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Abstract—Accurate long-term origin-destination demand (OD) prediction can help understand traffic flow dynamics, which plays an
essential role in urban transportation planning. However, the main challenge originates from the complex and dynamic spatial-temporal
correlation of the time-varying traffic information. In response, a graph deep learning model for long-term OD prediction (ST-GDL) is
proposed in this paper, which is among the pioneering work that obtains both short-term and long-term OD predictions simultaneously.
ST-GDL avoids the conventional multi-step forecasting and thus prevents learning from prediction errors, rendering better long-term
forecasts. The proposed method captures time attributes from multiple time scales, namely closeness, periodicity, and trend, to study
the features with temporal dynamics. In addition, two gate mechanisms are introduced over the vanilla convolution operation to
alleviates the error accumulation issue of typical recurrent forecast in long-term OD prediction. A method based on graph convolution is
proposed to capture the dynamic spatial relationship, which projects the transportation network into a graphical time-series. Finally, the
long-term OD prediction results are obtained by combining the extracted spatio-temporal features with external features from the
meteorological information. Case studies on practical datasets show that the proposed model is superior to existing methods in
long-term OD prediction problems.

Index Terms—Long-term OD prediction, graph deep learning, gate mechanism, graph convolution
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1 INTRODUCTION

R ELIABLE forecast of future origin-destination demand
(OD) data is crucial for traffic management and taxi

company operation [1]. Based on the predicted information,
the authorities can dynamically adjust traffic lights; the
public transport operators can assign passenger carriers to
various regions to achieve the optimal demand balance for
maximizing profit guaranteed by the entire company fleet.
Besides, road users can select fastest routes plans for their
trips by considering the level of traffic congestion. Therefore,
the OD forecasting task is worth discussing, and a plethora
of research effort has been devoted in the past few decades
[2].

Currently, the research community is witnessing in-
creasing efforts in adopting deep learning techniques in
OD demand prediction. Because the focus of OD demand
forecasting is to capture the temporal and spatial depen-
dence between data. And deep learning models can capture
complex non-linear relationships by using distributed and
layered feature representations and is excellent at processing
massive data. Most of the current OD demand forecasting
works rely on Recurrent Neural Network (RNN) and its
variant Long Short-Term Memory (LSTM) to capture time
correlation [3]–[5], while some works on traffic demand
prediction apply convolution in the time dimension [6]–
[8]. Additionally, Convolutional Neural Network (CNN)
and Graph Convolutional Network (GCN) are utilized to
capture spatial dependencies based on geographic distance
[9], [10].

While the above approaches are primarily designed for
short-term prediction, they can adopt the recursive forecast-
ing technique (multi-step prediction) to perform long-term

OD prediction. In this paradigm, the one-step predicted
OD data are considered the ground truth for the next-
step prediction. Besides, there is current work focusing
on introducing some attention mechanisms to make the
model learn more information about long-term trends [11],
[12]. However, such techniques inevitably suffer from the
error accumulation issue, where the prediction errors in the
previous forecasting steps are strengthened in the following
ones. As far as we are concerned, this issue is not adequately
addressed in the existing OD prediction literature. Further-
more, related transport engineering research proposes that
spatial relationships should be related to the attributes of
the regions rather than their geographic location and change
dynamically over time [13], [14]. The most recent work [15]
extracted different types of regional relationships based on
traffic data, and constructed multiple static traffic graphs for
subway OD prediction tasks with fixed routes. Additional
POI information is also introduced to obtain the POI simi-
larity to construct traffic graphs [16]. However, these works
are either based on static graphs (invariant relationships)
or based on additionally collected information which is
not available in every data. Dynamic characteristic is not
accounted for in the previous urban taxi OD prediction
work.

To close the research gap in existing long-term OD
prediction approaches, we propose a novel long-term OD
prediction approach based on graph deep learning, which
combines CNN and GCN for better transport feature ex-
ploitation. The periodicity of changes is particularly im-
portant in the long-term forecast. In the existing works of
predicting the total inflow/outflow of each region, it has
been proved that the addition of different types of time slices
can help long-term spatiotemporal prediction to obtain this
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characteristic [8], [12], [17]. Although OD prediction faces
more sparse data, it is also a time-space prediction problem.
Works [8], [12], [17] provide long-term OD prediction with
an idea of how to select more effective inputs from the same
available historical OD data. Therefore, in the proposed
model, we extract features from different time scales and
regional attributes to obtain the dynamically changing time-
space relationship between the demands of all OD pairs,
as well as the daily and weekly cycle dependence. In this
method, considering that directly learning the global spatial
relationship of OD data will bring about the complexity of
(N × N) × (N × N), we separately learn the relationship
between the origins and destinations of OD pairs, which is
with N × N complexity, and then combine the two rela-
tionships. This is called Multi-perspective Modeling in the
paper, which is different from other works [18] that extract
the primary features from the OD matrix and its transpose
and combine them into the subsequent network. Specifically,
each region is regarded as a departure or arrival point, such
that the OD prediction task is treated as a multi-dimensional
feature generation task for each departure/arrival region
pair, and the dimension of the feature is the number of all re-
gions. The relevant features can be learned from those com-
bined perspectives. Moreover, to alleviate the accumulation
of prediction errors, convolutions with gating mechanisms
are applied to extract spatio-temporal features and jointly
predict multiple OD demands. Besides, graph convolution
is introduced to learn dynamic global spatial changes for
further improving the long-term prediction accuracy.

In summary, the contributions of this paper are as fol-
lows:

• An ST-GDL model is proposed to jointly predict OD
demands of multiple time segments in the future,
which is among the pioneering work on joint multi-
step OD prediction.

• A ResNet-based block ST-Conv with gating mecha-
nisms CA-gate and SA-gate are proposed to capture
dynamic space-time transformation.

• A deep learning building block S-GCN is proposed
to obtain the adjacency matrix based on the current
input to develop the dynamic global spatial relation,
which can also be applied to other deep learning
models.

• A series of experiments on real-world OD datasets
NYC-TOD and DiDi Chuxing show that the pro-
posed model is superior to other approaches in long-
term OD prediction.

The rest of this paper is organized as follows. First,
we review related literature in Section 2 and present the
preliminaries in Section 3. Then, the architecture of the pro-
posed ST-GDL model is elaborated in Section 4. Extensive
evaluation experiments are conducted in Section 5. Finally,
Section 6 concludes this study.

2 RELATED WORK

In this section, the related work of long-term traffic pre-
diction is summarized with an emphasis on deep learning-
based approaches. Early parametric models use Auto-
Regressive Integrated Moving Average (ARIMA), Kalman

Filter, and their variants for traffic prediction [19]–[24].
However, these methods typically assume that temporal
traffic dynamics have a linear correlation. Additionally, they
calculate the future traffic flow of areas separately without
considering the spatial relationship, which is fundamental
for traffic prediction [25]. Although non-parametric model-
ing methods, such as K-Nearest Neighbor (KNN) [26], [27]
and Support Vector Regression (SVR) [28], [29], can predict
more accurately, they do not perform well for long-term pre-
diction since they require careful feature engineering or ex-
haustive calculation time to make inferences. Furthermore,
traditional methods naturally predict traffic flows from the
data of each specific region; no consideration is given to
the correlation between the predicted values [30]. Therefore,
most researchers develop deep learning models to handle
traffic prediction tasks thanks to their outstanding comput-
ing performance and the ability to automatically process
large datasets and non-linear functions, which have been
shown by the successful application in computer vision and
natural language processing tasks [8], [31]–[34]. Next, we
first review several typical deep learning methods in long-
term traffic prediction tasks and then summarize existing
OD forecasting models.

2.1 Long-term Traffic Demand Prediction

Challenges of long-term traffic prediction are mainly the
capture of temporal and spatial relationships, especially
long-term temporal trends and global spatial relationships.
To obtain the time relationship, the most popular network
in long-term traffic prediction models based on deep learn-
ing is the Long Short-Term Memory (LSTM) [35], which
is a popular variant of the Recurrent Neural Networks
(RNN) [36] and is widely used in time series prediction
problems. However, the prediction accuracy of the LSTM-
based models decreases significantly as the prediction time
range increases. This is because the ground-truth input is
given as the preliminary for subsequent prediction during
training. Therefore, in the operation of long-term prediction,
the output of the network must be routed back to itself. The
distribution of the network output is not entirely consistent
with the ground truth value. So in the process of long-term
forecasting using the learned model, a new situation that
has not been learned is encountered. To solve this problem,
some researchers have worked to improve the structure
and input data of LSTM. He et al. proposed an encoder-
decoder architecture based on LSTM units for long-term
traffic prediction, introduced a spatial attention model to
enhance RNN and LSTM units by considering the dynamic
contribution of each route to the whole traffic network. A
temporal attention model is then designed to find important
hidden states to provide more useful input to the LSTM
in the decoder [30]. Besides, Yao et al. developed Spatial-
Temporal Dynamic Network (STDN) to combine different
LSTM structures to solve this problem. A periodic shifting
attention mechanism was introduced in LSTM to deal with
long-term periodic dependencies [34]. Zheng et al. intro-
duced a transition attention mechanism into LSTM to model
the relationship between history and future time steps, alle-
viating the accumulation of errors in multi-step predictions
[37]. For spatial relationships, the challenge comes from
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capturing global spatial relationships. Because the spatial
range captured by CNN is relatively small, and the traffic
transitions are related to the regional functions [7]. Some
researchers introduce additional information to explore the
relationship between regions [7], [16]. POI information was
included in a new ConvPlus network where the pooling
operation and fully connected layer were adopted to cap-
ture the long-distance spatial dependence [7]. Additionally,
Zhang et al. proposed a multi-task deep learning framework
to simultaneously predict the demand of each node (region)
and each link (route) and combined their hidden states for
collaborative training to capture deep spatial information
[6]. Yao et al. devised a gated local CNN to model the
dynamic similarity of positions [34].

The above methods capture the temporal relation by
LSTM and the spatial correlation by CNN. Traditional CNN
is limited to processing gridded spatial structures similar
to images. Therefore, in these works, the traffic network
is transformed into a grid map according to geographic
proximity, where each grid represents the road condition
information of the rectangular area. Given that traffic data
is usually sampled in non-Euclidean space, researchers in
the field have begun to deploy GCN thanks to its expertise
in dealing with irregular structures.

Li et al. employed a directed graph to represent pair-wise
spatial correlations and performed bidirectional random
walk on the graph to capture spatial dependence. They also
use encoder-decoder architecture with scheduled sampling
to capture temporal correlation for multi-step prediction
[9]. Yu et al. utilized the graph convolution obtained by
the approximate spectral convolution [38] as the spatial
convolution operation, and one-dimensional convolution
operation to summarize information in the time dimension.
In the proposed model, GCN and CNN alternately formed
a spatio-temporal convolution block [39]. Cui et al. further
proposed traffic graph convolutional long short-term mem-
ory neural network (TGC-LSTM), which was based on phys-
ical distance modeling and additionally added the L1 norm
of graph convolution weights and the L2 norm of graph
convolution features to the loss function to identify critical
links in the transportation network [13]. Subsequently, Tem-
poral Graph Convolutional Network (T-GCN) was devised
by Zhao et al. by combining a concise GCN model and Gated
Recurrent Unit (GRU) to predict the long-term traffic flow
[40]. Guo et al. proposed Attention Based Spatial-Temporal
Graph Convolutional Networks (ASTGCN), which intro-
duces the attention mechanism in the k-order Chebyshev
graph convolution and one-dimensional convolution to cap-
ture the dynamic spatial and temporal relationships, re-
spectively [12]. Although these studies use GCNs to model
traffic graphs, the edges and connection strengths on the
graphs are assumed to remain unchanged. This is due to
that the construction of graphs is based on the adjacency
of the geographic locations. Edges connect regions whose
geographic distances are within a custom threshold, and
the connection strength is determined according to their
geographic distance. They are not feasible for the practical
application where the regional relationship changes over
time. Therefore, Xu et al. proposed the spatiotemporal multi-
graph convolution network (ST-GGCN). They constructed
different types of graphs based on geographic location,

POI similarity, and traffic density to learn different spatial
relationships [16]. Chen et al. proposed Multi-Range Atten-
tive Bicomponent GCN (MRA-BGCN) that introduces bi-
component graph convolution to combine features learned
from nodes and edges. They also utilized a multi-range
attention mechanism to aggregate the information in dif-
ferent neighborhood ranges [14]. Zheng et al. designed an
encoder-decoder framework composed of multiple spatio-
temporal attention blocks to learn dynamic spatio-temporal
correlation [37].

2.2 Long-term OD Prediction

Unlike traffic demand predictions that only need to predict
the number of demands in each area, OD forecasting is more
challenging because it also requires forecasts to provide
the starting and ending point for each demand request.
The intensity of demand of regional pairs in each time
slice can better provide road authorities with more traffic
light planning information, and support service providers
optimally allocating their resources. Most of the previous
work on OD prediction is for railway transportation or
subways with fixed routes, stations, and departure times.
Fu et al. proposed Expressway OD Prediction Neural Net-
work (EODPNN) based on Bi-LSTM to predict highway
OD demand, which confirmed that neural networks are
superior to traditional models for OD prediction [3]. Spatio-
Temporal Long Short-term Memory Network (STLSTM)
was proposed for OD prediction in rail transit by redesign-
ing hidden layers and neurons, introducing temporal state
Ctime and spatial state Cspace to improve the structure of
LSTM to preserve long-term status [4]. In order to obtain the
global spatial relationship, Liu et al. designed the Physical-
Virtual Collaboration Graph Network (PVCGN) for subway
OD prediction. According to the similarity and correlation
of passenger flow between stations and the actual topology,
three complementary graphs were established for more
accurate OD prediction [15]. However, its prediction targets
are actually only the inflow and outflow traffic volume of
each station at each moment. Moreover, [3] and [4] showed
that the attribute information embedding of locations brings
noticeable performance improvement.

However, compared to rail transit, urban transportation
networks are more complicated. Subway stations and op-
erating time are relatively fixed, while taxis requests may
occur at any place and time, resulting in uneven distribution
of OD demand and a very sparse OD matrix. So a more
complex deep network is needed for urban OD prediction.
Wang et al. used GCN to aggregate spatial information of
geographic and semantic neighbors, and a multi-task learn-
ing network is utilized to jointly predict both inflow and
outflow for accurate OD demand prediction [41]. Duan et al.
combined OD information and travel time and studied their
implicit correlation based on ConvLSTM to improve the
prediction accuracy. They also refined the OD embedding
to the road network level to equip data with road attributes
[5]. Besides, Chu et al. proposed a new method of data
embedding to reduced OD data to 2-D while preserving the
geographic relevance as much as possible, making the data
more suitable for processing with CNN [10]. Furthermore,
a multi-scale ConvLSTM network was applied to obtain
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TABLE 1
Key notation

Symbol Description

N number of all regions (= 75)
NO number of all origins in the OD data (NO = N = 75)
ND number of all destinations in the OD data (ND = N = 75)
xij,t traffic demand from regions i to j at time t
Xt traffic demand of all OD pairs at time t
k number of time segments that need to be predicted (k = 12)
G traffic graph
V,E vertices and edges corresponding to G
A adjacency matrix corresponding to G
D diagonal degree matrix corresponding to A

different ranges of space-time relationships. To obtain the
spatial correlation of the global range, based on the ConvL-
STM, Liu et al. calculated the feature similarity of regional
pairs to represent the feature of each region as a weighted
sum of all regional features [18].

Nonetheless, existing long-term OD prediction methods
are primarily based on LSTM. Therefore, the issue of error
accumulation is not resolved. Moreover, for the dynamic
spatial relationship, OD data need to be tiled into 2D or
3D tensors when being processed by CNN, during which
spatial information is partially lost. When applying GCN, a
fixed graph is generally used to express the spatial relation-
ship in existing methods without considering the dynamic
change. Regarding these problems, we propose a new long-
term OD prediction model based on graph deep learning.
The model concerns different temporal data segments and
regional attributes and applies graph convolution operation
with gating mechanisms to capture the dynamic spatial-
temporal relationship within OD demand data.

3 PRELIMINARIES

The important notations used in this paper are described in
Table 1.

3.1 Problem Definition
In this paper, the objective of long-term OD prediction is
formulated as simultaneously forecasting short-term and
long-term future travel demand between regional pairs. Fol-
lowing the previous OD prediction literature [8], [10], [18],
the investigated area is divided into N non-overlapping
grids1. Let xij,t denotes the traffic demand from regions i
to j at time t, and Xt = {xij,t, i, j ∈ [0, N − 1]} represents
traffic demand data of all explored OD pairs at t. The
problem can be formulated as developing a function Pred(·)
to simultaneously forecast short- and long-term OD demand
in the future k time slices with the help of historical data.

As for different temporal data segments, we employ
the historical data of three distinct past time slices, i.e.,
closeness, period, and trend, to jointly predict OD demand for
k = 12 future time slices at one time, where each time slice
corresponds to 30 minutes. Among theses temporal data
segments, closeness denotes the OD demand of the first three

1. In the case studies, N = 75 which is in accordance with the
previous literature.

most recent time slices before the current one; period and
trend represent the OD data of 12 time slices one day and
one week before the current one, respectively. Therefore, the
prediction function can be written as

{Xt,Xt+1, · · · ,Xt+11}
=Pred(Xt−1, · · · ,Xt−3︸ ︷︷ ︸

closeness

,Xt−37, · · · ,Xt−48︸ ︷︷ ︸
period

,

Xt−325, · · · ,Xt−336︸ ︷︷ ︸
trend

). (1)

3.2 Road Graph and GCN

In the proposed model, graph convolutional networks are
used to model spatial relationships, and the graph convolu-
tion based on spectral theory is adopted on each time slice
to extract spatial correlation of each one.

3.2.1 Road Graph

Based on the divided N regions, we build an undirected
characteristic graph G = (V,E,A) regarding the correlation
of latent attributes of regional pairs. Each region is treated
as a node, where V is a finite set of nodes, E represents a
set of edges, indicating the connectivity between regions.
A ∈ RN×N denotes its weighted adjacency matrix, e.g.,
the proximity of any pair of nodes is set to 0 when their
geographic distance exceeds the set threshold, otherwise the
smaller the geographical distance, the higher the proximity.

3.2.2 GCN

The use of standard convolution is limited to regular grids,
which is not suitable for general graphs with non-Euclidean
structure and no translation invariance. Therefore, GCN is
proposed to extract features from graph data. The graph
convolution is the kernel of GCN, which is defined by

H(l+1) = f(H(l), A) = σ(gθ ∗H(l)) (2)

where H(l) is the feature of the lth layer, and when l = 0, it
is the input data. σ is the activation function Sigmoid, and
gθ∗ represents a graph convolution operation.

In typical GCN, the core of spectrogram convolution is to
analyze its symmetric normalized Laplacian matrix and its
eigenvalues. However, when the scale of the graph is large,
it is costly to perform eigenvalue decomposition directly on
the Laplacian matrix. Therefore, it is simplified by using
first-order ChebNet [38] for simple calculation. Although
the approximation only covers first-order neighbor nodes,
the perception domain of graph convolution can be enlarged
by stacking multiple GCN layers due to its flexibility [38]:

gθ ∗ x = θ(IN +D−
1
2AD−

1
2 )x, (3)

where D is the diagonal degree matrix corresponding to
A, Dii =

∑
j Aij . Eigenvalues of IN + D−

1
2AD−

1
2 are in

the range of [0, 2], if many layers are stacked, the input
information is always an incremental input, which may lead
to numerical instability and gradient explosion problems
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[38]. To solve the problem, the renormalization trick is
commonly adopted:

Ã = A+ IN , (4a)

D̃ii =
∑
j

Ãij , (4b)

gθ ∗ x = θD̃−
1
2 ÃD̃−

1
2x, (4c)

where A+IN enable nodes to consider their own features in
the process of information dissemination, and D̃−

1
2 ÃD̃−

1
2

is to obtain a symmetric and normalized matrix to maintain
the original distribution of the previous layer’s feature. The
final applied graph convolution is shown as follows:

H(l+1) = σ(D̃−
1
2 ÃD̃−

1
2H(l)W (l)) (5)

where W (l) is the matrix for parameter θ. To conclude,
each node is updated according to its nearest neighbors.
Additional neighbor information is considered through the
superposition of multiple graph convolutional layers.

4 PROPOSED METHODOLOGY

An OD prediction model needs to consider the interde-
pendence of data at different time slices and the spatial
interaction between different regions. The OD demand of
each region is not only related to the historical demand
of itself but also affected by others in the same time slice.
For example, locations with the same residential properties
often have the same peaks. Moreover, the interactions of
regional pairs differ when they are considered as origins or
arrival points.

Based on the above principles, we propose the ST-GDL
model based on deep learning. In this section, we will
introduce the composition of the model.

4.1 Overview

Unlike short-term OD forecasts, long-term OD data exhibits
varying degrees of time pattern changes, such as recent
changes in a few hours, mid-term changes in a day, and
long-term changes in a week.

Fig. 1 shows the overall framework of the proposed
ST-GDL model composed of four independent compo-
nents. “Conv” and “Conv3D” blocks represent the two-
dimensional and three-dimensional convolution operations,
respectively. “Conv/Conv3D-BN” indicates a convolutional
layer followed by one BatchNorm2D/3D layer. Further-
more, “reshape” introduces or removes the singleton dimen-
sion from the input data, “permute” reorders the dimension,
that is, dimension swap of high-order tensors. And “repeat”
repeats input tensor along a specific dimension. Besides,
R in the figure represents the output dimensionality of
the previous module, ⊕ and ⊗ are element-wise addition
and multiplication, respectively. “T” in the circle in Fig. 1
represents a tanh layer, which is used to map the output to
the range [−1, 1].

The first component of Fig. 1 embeds the influence
of different weather information on the OD value on the
corresponding time slice. The other three components learn
potential spatio-temporal information from different tempo-
ral data segments, namely close, daily, and weekly. Denote

their outputs as fC , fP , fT , respectively. Next, the weighted
sum fOD of these spatio-temporal features is the feature
extracted from historical OD data.

fOD = ωC × fC + ωP × fP + ωT × fT (6)

where ωC , ωP and ωT are learnable parameters in the net-
work, and × denotes the point by point multiplication.

For the external data, we take the corresponding meteo-
rological data of the predicted 12 moments as R(12,29) input
and feed it into two stacked 2-dimensional convolution
layers. The first convolutional layer has 10 (1, 29) con-
volution kernels, which merge the corresponding weather
information for each time moment, the second one gets the
output of size R(12,1,1). “Permute” is to perform dimension
conversion to ensure that the channel does not represent
time information, and the convolution size for the time
dimension is 1, so that weather information at different time
slices does not affect each other. To facilitate the external
features to assist in the prediction of the main features
obtained from the OD data, we keep the dimensions of the
extra features and the main features obtained from the OD
data at the same dimensions. That is, by stacking along the
2nd and 3rd axes to obtain a new R(12,75,75) tensor, a value
on each time slice (1st axes) of the original tensor is copied
to all points on the corresponding time slice of the new
tensor. Subsequently, the new R(12,75,75) tensor is fed into
a Sigmoid function to multiply the feature fOD extracted
from the OD demand data,

fAll = fOD × fext (7)

where fext is the output of the Sigmoid function. Finally,
fAll is sent to a convolution layer and a tanh layer to
produce the prediction.

Next, we will describe the inputs and composition of the
MP Model in detail.

4.2 Multi-perspective Modeling Block
The vital component of extracting information from OD his-
torical data is the Multi-Perspective Modeling block (“MP
Model”).

OD data can be expressed as a series of time series, and
usually, 3 to 5 recent historical time slices are used for OD
prediction. Most works apply LSTM-based models to make
historical time slices contribute differently to predictions.
However, the calculation of LSTM is time-consuming and
brings about error accumulation problems. Therefore, we
use a CNN-based model to capture the different contribu-
tions of historical time slices. For historical OD data, we
select those of the first 3 time slices of the predicted one, and
corresponding 12 time slices of the previous day and week
as input and refer to them as close (C), period (P), and trend
(T ), respectively. And the inputs of several MP modules in
Fig. 1 is the R(12,75,75) tensors from C/P/T , respectively.
C needs unique processing before being sent to the MP

module, because the OD demand of the closest time slice
is more relevant to the predicted ones, and these 3 time
slices have different influences on the future 12 time slices.
Considering this, as shown in Fig. 1, the input data is
first reshaped to be a R(3,75,75) tensor, where each channel
represents a specific time slice. 12 R(3,1,1) 3D convolution
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reshape Conv3D-BN

repeat

Conv3D

reshape MP Model

permute L-Norm L-Norm Conv2D permute

permute L-Norm L-Norm Conv2D permute

MP Model

MP Model

O

D

+

+

Conv-BN permute Conv2D permute

+ reshape T

Fig. 1. Overview of the proposed model

kernels are set to aggregate historical time slices of each
OD pair according to different combination rules through
three-dimensional convolution (3D-Conv), followed by one
BatchNorm3D layer and an activation function ReLU. The
output 12 R(1,75,75) tensors are subsequently reshaped into
R(12,75,75). This operation not only transforms the input
dimension into the desired output dimension R(12,75,75)

but also explores the different contributions of OD data
of the last few time slices to the predicted ones. For P/T ,
their time slices and the predicted ones possess one-to-one
correspondence, and the dimensionalities are also the same.
So no additional convolution operation is required before
sending them to the MP module.

In the OD forecasting problem, in addition to time dy-
namics, spatial relationships are also particularly important.
N regions correspond to N × N OD pairs. Therefore, the
acquisition of the global spatial relationship of all OD pairs
requires (N × N) × (N × N) complexity. To reduce the
complexity, we decompose the problem into two simple
sub-problems. Consider that each OD pair contains a corre-
sponding origin and destination. To understand the degree
of mutual influence of two OD pairs, we intuitively explore
the similarity of the corresponding departure regions and
the similarity of the arrival ones separately, each only re-
quires (N × N) complexity. Furthermore, combining these
two relationships to obtain the OD pair relationship.

Therefore, we split the task of extracting the similarity
of origins/destinations of regional pairs into two simple
subtasks:

(1) Regarding all regions as origins, each region has a fea-
ture map of size (T,ND), i.e., the demand information from
the corresponding region to all N regions at selected time
slices. This sub-problem is to generate new ND-dimensional
features for each region on each time slice that needs to
be predicted based on historical OD data. (2) Similarly, all
regions are regarded as destinations, and the feature of each
is the demand information from all areas to the specific
area, and N-dimensional features are generated for each
destination on each time slice.

As shown in Fig. 1, we conduct joint modeling from
the perspective of departure and arrival and combine the
features extracted from these two aspects. Take the origin
perspective as an example, which is represented by O in

the figure. First, a dimensional transformation is performed
on the input R(12,NO,ND) tensors to get R(ND,12,NO) ten-
sors, so that each region has a 75-dimensional feature on
each time slice. NO and ND indicate 75 origins and 75
destinations, respectively. Subsequently, tensors are sent to
ST-Conv (represented as black squares in Fig. 1) and S-
GCN (shaded squares) blocks, which employ vanilla and
graph convolutions to extract spatio-temporal features, re-
spectively. Two stacked ST-block are used to extract the
space-time information of the original perspective, and the
white rectangle between them indicates layer normalization
(LN) to prevent overfitting. Since the distribution of OD
demands of adjacent time slices is similar, LN performs
normalization along the channel dimension. Therefore, the
dimension rearrangement is performed before sending the
tensors to the LN layer to ensure that the time dimension
is normalized as the channel dimension. The processing
of the destination perspective differs only in the initial
dimensional transformation, the dimensionality of its input
tensors is transformed from R(12,NO,ND) to R(NO,12,ND), and
then has the same process as the origin perspective. The
output of the origin perspective and destination perspective
are R(ND,12,NO) and R(NO,12,ND), respectively. ND ,12 and
NO represent information of the destination, time, and
origin. Then, perform different dimensional transformations
on these two outputs to obtain R(12,NO,ND) tensors for
facilitating feature fusion. To conclude, the output results
obtained from the two perspectives were weighted and
summed to obtain the multi-perspective modeling results.
The outputs of the three MP modules from bottom to top in
Fig. 1 are R(12,75,75) tensors fC , fP , fT , which are features
extracted from different magnitudes of temporal patterns.

The proposed “MP Model” is composed of two base
blocks, i.e., ST-Conv and S-GCN. In the following sub-
sections, we elaborate on the structure of ST-Conv and S-
GCN.

4.3 ST-Conv Block

The ST-Conv unit is used to capture temporal and local
spatial relationships by CNN, which consists of multiple
Conv-BN blocks, a CA-gate, and an SA-gate. Its structure
is shown in Fig. 2. For conciseness, we demonstrate and
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Fig. 2. ST-Conv block

discuss the motivation and architecture using the origin data
process.

As explained in Section 4.2, inputs of the origin per-
spective are R(ND,12,NO) tensors. OD data of a time slice
is strongly correlated with one of its adjacent time slices
and its neighbors. Therefore, as shown in Fig. 2, we first
use two stacked 2D-Conv layers, followed by BatchNorm
and the ReLU activation function. Specifically, convolution
operation with the kernel of size (3, 3) is applied for feature
extraction of Closeness, to simultaneously fuse the informa-
tion of adjacent time and the local spatial relationship. Since
time slices of Period/Trend and the predicted ones possess
one-to-one correspondence, kernels of size (1, 3) are utilized
to maintain this correspondence. Besides, the channel repre-
sents destination information, and some regions intuitively
have significantly more arrival demands than others, so
certain channels should have more effective information.
Therefore, we utilize CA-gate to capture hidden information
about the preferences of destinations.

“MaxPool” in Fig. 2 means compressing the third dimen-
sion of the input tensors to 1, and using the maximum value
of all data in the channel as the new value. In contrast “Avg-
Pool” uses the average value. This operation can be seen as
compressing R(ND,12,NO) OD tensors into R(ND) arrival de-
mand vectors to directly analyze whether each area is likely
to be selected as the destination. Then, two fully connected
layers (represented as “FC” in Fig. 2) are stacked to learn
from all channel information. Based on the consideration of
information integration, the units number of the first layer is
set to 15 for the network to learn the most useful information
in the extracted destination features. And the second is
to make the size of output the same as the input size.
Besides, the addition of “reshape” is to rearrange the output
from R75 vector to R(75,1,1) tensor to facilitate subsequent
element-wise multiplication. Subsequently, tensors obtained
from the two branches of CA-gate are added and sent into
the Sigmoid function to map its value between 0 and 1.
Finally, the CA-gate output and the features extracted by
the previous “Conv-BN” block are multiplied point by point
to equip the learned features with destinations preference
information and eliminate noise with minimal adversarial
impact.

Similarly, for each studied time slices, the OD departure
demand from some regions are significantly more than the
rest. The second and third dimensions of current input
represent time and Origin information, so an SA-gate is
introduced to capture the probability of starting from dif-
ferent areas from the feature map. The first dimension of

input tensors is compressed to 1 by maximizing/averaging
(represented by Max/Avg in Fig. 2), that is, converting
the OD demand R(ND,12,NO) into the departure demand
information on each time slice. The first “Re-shape” in Fig. 2
means to rearrange the 75-dimensional vectors representing
the total NO origins into R15,5 matrices according to the
grids’ location. The matrix is therefore converted to R12,15,5

tensor to facilitate the use of three-dimensional convolution
to capture more accurate temporal and spatial information.
Then, feature maps with size R(12,NO) obtained by the
two compression methods are concatenated (represented
as “II” in Fig. 2) and sent to a convolutional layer with
kernel (5, 5, 5) to summarize large-scale origin preferences.
And the second “Re-shape” represents to restore the size
from R(12,15,5) to R(12,NO). Extracted preference information
of the origins is equipped to the learned features just as
the CA-gate. Finally, referring to the idea of the residual
network, we add the final output with the initial input of
ST-Conv, then a ReLU function is applied to calculate the
output of the ST-Conv block with size R(75,12,75).

4.4 S-GCN Block
To further extract global spatial features, as elaborated in
Section 3.2, we project the traffic network onto a series of
graphs G = (V,E,A). Traditional GCN builds static graphs
and extracts spatial relationships based on the assumption
that the closer the geographical location between regions,
the tighter the connection. However, in terms of transport
networks, the regional correlation is dynamic, and some ge-
ographically distant regions have similar demand patterns.
In the real world, there is a functionality label for each
region, such as residential areas, CBD, school, etc. Primarily,
this information can help express the spatial correlation of
regional pairs. Specifically, areas with the same or similar
labels may have stronger spatial correlation, and their vari-
ations over time are similar. For example, for districts with
residential labels, the peak time of their departure demand
is usually between 8-9 am. Previous work on traffic forecast-
ing considered this type of relationship, but they utilized ad-
ditional POI information [16], which is not equipped in most
OD dataset. There is also work on railway OD prediction
(predicting the volume of inflows and outflows at each sta-
tion) using DTW to obtain time-series correlation for a static
relationship [15]. This is similar to our idea, but the strength
of DTW is to deal with unaligned sequences. For traffic data,
the difference in the same time slice may be more effective
for judging regional functionality. Therefore, the Pearson
correlation coefficient is chosen in S-GCN. Based on this
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consideration, the traffic network is projected to a series
graph, on which all regions are the corresponding vertex.
And the strength of the corresponding edge is represented
by the attribute similarity between regions.

Unlike static graphs of traditional GCN, the proposed
S-GCN extracts dynamic information from graphs with
constantly changing edges. Specifically, from the depar-
ture/arrival perspective, the edge represents the func-
tional similarity of regions when they serve as ori-
gins/destinations, which is dynamically obtained based on
the calculation of the time segments currently processed
by the network. Then, the dynamic spatial relationship is
extracted through graph convolution.

As described in Section 4.1, for all regions (vertices),
the input data M = {C,P, T } has 27 total time slices.
From the departure perspective, the adjacency matrix in S-
GCN describes the functional similarity of regions(origins),
illustrated by the changing trends of the departure demand
over time. The calculation process of the adjacency matrix A
is as follows:

M∈ R(T,O,D) permute−→ M′ ∈ R(D,O,T ), (8a)

MO(i, t) ∈ R(O,T ) =
D∑
k=0

M′(k, i, t), (8b)

After transforming the dimension of the input data M,
all OD pairs corresponding to each origin on each time
slice are summarized into the relevant departure demand
MO(i, t), which indicates the value of all departure require-
ments for region i in a time slice t.

AM(i, j) ∈ R(O,O) = Fcorr(MO(i),MO(j)), (9a)
A′(i, j) = exp(|AM(i, j)| − 1), (9b)

where Fcorr denotes the function to calculate the correlation
coefficient, which refers to the Pearson correlation coeffi-
cient. MO(i) is a time series representing the departure
demand of area i. By calculating the correlation of the time
series of an arbitrary regional pair, their functional similarity
during this period is obtained. The larger the absolute value,
the stronger the relationship. AM(i, j) is the functional
similarity of region i and j, AM(j, i) = AM(i, j). Besides,
Eq. (9b) is used to limit the range of values in the adjacency
matrix A′ to (0, 1].

Subsequently, A′ is filtered to remove edges of feeble
connection to simplify graphs. All values less than 0.3 are
reset to 0, and the corresponding adjacency matrix A of the
current input graph is obtained.

Finally, the edges of the obtained graph represent the
functional similarity of regions (origins or destination). This
graph is a symmetric undirected graph, so we only need to
apply a simple and effective graph convolution operation
mentioned in Section 3.2 to extract the current spatial corre-
lation on each time slice.

5 CASE STUDIES

We first describe the dataset dedicated to OD prediction —
NYC-TOD — created from a widely employed benchmark

NYC dataset from the traffic domain. Subsequently, the eval-
uation metrics and related hyperparameters settings. Next,
the comparison between the performance of the proposed
model and the state-of-the-art approaches in long-term pre-
diction is presented. To demonstrate the effectiveness of
each component, we implement some variants and measure
the related performance. Then, to further certificate the
superiority of the proposed model in long-term prediction,
we use the trained model and predicted value to perform
the OD demand prediction for every 30 minutes of the
future 6-12 hours and evaluate. Finally, we compare the
performance of the proposed method with CSTN on the
Didi Travel Haikou dataset to show its performance on other
taxi OD demand dataset.

5.1 Dataset and Experiment Settings
5.1.1 NYC-TOD
NYC-TOD is among the most welcoming benchmark
datasets for urban taxi OD prediction based on the NYC Taxi
dataset and meteorological data of New York Central Park
from Wunderground2 [18]. Specifically, it includes records of
yellow taxi journeys in Manhattan in 2014 and the weather
data for the same period. The investigated area is evenly
divided into 15 × 5 non-overlapping grids, each with a
geographic size of about 0.75km × 0.75km. Besides, the
length of a time slice is set to 30 min, NYC-TOD contains
OD data of size R(17520,75,75) where 365 × 48 = 17520
time segments. Moreover, Wunderground offers 29 types
of meteorology data, namely temperature, wind chill, hu-
midity, visibility, wind speed, precipitation, and 23 one-
hot encoded weather conditions. The first 6 types of data
are pre-processed by min-max linear normalization. Finally,
NYC-TOD contains the pre-processed meteorological data
with a size of R(17520,29).

5.1.2 Didi Chuxing GAIA Data
To further illustrate the effectiveness of the proposed model
and exclude the randomness of the NYC-TOD dataset, we
utilize the proposed method to conduct experiments on the
DiDi travel data set provided by DiDi’s GAIA plan and
compared the results with CSTN. Didi Chuxing GAIA Data
contains the daily real order data in Haikou City from May
1st to October 31st, 2017. We first performed data cleansing,
deleted empty orders and orders outside Haikou according
to the latitude and longitude. Items whose order time equals
0 are also excluded. Besides, the surveyed area is equally
divided into 16 × 8 non-overlapping areas, and the time
slice length is set to 30 min.

5.1.3 Pre-processing and Hyperparameters Settings
Following existing researches on OD prediction and traffic
prediction [8], [10], [11], [18], we apply the min-max normal-
ization to scale the value of OD demand to the range [−1, 1].
In the paper, we utilize the data of the last 60 days as the
testing data, and all previous data for training. Specifically,
for the performance comparison of different methods on the
NYC-TOD dataset, we all use the same training data and test
data. As mentioned in Section 3 and Section 4, {C,P, T } is

2. https://www.wunderground.com/
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selected to predict k = 12 future OD demand at the same
time, and the length of time slices C,P, T is 3, 12, 12, respec-
tively. Mini-batch training applied in the training phase, the
size of a batch is set to 32, and optimizer Adam [42] selected.
Besides, we adaptively change the learning rate. The initial
value is set to 0.01, and it will be one-tenth of the previous
value for every 20 training epochs until 80 epochs elapsed.

5.1.4 Metrics
Referring to most studies on OD demand prediction [8], [10],
[11], [18], two commonly utilized performance metrics are
employed in the paper, namely, Rooted Mean Square Error
(RMSE) and Mean Average Percentage Error (MAPE):

RMSE(y, ŷ, t) =

√√√√ 1

N2

N∑
i=1

N∑
j=1

(yt,i,j − ŷt,i,j)2, (10a)

MAPE(y, ŷ, t) =
1

N2

N∑
i=1

N∑
j=1

|ŷt,i,j − yt,i,j |
yt,i,j + ε

, (10b)

where ε = 10−3 to prevent the denominator being zero,
y is the ground truth value, and ŷ is the predicted result.
Besides, it is worth noting that following the researches on
OD prediction and traffic demand prediction [5], [8], [10],
[11], [18], [30], screening operation is carried out in the
calculation of MAPE since the tiny demand in real life has
no practical significance. If the ground truth is less than 5,
the corresponding OD demand at the specific time slice will
not be included.

5.2 Comparison with the State-of-the-art Approaches
The proposed method is compared with the state-of-the-art
approaches and several classical models as follows:

5.2.1 Compared Models
• Convolutional Neural Network (CNN) [31]: CNN is

a popular deep learning model for spatio-temporal
data, which is widely used to extract features from
regular structure data. Therefore, many classic traffic
forecasting models are based on it. We set the num-
ber of convolution kernels of each convolution layer
to 32, 32, 32, 32, 32 and the kernel size (3, 3).

• Spatial-Temporal Residual Network (ST-ResNet) [8]:
ST-ResNet is a more representative method in the
research of traffic demand prediction, which intro-
duces shortcut connections and CNNs to extract
spatio-temporal information for prediction.

• Bi-directional Recurrent Neural Network (BRNN)
[43]: For each time t, the input of BRNN will be
provided to two RNNs in opposite directions at the
same time, and the output is determined by the two
one-way RNNs while obtaining information from the
backward and forward states.

• Convolutional LSTM (ConvLSTM) [44] uses the out-
put of the convolutional network as the input of the
LSTM, so that the data passing through the convolu-
tional network can use the recurrent neural network
LSTM to have a good performance on the time series.

• Diffusion Convolutional Recurrent Neural Network
(DCRNN) [9]: DCRNN utilizes a two-way random

walk to model spatial dependence and encoder-
decoder architecture for temporal dependency.

• Spatio-temporal Graph Convolutional Network (ST-
GCN) [39]: ST-GCN introduces a gated linear unit
GLU [45] in full convolution layer to capture the time
relationship, and uses graph convolution to capture
the spatial relationship for mid- and long-term traffic
prediction.

• ST-GCN2: ST-GCN predicts one future OD data and
iterates the predicted value into the subsequent pre-
diction process following previous long-term predic-
tion methods (like LSTM). Since the LSTM unit is
not included in ST-GCN, we apply the CNN with
gating mechanisms proposed in this paper to directly
extend ST-GCN from short-term prediction to one-
step long-term prediction. To distinguish, this variant
is represented by ST-GCN2. Alternatively, ST-GCN2
directly modifies the final output channel number of
ST-GCN to allow the model to predict 12 future OD
requirements simultaneously.

• Contextualized Spatial-Temporal Network (CSTN)
[18]: CSTN combines CNN and LSTM to predict OD
demand, which is state-of-the-art. When it extracts
spatial relationships, the model considers not only
spatial relations in a small scale but also global spa-
tial correlations. We use the recommended settings
suggested by the author for comparison.

For each baseline method, the hyperparameters are se-
lected by trial-and-error. The parameters, that is, the number
of layers of each network and the number of corresponding
filters, is tuned for all methods. And different learning rates
(0.1, 0.01, 0.001, 0.0001) have also been tested. Additionally,
RMSprop [46] or Adam [42] are respectively used as the
optimizer to view the results. The best case is selected for
each baseline method.

5.2.2 Overall Comparison
The performance of the proposed ST-GDL and the other
compared methods are summarized in Table 2. For the NYC-
TOD dataset, in the next-step short-term forecast (30 mins),
the performance of ST-GDL is only slightly worse than
CSTN by 0.92% MAPE. However, concerning the following
predictions, ST-GDL outperforms all compared approaches.
The improvement significantly increases with the length of
the prediction window, which shows the superior long-
term OD prediction ability of ST-GDL. Besides, ST-GDL
achieves the lowest RMSE among all methods, as shown
in Table 3. The error of CSTN increases by [0.4%, 1.4%]
with each prediction step into the future. In contrast, our
method increases by only [0.07%, 0.37%], which indicates
that the proposed model can effectively alleviate the error
accumulation problem of LSTM in long-term OD prediction
tasks.

For mid- and long-term OD prediction, the performance
of CNN is the worst among the deep learning methods
because it only considers the spatial relationship provided
by the geographic location, and the data embedding method
cannot retain the spatial relationship. Besides, it does not
take into account that the OD demand at each moment is
more relevant to its closest time slice, which leads to re-
duced accuracy of long-term prediction. Compared to CNN,
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TABLE 2
Comparison of MAPE with the State-of-the-art Approaches on NYC-TOD

MAPE 30min 60min 90min 120min 150min 180min 210min 240min 270min 300min 330min 360min

CNN 29.51% 32.56% 37.62% 42.42% 47.78% 52.56% 57.56% 61.82% 65.82% 69.38% 72.53% 75.03%
BRNN 29.05% 30.17% 31.37% 31.93% 32.60% 34.15% 36.90% 38.23% 41.40% 45.58% 46.32% 49.45%
ConvLSTM 28.71% 28.96% 29.87% 30.51% 31.58% 33.13% 33.97% 34.72% 35.90% 36.82% 37.77% 38.93%
ST-ResNet 29.00% 30.97% 35.12% 38.67% 41.58% 44.26% 46.29% 48.06% 49.48% 50.70% 51.69% 52.51%
DCRNN 28.49% 28.90% 29.35% 29.98% 30.72% 32.01% 32.79% 34.11% 35.09% 36.28% 36.89% 38.01%
ST-GCN 29.12% 30.44% 32.56% 35.8% 39.72% 43.93% 47.97% 51.77% 55.25% 58.44% 61.16% 63.46%
ST-GCN2 29.69% 30.36% 30.96% 31.76% 32.16% 32.53% 32.73% 32.91% 33.13% 33.48% 33.89% 34.51%
CSTN 27.22% 28.61% 29.15% 29.97% 30.90% 31.78% 32.62% 33.34% 34.03% 34.60% 35.13% 35.54%
ST-GDL 28.14% 28.52% 28.89% 29.22% 29.49% 29.65% 29.86% 30.01% 30.10% 30.23% 30.40% 30.48%

TABLE 3
Comparison of RMSE with the State-of-the-art Approaches on NYC-TOD

RMSE 30min 60min 90min 120min 150min 180min 210min 240min 270min 300min 330min 360min

CNN 1.1468 1.5249 2.1098 2.1356 2.3437 2.3908 2.4792 2.5387 2.5952 2.6422 2.6879 2.7262
BRNN 1.8159 1.8485 1.8703 1.9006 1.9720 2.3781 2.3921 2.4047 2.5240 2.6297 2.6939 2.9522
ConvLSTM 1.5412 1.5792 1.6157 1.6573 1.6763 1.6827 1.6983 1.7094 1.7240 1.7391 1.7574 1.7762
ST-ResNet 1.1799 1.4742 1.8406 2.0568 2.1176 2.1811 2.2045 3.2308 2.2435 2.2573 2.2659 2.2747
DCRNN 1.1244 1.4578 1.4895 1.5089 1.5279 1.5433 1.5589 1.5701 1.5841 1.6000 1.6105 1.6172
ST-GCN 1.0259 1.0458 1.0760 1.1200 1.1716 1.2253 1.2772 1.3270 1.3737 1.4184 1.4597 1.4980
ST-GCN2 1.0354 1.0452 1.055 1.0659 1.0714 1.0762 1.0788 1.0827 1.0865 1.0922 1.1000 1.1125
CSTN 1.3245 1.3865 1.4487 1.5021 1.5606 1.6134 1.6613 1.702 1.7393 1.7695 1.7992 1.8249
ST-GDL 1.0120 1.0211 1.0301 1.0385 1.0435 1.0480 1.0513 1.0543 1.0574 1.0603 1.0621 1.0622

ST-ResNet introduces a significant accuracy improvement,
which is based on residual network and combines traffic
data of temporal closeness, period, and trend properties to
predict future traffic flow jointly. This shows that the intro-
duction of data with multiple time attributes can benefit OD
prediction, especially for the long-term one. Additionally,
CNN is limited because it cannot be used directly in non-
Euclidean spaces like transportation networks. Usually, the
transportation network needs to be converted into a grid
map according to geographic coordinates or other rules
before processed by CNN. GCN generalizes CNN to graphs
and is more suitable for transportation networks. ST-GCN
is a hybrid model that applies GCN and CNN to model the
spatio-temporal information of traffic data jointly. Accord-
ing to the comparison results of ST-GCN and ST-GCN2, the
difference between their MAPE reached a maximum 28.95%
when predicting the OD data of the sixth upcoming hour.
This is because when directly predicting multiple future
demands at once, the model is learned from the ground
truth, and the model learns the influence of historical data
on long-distance time slices during the training process.
While models based on LSTM learns an orderly relation-
ship. As the iteration progresses, the predicted value of the
previous segment will be used to calculate the prediction in
the later stage, leading the accumulation of errors increases
faster. Although ST-GCN uses CNN instead of LSTM, when
it is used for long-term prediction, it is still a multi-step
prediction that causes error accumulation. Besides, its short-
term prediction results are inferior to CSTN. Due to the
further accumulation of errors, the result of CSTN is better
than ST-GCN for long-term prediction. On the contrary, ST-
GCN2 applies one-step prediction instead of multi-step pre-
diction to avoid the error accumulation problem caused by

iteration. Although its short-term prediction performance is
not as good as CSTN, its accumulated error over time is less
than that of CSTN. Additionally, it can be found that CSTN
is better than previous methods from the MAPE results, but
it is inferior to ST-GCN from the RMSE results. This may
happen that in actual applications, if there are individual
outliers with very large deviations, even if the number of
outliers is very small, it will lead a worse RMSE. The LSTM-
based model will rely to a large extent on the information of
the most recent time slice, but the OD demand distribution
for taxis is unevenly distributed, and the difference between
rush hour and non-rush hour is very large, so outliers
may appear and cause RMSE to be high. However, the
differences are small, and MAPE reduces the impact of
individual outliers, so CSTN is still excellent. And because
LSTM values the most recent time slice, CSTN has shown
its superiority in short-term prediction (30 min).

Additionally, all experiments are conducted on a GPU
server with NVIDIA GeForce RTX 2080Ti graphic process-
ing cards for neural network training acceleration. ST-GDL
requires 482s to finish the training, and takes approximately
14s to obtain all the prediction results of the next 12 time
segments. Considering that the time span is over six hours,
the inference time is considered moderate.

To show that the proposed model can converge after a
few training iterations, Fig. 3 visualizes the loss (MSELoss)
of each epoch for the proposed model during training,
which has a stable downward trend. Fig. 4 depicts the
results of calculating the relevant RMSE and MAPE metrics
for the validation set without min-max using the currently
trained parameters after the completion of each epoch. The
upper right corner of the figure is an enlarged display of
the verification results of the 15th − 50th epochs. It can be
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Fig. 3. Visualization of the loss of each epoch in the training process

observed that after about 20 epochs, the model has reached
a stable state, and the predicted OD demands of the nearest
time slices are closer to the actual situation. With the expan-
sion of the time range, the prediction accuracy gradually
decreases, but the cumulative error becomes smaller.

5.3 Sensitivity of Hyperparameters
In this work, a deep model based on graph deep learning is
adopted. We empirically select some hyperparameters and
parameters when constructing this long-term OD predictor.
In this subsection, the sensitivity and influence of these set-
tings to the prediction accuracy are investigated. We tested
the different selection of three important hyperparameters
in the construction of the model. The parameters are the
window length of the selected closest time slices, the pre-
dicted time window length, and the number of channels for
the convolution network. Specifically, they are set to 3/4/5,
32/75/128, 4/6/8/12, separately. The results are shown in
Fig. 5, where the solid line is the MAPE result of short-
term prediction (30 min), and the dashed line is the average
value of MAPE of all time slices predicted. It can be seen
that more historical time slices will improve the short-term
prediction results to some extent, but it will have an adverse
effect on the long-term prediction. This seems to indicate
that long-term traffic changes depend more on short-term
history. Also, using historical 3 short-term time slices for
prediction, when the number of time slices to be predicted
increases (4/8/12), the impact on the short-term results is
small, but due to the inevitable accumulation of errors, the
average MAPE of all predictions will get worse. In general,
however, the results of MAPE/RMSE are still small when
scattered to each time slice. However, when one day is
predicted, the accuracy will be reduced. Generally, getting
the forecast results for the next 12 hours is sufficient for
practical applications, and the results are within a tolerable
range. Besides, it can be found that more convolution ker-
nels do not mean better performance. Although compared
with 32 convolution kernels, 75 convolution kernels bring
performance improvements. It is meaningless to continue
to increase the number of convolution kernels and will also
lead to time-consuming training.

5.4 Ablation Test
To verify the validity of each component of the ST-GDL
model for long-term OD prediction and confirm our motiva-

tion mentioned in Section 4, we conduct a series of ablation
tests. The results are shown in Table 4 and Fig. 6. It can be
seen from the figure that the removal of any component has
an adversarial effect on short-term OD prediction. However,
as time increases, the performance enhancement of MAPE
brought by these components becomes more prominent,
which shows that they are more useful for long-term OD
forecasting than short-term prediction.

5.4.1 With/without Multi-perspective
The ST-GDL model contains two types of multi-view mod-
eling. One is about diverse time attributes, and the other is
on the different regional attributes.

5.4.1.1 With/without Multiple Time Attributes: We
select OD data of three temporal attributes as input data and
send them to the same sub-network module respectively to
extract and combine features. To show that the consideration
of multiple time attributes of the data can effectively im-
prove the prediction accuracy, we test the prediction results
obtained by removing the daily and weekly data segments
and the corresponding network branches that process them,
which is represented by “-PT” in Table 4. It can be seen from
the results that the future OD demand is most related to sev-
eral recent historical OD data. However, data with temporal
attributes of period/trend can bring performance improve-
ments, whether for short-term or long-term forecasts. This
is because the OD data has a certain periodicity; it usually
has a similar changing trend on weekdays/weekends. The
introduction of a multi-perspective of temporal attributes
allows the network to learn the related dynamics.

5.4.1.2 With/without Origin/destination Perspec-
tive: In ST-GDL, we propose a multi-view modeling of
regional attributes. We consider that the areas have different
correlations when they are viewed as departure points or
arrival ones. To verify this idea, we construct models from
either the view of origins or destinations and compare their
performance, which is denoted by the “-D perspective” and
“-O perspective” in Table 4. It can be seen the OD pre-
diction performance accuracy notably reduced when either
perspective is removed from ST-GDL. Our hypothesis has
been confirmed: the correlation between regions is different
when they are regarded as origins or destinations, and the
combination of these two correlations contributes to long-
term OD prediction.

5.4.2 With/without Gate Mechanism
As described in Section 4.3, two gating mechanisms are
introduced to the ST-Conv module to extract more useful
hidden information and eliminate unrelated features. We
perform experiments on removing SA-gate and CA-gate
separately, with the rest of the model unchanged to observe
their own influence. The results indicate that they bring
practical improvements to long-term OD prediction perfor-
mance, of which CA-gate is more effective for long-term
predictions.

5.4.3 With/without S-GCN
To show that S-GCN can help obtain more spatial correla-
tion, we remove the S-GCN block from the model and eval-
uate the new performance, which is denoted by “-S-GCN”
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Fig. 4. Visualization of the training process.

TABLE 4
MAPE Comparison of Ablation Tests on NYC-TOD

MAPE 30min 60min 90min 120min 150min 180min 210min 240min 270min 300min 330min 360min

- PT 28.35% 28.94% 29.49% 30.04% 30.36% 30.77% 31.14% 31.43% 31.62% 31.74% 32.04% 32.22%
- D perspective 28.66% 29.07% 29.51% 29.85% 30.23% 30.46% 30.72% 30.88% 31.06% 31.27% 31.41% 31.55%
- O perspective 28.74% 29.08% 29.5% 29.87% 30.13% 30.35% 30.56% 30.77% 30.95% 31.18% 31.41% 31.67%
- SA gate 28.23% 28.70% 29.05% 29.37% 29.64% 29.9% 30.07% 30.24% 30.42% 30.56% 30.75% 30.86%
- CA gate 28.10% 28.66% 29.20% 29.67% 29.99% 30.24% 30.46% 30.55% 30.63% 30.77% 30.98% 31.10%
- S-GCN 28.28% 28.79% 29.24% 29.68% 30.04% 30.36% 30.62% 30.83% 30.97% 31.10% 31.22% 31.39%
- external 28.20% 28.66% 29.07% 29.45% 29.70% 29.98% 30.24% 30.42% 30.51% 30.59% 30.68% 30.74%
ST-GDL 28.14% 28.52% 28.89% 29.22% 29.49% 29.65% 29.86% 30.01% 30.10% 30.23% 30.40% 30.48%
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Fig. 5. Prediction with different hyper-parameters.

0 2 4 6 8 10
Time Segments

28.5

29.0

29.5

30.0

30.5

31.0

31.5

32.0

M
A

PE
 (%

)

ST-GDL
-PT
-D
-O

-sa
-ca
-s-gcn
-external

Fig. 6. MAPE metric of Ablation Tests

in Table 4. From the comparison, it can be seen that the
addition of graph convolution brings a notable performance
improvement. Hence, we can confirm that the regions with
the same hidden attributes have similar characteristics that
affect the OD demand. Besides, in order to illustrate that
the proposed dynamic relationship contributes more to OD
prediction than a static relationship, we compare the predic-

tion results with adopting an adjacency matrix calculated
by all training data instead of the current input of the net-
work referring to [15]. Functional relationship graphs of all
regions at every time slice share the same edge connection.
The result comparison is shown in Table 5. It can be seen that
introduction of the traditional GCN, that is, the guidance
of the static relationship, the prediction performance has
not been greatly optimized. This is because the relationship
has been equipped with the learned features through the
superposition of the previous convolution operation.

5.4.4 With/without External Information

Finally, we compare the performance of the model when the
meteorological data is utilized or not. The results confirm a
widely-recognized conclusion by the previous literature that
introducing external information brings more accurate pre-
dictions. Nonetheless, the performance of ST-GDL mainly
depends on the spatio-temporal relationship extracted from
historical OD data; a minor MAPE improvement is observed
from the external information for short-term OD prediction.

5.5 Longer-term OD Prediction Beyond 6h

Our model predicts the future OD demands of 12-time
slices (6h) at one time to provide sufficient information
for practical applications. However, to further illustrate the
superiority of the proposed model in long-term prediction,
we perform a more distant long-term forecast and compare
the results with CSTN, the previous state-of-the-art. The
OD demand of the last three time slices in the predicted
data and the model learned are utilized to predict the OD
demand of 6h-12h in the future. The results are shown in
Fig. 7. Table 6 and Table 7 are the comparison results of
MAPE and RMSE, respectively. It can be seen that for the
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TABLE 5
MAPE Comparison with Static adjacency matrix on NYC-TOD

MAPE 30min 60min 90min 120min 150min 180min 210min 240min 270min 300min 330min 360min

S-GCN 28.14% 28.52% 28.89% 29.22% 29.49% 29.65% 29.86% 30.01% 30.1% 30.23% 30.4% 30.48%
TraditionGCN 28.24% 28.71% 29.22% 29.66% 29.94% 30.27% 30.55% 30.77% 30.84% 31.09% 31.19% 31.23%

TABLE 6
MAPE Comparison of Long-term Prediction Beyond 6h on NYC-TOD

MAPE 6h30min 7h 7h30min 8h 8h30min 9h 9h30min 10h 10h30min 11h 11h30 12h

CSTN 35.93% 36.20% 36.42% 36.56% 36.67% 36.77% 36.85% 36.92% 37.01% 37.10% 37.25% 37.47%
ST-GDL 30.64% 30.81% 30.96% 30.99% 31.07% 31.10% 31.20% 31.29% 31.30% 31.34% 31.46% 31.57%

TABLE 7
RMSE Comparison of Long-term Prediction Beyond 6h on NYC-TOD

RMSE 6h30min 7h 7h30min 8h 8h30min 9h 9h30min 10h 10h30min 11h 11h30 12h

CSTN 1.8496 1.8721 1.8941 1.9137 1.9311 1.9473 1.9614 1.9731 1.984 1.994 2.0047 2.0178
ST-GDL 1.0637 1.0694 1.0746 1.0780 1.0799 1.0820 1.0832 1.0838 1.0841 1.0843 1.0852 1.0888
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Fig. 7. Comparison of long-term OD prediction beyond 6h

long-term OD prediction over 6h, our method shows a more
significant advantage. For further long-term OD prediction,
the performance of the proposed model is better than CSTN
by [0.78, 0.93] RMSE and [5.29%, 5.91%] MAPE. This indi-
cates that the proposed ST-GDL is capable of performing
long-tern OD prediction over six hours, and significantly
outperform existing approaches.

5.6 Performance on DiDi dataset
Finally, to further confirm the usability and scalability of
the proposed model, we also conducted experiments of the
DiDi Chuxing dataset and compared the performance with
CSTN. The results are shown in Table 8 and Table 9. It
can be seen that the RMSE and MAPE results obtained by
the proposed method are better than CSTN. However, the
result on the DiDi dataset is inferior to that of NYC-TOD.
This is because the training samples of the Didi dataset
are relatively small, and the coverage area is a certain part

of Haikou, and its OD data is more sparse and unevenly
distributed.

6 CONCLUSION

This paper proposes a novel urban long-term OD prediction
model based on graph deep learning technology. Compared
with the state-of-the-art long-term OD prediction methods
based on deep learning, the proposed ST-GDL model inte-
grates CNN and graph convolution to predict both short-
and long-term OD demand simultaneously. We classify the
historical OD data into closeness, periodicity, and trend
to extract spatio-temporal information from various time
scales. Specifically, traffic dynamics are captured by CNN
with gate mechanisms designed to learn the potential ori-
gins/destinations preference on each time slice. Further-
more, a series of graphs with constantly changing edges
are constructed according to the underlying functional sim-
ilarity of regions and processed by graph convolution. The
proposed model inherits the advantages of both CNN and
graph convolution. Experiments on a real-world dataset
show that the proposed ST-GDL develops more accurate
long-term OD predictions than baseline approaches with
the same volume of training data. Ablation tests are carried
out to validate the efficacy of ST-GDL components. Finally,
we investigate the performance of ST-GDL for further long-
term OD predictions.

In the future, we plan to introduce Graph Attention
Network in ST-GDL to develop a more scalable model.
Additionally, POI information to generate more reliable
regional correlation information will be incorporated.
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