z()g]
By optimizing the above objective function, GAN-based
model can learns data distribution implicitly [19]. Though
it puts a prior knowledge on the random variable, it avoids
making assumptions on the data directly, which makes it
more flexible. We conduct a more in-depth comparison of
these two models in Section I'V.

Furthermore, another design of GCGTTE is to make the
model produce the corresponding travel time estimation with
a specified input y. For instance, if we want to obtain the
travel time distribution of e; on 12:00 am, Monday, we can
feed corresponding time embedding and road representation
vectors to the models and get the specific results conditioned
on y. The objective function of this conditional form can be
summarized as

Irgn mgx V(D,G) = Egrpy (x)[log D(x | y)]
FEznp. (2)log(1 — D(G(2 | y)))]

D. Route time estimation

For the travel time forecasting of a whole route, we sum up
the travel time forecasting results for roads in set R, which
can be formulated as Tr; = SR ¢ where t., = G(se,)

IV. EXPERIMENTS

In this section, we conduct experiments on a real-world
dataset and compare GCGTTE with other baseline models.
We first compare the performance of models on travel
time estimation and discuss the results. Then we further
compare GCGTTE’s distribution approximation ability with
DeepGTT, which is a VI-based travel time distribution esti-
mation method. We show a visualization result to depict the
distribution approximation comparison betwen GCGTTE and
DeepGTT.

A. Experimental Settings

a) Experimental Environment: All experiments are per-
formed on a Linux Server (CPU: Intel(R) Xeon(R) CPU E5-
2620v4, GPU: GeForce RTX2080Ti, System: Ubuntu 18.04).
All experiments are conducted with Pytorch 1.3.0.

b) Hyperparameter Settings: We use a two-layer linear
neural network to learn the embedding features. The asso-
ciated categorical features of roads used in our experiment
are RoadID, Day, Hour, RoadType, LaneNumber, and Road
Length. We embed RoadID to R% Day to R%, Hour to
R%, RoadType to R%. For Road Length, we process it
with a normalization approach. For the hidden size of GCN
blocks, Wy and W; are set to 16 and 32, respectively.
From above settings, the final unified representation for
road 7; at time ¢; is a vector with size (49,). We choose
the Adam optimizer to optimize network parameters. The

learning rate . during training is 1073, We set the batch size
as 4096 as it is shown that a batch with large size benefits
GAN’s training, which usually suffers from model collapse
issues. To avoid overfitting, GCGTTE uses an early stopping
strategy when the validation loss no longer increases for
three consecutive epochs. The generator of GAN is designed
as a two-layer linear network, the weight matrix of each
linear layer is [49, 64], [64, 1]. The discriminator of GAN is
a two-layer linear network with sizes [49,64], [64,1]. We
use a Gaussian distribution with mean value 0 and variance
1 for p,. Followed the dataset split ratio adopted in [4],
the proportions for the training set, validation set, and test
set are 60%, 10% and 30%. For the comparison on MSE
and RMSE, we sample distribution and running the point
estimation models 50 times. The average value of results are
used for final comparison.

c) Dataset Description: We conduct our experiment on
the Didi Chuxing Gaia dataset!, this dataset collects GPS
data of Didi car-hailing trajectories in the northeastern region
of Chengdu city during November 1, 2016 and November31,
2016. We obtain the road network meta information from
OpenStreetMap API?, which contains a total of 2584 points
and 8432 edges.

d) Data Preprocessing: Since there is only raw GPS
data in the dataset, we need to process it before training the
model. The procedure of data preprocessing is as follows:

o Firstly, we calculate the motion information from its
geographic location: latitude and longitude

Atj = tj+1 — tj (5)
RD; = Vincenty (lat;, lon;,lat;11,lon;11)  (6)
v = RDj/Atj (7)

where At;, d;, v; represent the elapsed time, relative
distance and velocity of GPS point p;, respectively.
Vincenty(+) represents the Vincenty formula [21], which
is used to calculate the distance between two points on
the surface of a spheroid.

o Secondly, as we acquire the graph network of the road
from Open Street Map, all GPS trajectories are mapped
into the graph network to get their road-mapped route
representation by the map-matching algorithm proposed
in [22].

e) Evaluation Metrics: We use Root Mean Square
Error (RMSE) and Mean Average Error (MAE) to measure
models’ average prediction error. They are formulated as

MAE;§| (.- 7)) ®)
RMSE = % i (7: - f)2 ©)

i=1
where Y; and }//\; are the true value and predicted value,

respectively.

'Data available at https://outreach.didichuxing.com/
appEn-vue/dataList upon application.
2https://wiki.openstreetmap.org/wiki/API



TABLE I
METRICS COMPARISON ON TRAVEL TIME ESTIMATION

RMSE(sec) MAE(sec)
TTIGAN 620.96 516.33
DeepST 450.38 348.53
DeepTTE 353.34 258.10
NeiTTE 275.63 200.65
DeepGTT 281.38 205.75
GCGTTEc:  271.55 197.80
GCGTTE 203.01 155.77

f) Baselines: We compare GCGTTE with five other
baselines: DeepST [12], DeepTTE [2], Nei-TTE [13], TTI-
GAN [23] and DeepGTT [11].

e DeepST adopts CNN to build its spatial dependency
on the grid structure data. Besides, it builds temporal
dependency from constructing the temporal closeness
part, seasonal trend part, and the period part from an
empirical perspective.

o DeepTTE models spatial-temporal dependency from a
CNN-based network and an LSTM-based network. It
use an attribute embedding layer to learn the embed-
ding of given roads’ categorical features. Moreover, it
predicts travel time from spatial-temporal dependency
and attributes embedding.

e TTIGAN adopts Info-GAN [24] to impute the travel
times for the missing data. It uses Skip-Gram model
[25] and a heuristic clustering approach as the features
for model training.

o DeepGTT uses a Variational Inference method to model
the travel time of a given route. It first learns the
variance o and means p of posterior velocity distri-
bution based on the road attributes and environmental
attributes. Then the travel time distribution is obtained
by a gaussian inverse transformation.

e Nei-TTE further extends the work of DeepGTT by
introducing the knowledge of neighboring regions with
an attention mechanism.

B. Case Study

a) Performance on Estimation: Table 1 presents the
experimental results. For models using real-time traffic
information, GCGTTE performs significantly better than
DeepGTT. However, this is primarily due to the fact that
GCGTTE uses a more fine-grained spatial dependency mod-
eling method by adopting graph convolutional operation to
extract spatial features. Thus, for a fair comparison, we
design a variant of GCGTTE called GCGTT¢, which uses
CNN for spatial information extraction. We can see that the
result of GCGTTE( is close to DeepGTT, which indicates
that both these two models have effectively learned the data
during training. As GCGTTE¢ performs slightly better than
DeepGTT on the test set, we attribute this to the fact that
the Variational Inference used by DeepGTT is essentially
a point-wise training process and it leads to an overfitting
problem easily.

061 DeepGTT
— GCGTTE

05l — Groud Truth

0.4
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Fig. 2. PDF of DeepGTT, GCGTTE, and groud truth for estimating a
route’s travel time distribution on Tuesday 8:00 am.

TABLE II
TIME COST STUDY

GCGTTE DeepGTT DeepTTE  DeepST

Training Time 6.5h 11h 16h 12h
Prediction Time 15.3s 23.6s 34.1s 27.0s

b) Grid Structure v.s. Graph Structure: The effective-
ness of graph structure data used in our model can be derived
from the comparison between GCGTTE and GCGTTE(.
It can be seen that if we replace the GCN layer in road
representation layer with CNN layer, the RMSE increases
from 271.55 to 203.01, while the MAE increases from 197.80
to 155.77. This result indicates the postive effectiveness of
our idea to apply GNN to build spatial dependency on traffic
network. As GNN constructs the learnable network follows
the graph structure of road network, it has more advantages
in capturing traffic spatial dependency.

c) Distribution Approximation: For distribution ap-
proximation, we compare the VI-based model DeepGTT
and the GAN-based model GCGTTE. Figure 2 shows a
comparison of the distribution generated by GCGTTE and
DeepGTT for a route on Tuesday 8:00 a.m. We can see that
DeepGTT’s result presents a narrow Gaussian distribution,
which does not match the actual distribution well. It shows
that the learning process of DeepGTT focuses more on
point estimation than the distribution approximation. Thus,
it might degenerate into a point estimation model gradually.
On the contrary, the distribution curve fitted by GCGTTE
shows a more similar contour. This is because GCGTTE
does not directly train the training set but tries to generate
the distribution by itself.

d) Time Cost Study: Before we compare time cost, we
first conduct a time complexity comparison between CNN
and GCN, as they correspond to the spatial dependency mod-
eling approaches of different models. The time complexity

of CNN is
Time ~ O (M?-K?-Ciy - Cou ) (10)

where M is the spatial size of the output feature map, K
is the kernel size, Cj, and C,, are the input channels and



output channels, respectively. On the other hand, since GCN
is a matrix multiplication process, its time complexity can
be expressed as

Time ~ O (N?- L) (11)

where NN is the graph network’s spatial size, L is the size
of features. From (10) and (11), we can see GCN-based
methods are less time consuming. As CNN-based methods
usually use a deep neural network structure, the last two
terms are typically large, rendering a longer training time.
On the other hand, a traffic network usually has only a few
attributes, making its term L very small. The training time
cost and online prediction time cost in Table II verifies our
hypothesis. It shows that GCGTTE has a 40.9% decrease in
time cost performance compared with DeepGTT on model
training time and 35.1% decrease on online prediction time.

V. CONCLUSION

This work proposes a travel time distribution forecasting
model GCGTTE. Rather than a point estimation model,
GCGTTE approximates the underlying travel time distri-
bution with GAN-based model. Besides, it establishes the
spatial dependency through Graph Neural Network, a deep
learning framework extracts spatial features more in line with
the actual topological structure of the traffic network. Case
studies demonstrate that GCGTTE outperforms models built
on grid-structured data significantly. Besides, with a GAN-
based structure, the results on a real-world taxi dataset show
that it has a better performance on travel time distribution
approximation compared with the state-of-the-art Variational
Inference-based model, namely DeepGTT. Furthermore, we
provide a theoretical analysis on model’s time complexity,
and experimentally demonstrate the efficiency of GCGTTE.

In future work, we will extend our existing work in the
following directions: 1) apply probabilistic deep learning
techniques to capture the prediction’s uncertainty, 2) further
improve and generalize GCGTTE by conducting reasonable
knowledge transfer methods between different nodes or
different road networks, and 3) design a better and efficient
spatial-temporal dependency modeling method for GCGTTE.
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