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Abstract—With the increasing awareness of the harmful
impacts of urban air pollution, air quality monitoring stations
have been deployed in many metropolitan areas. These stations
provide air quality data to the public. However, due to
sampling device failures and data processing errors, missing
data in air quality measurements is common. Data integrity
becomes a critical challenge when such data are employed for
public services. In this paper, we investigate the mathematical
property of air quality measurements, and attempt to recover
the missing data. First, we empirically study the low rank
property of these measurements. Second, we formulate the
low rank matrix completion (LRMC) optimization problem to
reconstruct the missing air quality data. The problem is trans-
formed using duality theory, and singular value thresholding
(SVT) is employed to develop sub-optimal solutions. Third, to
evaluate the performance of our methodology, we conduct a
series of case studies including different types of missing data
patterns. The simulation results demonstrate that the proposed
SVT methodology can effectively recover missing air quality
data, and outperform the existing Interpolation. Finally, we
investigate the parameter sensitivity of SVT. Our study can
serve as a guideline for missing data recovery in the real world.

Keywords-Missing data recovery, air quality measurements,
low-rank matrix completion, singular value thresholding.

I. INTRODUCTION

Air pollution presents a critical environmental challenge
in modern cites [1]. Due to its adverse impacts on human
health, citizens have a strong demand for timely reports of
air quality measurements, especially PMs 5 and PM;,!. Air
quality data, which in this paper refer to both air pollutants
and meteorology data, are collected so as to provide public
services such as real-time health alert and advice. However,
the missing data problem affects the quality and utility of
these data [1]. There are generally three factors contributing
to data loss, namely, communication failures, facility faults,
and cyber-security attacks.

Firstly, the local measured data from these monitoring
stations need to be transmitted to a control center, and the
communication infrastructure connecting these parties may
suffer from random failures [2]. Secondly, the monitoring

'PM stands for Particulate Matter. The subscript indicates the diameter
of the particulate in microns. PM2 5 and PMq are two of the most health-
threatening air pollutants.

facilities installed in these stations may sometimes experi-
ence operational faults, which can lead to missing data for a
period of time until fault recovery. Thirdly, as air quality
monitoring based on the measured real-time data carries
significant social impacts, the whole system is exposed to
cyber-security attacks, where adversaries attempt to modify
or erase the measurements [3].

For data loss caused by communication failures, missing
data tend to be purely random, i.e., no temporal or spatial
correlation. For the next two cases, missing data are more
likely to be temporally related [1]. To the best of our
knowledge, there is no dedicated solution to address both
these two kinds of data loss problems. The conventional
method to handle the missing data is merely by padding
these entries with zeros or historical data interpolations,
which can be either meaningless or inaccurate. This calls
for the research community to develop more advanced
information engineering techniques to recover the missing
data and improve public services [4].

In this paper we employ a recent development in low-
rank matrix completion (LRMC) to address the missing air
quality data problem. LRMC is one of the variants of matrix
completion. It can fill in the missing entries of a partial low
rank matrix accurately. So this method has been applied
to solve problems in various engineering research fields,
such as social network [5] and power system [6]. As the
air quality data share similar characteristics with data in
these applications, it is possible that similar methods can
be adopted to address the problem. We would like to point
out that this paper is the first work that focuses on recovering
missing air quality data. Our key contributions to the field
of missing data recovery are as follows:

o We empirically analyze the matrix rank properties of
air quality data, and suggest that low-rank matrix
completion is a potential technique to solve the missing
data problem.

« We formulate the missing air quality data recovery
problem, and adopt Singular Value Thresholding (SVT)
to develop sub-optimal solutions.

e We perform a series of comprehensive simulations to
test the performance of SVT in addressing the missing
data problem, and compare it with the existing Inter-



polation method.

o We investigate the parameter sensitivity of SVT on
the data recovery accuracy, and summarize the best
parameter values for real-world application.

The rest of this paper is organized as follows. Section II
introduces the background of air quality data and the system
model for missing air quality data recovery problem. Section
IIT analyzes the low-rank property of air quality data through
empirical tests. Section IV performs preliminary analyses
on the proposed problem, and adopts the SVT technique
to solve the transformed optimization problem. In Section
V, the performance of SVT in the proposed missing data
problem is assessed, and the parameter sensitivity of SVT
is investigated. Finally, we concluded our work in Section
VI, with discussions on our future.

II. MATHEMATICAL FRAMEWORK
A. Air quality measurement data

In this paper, 11 categories of air quality data have been
retrieved for our study. These data are retrieved online
from AQICN database, which collects air pollutants data
from air quality monitoring stations and meteorology data
from the observatories in Beijing, China [7]. As shown
in Table I, these measurements include five categories of
meteorological data and six categories of pollutants that are
used to generate the Air Quality Index (AQI) in China. The
air quality data are collected once per hour, and reported
to the control center immediately. The data is from the first
week of January 2017, i.e. Jan. 1-7, 2017.

Let Mgty € R™*™ denote the ground truth data of
ng1 = 11 categories from nos monitoring stations (197 X
N9o = No) in ny time intervals. Ideally, these data can be
applied in further air quality analyses and services, see [8]
for example. However, in real life, these data often suffer
from losses due to different reasons described in Section
I. Let Mpp be the data matrix available to the control
center. Mop may have missing entries, which are replaced
by zeros. We use {2 to denote the set of the indices (¢, j) of
observed data in Mop. Then Mopp and Mgt satisfy the
following relationship:

MGT(iaj) (17]) € Q2
0 otherwise ’

Mog(i,j) = { (H
where Mog(i,7) and Mgr(i,j) are the data located at
entry (4,j) of matrices Mop and Mg, respectively. For
simplicity, equation (1) can be expressed as Mo =
Po(Mgr), where Pqo(+) is a projection R™ %72 — R X7z,

B. Missing data recovery model

We attempt to recover the missing data entries in matrix
Mg with the observed data entries. This problem is defined

Table I
DATA COLLECTED

Domain Category Data Source
PMos 5
PMio

O3
NO2
SO2
CO AQICN [7]
Temperature (°C)
Dew Point (°C)
Pressure (Pa)
Humidity (%)
Wind (m/s)

Air pollutant

Meteorology

as the Air Quality Data Recovery (AQDR) problem, which
can be formulated as follows:

minimize || M — Mgt ||3 (2a)
subject to Po(M) = Po(Mgr) (2b)

where M is the recovered air quality data matrix. This
matrix should keep all observed data while minimizing the
difference from the ground truth Mgt on missing data
entries. Ideally, the optimal recovered matrix is identical
to the ground truth, and acts as a reliable data source for
subsequent analyses.

In practice, however, the ground truth Mgt is only
partially known in the form of Mop. Considering that Mg
in the objective function (2a) is unknown when conducting
the optimization, the single constraint (2b) cannot ensure a
unique solution to the problem can be derived. In addition,
as the constraint does not impose any limitations on the non-
observed entries, the solutions to (1) cannot be considered
a significant approximation.

In the past decade, research has been conducted on re-
formulating the matrix completion problem as a convex
optimization problem by introducing an extra regularization
term to obtain a stable and accurate estimated solution
[9]. The matrix completion problem shown in (2) can be
converted to the following well-posed form:

minimize R(M) (3a)
subject to Po(M) = Po(Mgr) (3b)

In problem (3a), R(M) is the regularization term of M.
This regularization can be the norms of M that are related
to some specific properties of the matrix such as low-rank
and high sparsity. By integrating the characteristics of the
data matrix M, (3a) can obtain a unique optimal solution
M* that accurately resembles the ground truth matrix Mqr.

As illustrated in Section III, the investigated air quality
data matrix observes the low-rank property. Hence, we
employ the low-rank model to develop the regularization
term for the AQDR problem.
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Figure 1. Distribution of singular values of an arbitrary air quality data
matrix Mqar.

Table 1T
THE LARGEST 45 SINGULAR VALUES OF Mgt

g5
rank 1~9 10~18 | 19~27 | 28~36 | 37~45
1 231.8317 | 43756 | 2.6669 | 1.7681 | 1.2869
2 31.0327 3.9525 | 25719 | 1.7517 | 1.2707
3 13.1812 | 3.8824 | 2.4864 | 1.6889 | 1.1985
4 10.6508 3.6296 | 2.3318 | 1.5907 | 1.1596
5 9.1780 3.5365 | 22601 | 1.5026 | 1.1322
6 7.4756 3.4416 | 2.1456 | 1.4738 | 1.1191
7 6.2178 3.1591 | 2.0293 | 1.4372 | 1.1001
8 5.4208 2.8555 | 19134 | 1.3816 | 1.0689
9 5.0328 2.8094 | 1.8670 | 1.3305 | 0.9839

ITI. RANK ANALYSIS OF AIR QUALITY DATA

The “rank” of a matrix refers to the maximum number of
linear-independent columns [10], which can be interpreted as
the degree of redundancy in air quality data. Consequently,
the rank of the air quality data matrix Mgr is notably
smaller than its dimensions, i.e. n; and ns, as illustrated
in the later part of this section. Such matrices with small
rank values are considered as “low-rank” [9].

Generally speaking, the air quality data is dynamic over
the long run for an arbitrary region. At the same time, the
short-term variation of each category within several hours
can be very limited. Moreover, according to the micro-
scale dispersion model [8], the concentration of air pollution
demonstrates significant spatio-temporal (S-T) dependency
and can be drastically influenced by urban meteorology.
Therefore, it is possible that the air quality data matrix has
high data redundancy and has strong correlation among its
entries. The air quality matrix thus displays the low-rank
property.

In order to determine the rank of the target data matrix,
we analyze the distribution of singular values for a single
data matrix. The investigated data matrix of the ground truth
Mgt € RY68x330 contains 11 categories of data collected
from 30 locations distributed across the city of Beijing in the

first week of January 2017. Similar to other data processing
methods [11], [12], we normalize the measurement matrix
in order to improve the effectiveness of data processing.

Utilizing the singular value decomposition (SVD) method
[13], the singular values of Mgy € R!68x330 can be
computed as follows:

Mer =UXVT (4)

where U € RIx168 and V' ¢ R330%330 are unitary
matrices, ¥ is a 168 x 330 rectangular diagonal matrix.
The non-negative diagonal entries o; in 3 are the singular
values of Mg, which are essential in analyzing the low-
rank property of the target matrix.

As depicted in Fig. 1, the singular values of Mgr
diminish quite quickly. This suggests that the matrix can
be approximated by a low-rank matrix in high accuracy
[14]. This low-rank property encourages the transformation
of the AQDR problem into a LRMC problem. To solve
the problem, an estimated matrix with a low rank is used
to approximate the ground truth matrix. In this paper, we
employ all singular values that are greater than one as
suggested by [6]. As a result, the rank of the approximated
matrix is 45. The selected singular values are listed in Table
1L

IV. SINGULAR VALUE THRESHOLDING FOR AIR
QUALITY DATA RECOVERY

LRMC was firstly proposed by Candés and Recht [9] to
exactly recover data matrices with low ranks using partially
observed entries. By introducing the regularization term of
LRMC, problem (3a) can be expressed as the following
convex minimization problem [9]:

minimize ||M ||, (5a)
subject to Po(M) = Po(MgT) (5b)

where the nuclear norm || M|, is the sum of the singular
values of M. This problem is actually a tight convex
relaxation of the rank minimization problem, which is NP-
hard [15]:

minimize rank(M) (6a)
subject to Po(M) = Po(Mcr) (6b)

since the ball {M]|||M||. < 1} is the convex hull of the
set of rank-1 matrices with spectral norms bounded by one
[9]. Therefore, the optimal solution of (5) corresponds to the
best approximation of the ground truth matrix M. While
(5) is convex, common optimization solvers do not support
optimizing over matrix ranks. To solve this problem, SVT
[16] is proposed as a sub-optimal solution to the original
LRMC problem (5). SVT substitutes the objective function
(5a) by the following modified function:

1
minimize 7|| M ||, + §||M||2F, (7



where ||-|| ¢ is the Frobenius norm. Obviously, when 7 — oo,
the solution of objective function (7) converges to that of
(5a). According to [16], a sub-optimal solution of (5a) can be
obtained from solving (7) with a relatively large 7, suggested
as y/ning in [16]. Based on the sub-gradient method, SVT
can solve this modified optimization problem (7) in an
iterative manner [16].

As mentioned in Section III, SVD for a matrix X €
R™ %72 of rank r is X = UXVT. The core operator of
the SVT algorithm, named singular value shrinkage, utilizes
the values of U, V, and a truncated X to create a new
matrix which can approximate X:

D(X)=U%. VT, (®)

where 3, = diag{o; — 7}4, and operator {t}, =
max(0,t). With this operator, SVT approaches the optimal
solution to (7) in an iterative manner. SVT first initializes an
intermediate matrix X° = 0. Then in subsequent iteration
k = 1,2,---, this intermediate matrix as well as the
recovered matrix M* are updated using the following rules:

M* = D (X", (%a)
Xk = Xk 4 §Po(Mog — M%), (9b)

In SVT, this calculation repeats until a termination crite-
rion is met:

|[Pa(M" — Mos)| r
IPo(Mog)llr —

where ¢ is the convergence threshold, which is typically set
to a small positive value, e.g., 1073,

Moreover, the proper selection of step size ¢ is critical to
achieve optimal convergence speed and data recovery accu-
racy. In [16], the authors suggested the following equation
for 6:

(10)

§ =122

an

where m is the number of observed entries in Mgpg. In
addition, it is suggested that § should always be selected
in [0, 2] for better convergence speed. The sensitivity of &
to the final data recovery accuracy will be investigated in
Section V-C.

m

V. CASE STUDIES

We conduct a series of simulations to demonstrate the
efficacy of using SVT in recovering missing air quality data.
We first test the data recovery accuracy of SVT in handling
missing air quality data which are not S-T correlated. Then
we investigate if SVT can yield similar performance when
the missing data are temporally related, which is commonly
found in real-world air quality data. Last but not the least,
we assess the parameter sensitivity of step size § of SVT
on recovery accuracy, and suggest its potential best values.
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Figure 2. Relative recovery errors of SVT and Interpolation for random

missing data entries.

The results of our case studies can be used as a guideline
for practical implementations.

In these tests, we use the air quality data as described
in Section III as the ground truth and erase some of the
data. The recovery performance is measured by the relative
recovery error

||E_ ErECHF

Relative recovery error = )
1E|

(12)
where E represents the missing data entries in Mg, and
E... represents the recovered measurements of these entries.
Moreover, the relative recovery error is compared with
Interpolation, in which, the missing entries in a matrix are
recovered by the linear interpolates of their nearest non-
missing neighbors.

A. Recovery of random missing data

We first evaluate the performance of SVT in recovering
random missing data in air quality measurements. We ran-
domly remove entries in Mgt to construct Mop. Each
entry is removed with a probability equal to p, which is
called the “erasure rate”. Values for step size J is set
according to (11). All results are averaged based on 50
runs, in which the missing entries are randomly generated
for each run. The simulation results and comparisons with
Interpolation are depicted in Fig. 2, where both the averaged
results and standard deviations are shown.

As illustrated in the figure, the recovery error increases
with erasure rate p for both SVT and Interpolation. When
p < 0.4, SVT significantly outperforms Interpolation. Mean-
while, when the erasure rate is extremely high (p > 0.4),
Interpolation performs slightly better. However, it is highly
unlikely that in reality the data may suffer from such a
high loss rate. Therefore, it can be concluded that SVT
generally achieves better missing data recovery performance
as compared to Interpolation.
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Figure 3. Relative recovery errors of SVT and Interpolation for time-

correlated random missing air pollutant and meteorology data entries.

Meanwhile, the performance degradation for SVT on p >
0.4 can be contributed by the selection of § value. When p =
0.4, 6 ~ 2.33 according to (11), which exceeds the suggested
upper limit for the step size suggested by [9]. Therefore, the
convergence of the algorithm is potentially constrained, and
the algorithm develops subpar recovery performance.

B. Recovery of temporal-correlated missing data

In the real world, it is common that several consecutive
data are lost due to equipment failures and other issues. In
such cases, the erasure of data are temporally correlated.
Therefore, it is interesting to investigate the performance of
SVT for recovering this kind of incomplete air quality data.
In the empirical test, we develop the observed data matrix
by removing consecutive samples. We use Ny to denote
the number of temporally consecutive missing entries, and
remove N; consecutive entries in Mg randomly.

In order to focus on the performance of SVT in handling
such cases, all other entries are considered available. In addi-
tion, for complete investigation, we consider cases where the
erasure is either imposed randomly on all 11 categories of
air pollutant and meteorology data, or on the six air pollutant
data as shown in Table I. While the former generalizes the
overall performance of SVT, the latter is more commonly
seen in the real-world context. All simulations have been run
20 times for statistical significance. The averaged recovery
errors and their standard deviations are presented in Figs. 3
and 4.

Considering both figures, it can be observed that SVT
can always outperform Interpolation. This observation again
demonstrates the superiority of SVT in recovering air quality
data. In addition, even when a significant number of consec-
utive data are removed, e.g., Ny > 40, SVT can still partially
recover the data, which will still be considered valuable as
the recovered data serve as the only available estimation of
the missing data.
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correlated random missing air pollutant data entries.

C. Sensitivity of SVT Step Size §

As found in the previous tests, the values for the step
size of SVT ¢ is set according to (11), which is rec-
ommended by [16]. Meanwhile, for different erasure rates
p, it is possible that changing the § value can lead to
a better data recovery accuracy than (11). Therefore, we
perform a parameter sensitivity test for § with respect
to different p values. Specifically, (11) can be interpreted
in the foom 6 = C(1 — p)~!, where C is 1.2 in the
equation for all previous tests. We test the performance
of SVT with C' € {0.4,0.6,0.8,1.0,1.2,1.4,1.6,1.8} and
p € {0.01,0.05,0.1,0.15,0.2,0.3,0.4,0.5}. For each com-
bination of C' and p, 20 random runs are conducted. The
averaged relative recovery errors and standard deviations
(in brackets) are presented in Table III, where the best
performing  values are bolded.

From this table it can be concluded that SVT favors
C > 1.2 when the erasure rate is small (p < 0.1), and
the performance becomes sensitive to the selection of step
size with the increase of p. In addition, when addressing
problems with large p values, SVT favors medium C' values
more, and the best performing C' decreases with larger p.
As analyzed in Section V-A, this trend may be contributed
by the drastically increasing J values calculated based on p.
To conclude, C' € {1.2,1.4,1.6} can generally develop sat-
isfactory missing data recovery error, and can be employed
in real-world situations.

VI. CONCLUSION AND FUTURE WORK

In this paper, we formulate a missing data recovery prob-
lem for air quality data, namely, the AQDR problem. Since
the original problem is ill-posed, and an optimal solution
cannot be easily obtained, the problem is transformed into
a well-posed form. In addition, we investigate the low-rank
property of the air quality data. The formulated problem
is transformed into an LRMC equivalent problem for easy



Table III
RELATIONSHIP BETWEEN MISSING RATE p AND STEP SIZE §

é
p 0.01 0.05 0.1 0.15 0.2 0.3 0.4 0.5
0.4(1 —p)~T | 0.039 (0.010) | 0.039 (0.003) | 0.040 (0.003) | 0.042 (0.001) | 0.043 (0.002) | 0.049 (0.002) | 0.057 (0.002) | 0.068 (0.001)
0.6(1—p)~1 | 0.035(0.008) | 0.035 (0.004) | 0.037 (0.002) | 0.038 (0.002) | 0.039 (0.001) | 0.045 (0.001) | 0.055 (0.001) | 0.066 (0.001)
0.8(1 —p)~1 | 0.032 (0.010) | 0.033 (0.002) | 0.034 (0.003) | 0.036 (0.002) | 0.036 (0.001) | 0.043 (0.002) | 0.052 (0.002) | 0.064 (0.001)
1.0(1 —p)~1 | 0.033 (0.006) | 0.033 (0.002) | 0.032 (0.002) | 0.034 (0.003) | 0.036 (0.003) | 0.042 (0.001) | 0.052 (0.002) | 0.064 (0.001)
1.2(1 —p)~1 | 0.032 (0.004) | 0.032 (0.003) | 0.032 (0.003) | 0.034 (0.002) | 0.035 (0.002) | 0.041 (0.001) | 0.051 (0.001) | 0.066 (0.001)
1.4(1 —p)~t | 0.032 (0.007) | 0.033 (0.002) | 0.033 (0.002) | 0.033 (0.002) | 0.034 (0.002) | 0.041 (0.002) | 0.054 (0.002) | 0.074 (0.005)
1.6(1 —p)~t | 0.032 (0.006) | 0.032 (0.002) | 0.032 (0.003) | 0.033 (0.002) | 0.034 (0.001) | 0.050 (0.002) | 0.075 (0.004) | 0.094 (0.007)
1.8(1 —p)~1 | 0.032 (0.006) | 0.032 (0.003) | 0.032 (0.002) | 0.050 (0.002) | 0.069 (0.006) | 0.102 (0.010) | 0.136 (0.012) | 0.175 (0.001)

solution. The relaxed problem is subsequently solved using
SVT, a recently invented engineering technique to tackle the
LRMC optimization problem.

We conduct comprehensive simulations to test the perfor-
mance of SVT in addressing the formulated AQDR problem.
The simulation results indicate that SVT outperforms the
commonly used Interpolation in most test cases, which
demonstrate that SVT is a practical method to address the
missing air quality data problem. In addition, we investigate
the impact of changing the step size value of SVT on the
data recovery accuracy and suggest the best values for test
cases of different characteristics. Results generated from our
case studies can guide the adoption of SVT in real world
missing data recovery. This method can also be extended to
handle missing data problems in other research areas.
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