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Abstract— The recovery of coarsely sampled trajectories con-
sidering the road network topology characteristics is a crucial
task for many downstream applications in intelligent trans-
portation systems. Existing approaches in this domain primarily
focus on extracting spatio-temporal correlations for the observed
trajectory points but neglect the critical role of road network
topology characteristics in making the recovery results more
accurate and realistic. In addition, too many road segments in
cities undermine the model inference performance. To address
these challenges, we propose a novel Map-informed Adaptive
Spatio-Temporal Autoencoder, which follows an encoder-decoder
architecture for trajectory recovery. Specifically, we utilize a
pre-trained attributed network embedding module to incorporate
the road segment characteristics into the input data to make it
easier for the model to extract the spatio-temporal dependencies
from coarse trajectories. Furthermore, we construct a novel
adaptive mask inference module that contains a distance-based
mask matrix and a learnable adaptive mask matrix to assist
the model in making segment inferences by weighting each
candidate segment adaptively in the recovery process. To evaluate
the performance of the proposed model, we conduct a series
of comprehensive case studies on two representative real-world
trajectory datasets. The experimental results demonstrate that
the proposed model consistently outperforms state-of-the-art
approaches.

Index Terms— Trajectory recovery, missing data, road net-
work, spatio-temporal modeling, deep learning.

I. INTRODUCTION

WITH the development of global positioning systems
(GPS) devices and the advancement of urbaniza-

tion, increasing trajectory data based on urban transportation
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networks are generated and collected every day. Massive
trajectory data has greatly contributed to the development of
downstream applications, such as travel time estimation [1],
traffic forecasting [2], transportation mode identification [3],
etc. However, due to factors such as device energy consump-
tion and communication errors, trajectory data is often coarsely
sampled, therefore discarding detailed movement information
and raising uncertainty in the recorded trajectories [4], [5].
Such uncertainty poses a challenge to the development of
downstream intelligent transportation applications.

In light of this practical challenge, recovering the collected
low-sampling-rate (LSR) trajectory data is a critical task for
the development of downstream trajectory-based applications.
This issue has been widely explored as a significant research
topic in the field of intelligent transportation systems (ITS)
for several decades [6], [7]. A straightforward and preliminary
approach to recovering the trajectory is by assuming a constant
speed of the object and using linear interpolation to fill the
missing points [8]. However, this method fails to consider
personalized travel patterns and dynamic changes in the trajec-
tory, which can result in inferior recovery performance. Further
research is needed to develop more sophisticated methods to
improve the accuracy and reliability of trajectory recovery.

In recent years, the emergence of deep learning has provided
a new approach to trajectory recovery. Existing studies have
demonstrated the significant advantages of deep learning-based
approaches in processing traffic data, such as traffic data
imputation and prediction [9], [10]. Considering the complex
temporal relationship between different geo-locations among
a trajectory, Wu et al. [11] utilized Recurrent Neural Network
(RNN) to model trajectories. Wang et al. [12] proposed
a DHTR module, which integrates a sequence-to-sequence
model with Kalman filter (KF) to recover the LSR trajectory.
The module represents each trajectory coordinate with discrete
units to reduce the inference complexity. In the meantime,
considering the strong correlation between the distribution
of trajectories in cities and the topology of traffic networks,
a map-matching process is commonly appended to make the
recovery results more realistic [13].

Although map-matching can make the recovered trajec-
tory more realistic, the two-stage pipeline (namely, inference
and map-matching) is inefficient and also raises the error
accumulation issue. Ren et al. circumvented this issue by
inferring the road segment ID and moving ratio simulta-
neously [13]. However, the neglect of the traffic network
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Fig. 1. Trajectory recovery based on the urban network. The black curve
denotes the real trajectory. Due to the lack of road features, the model
can easily infer the red curve as the recovery result, which is apparently
unreasonable.

topology information still adversely influences the recovery
results.

While the aforementioned approaches have achieved notable
progress in the context of trajectory recovery, these solu-
tions have two significant limitations. First, trajectory data,
being a type of traffic data, exhibits complex spatio-temporal
correlations, i.e., the previous trajectory route implies the
direction of the subsequent trajectory coordinates, while the
urban traffic networks further restrict possible locations in a
trajectory. Existing approaches primarily consider modeling
the spatio-temporal correlations within the observed trajectory
data and neglecting the topological features behind the trajec-
tory in the recovery [11], [12], [13], [14], [15]. While segment
ID representation [11], [13], [14], [15] presents a more effec-
tive means of encoding road segment information compared
to GPS or distinct-cell representations [12], it remains limited
in its ability to account for topological characteristics among
distinct numbers due to inadequate processing techniques. This
limitation hinders the extraction of sufficient spatio-temporal
correlations needed for accurate inferences. Fig. 1 illustrates
an LSR trajectory recovery process based on an urban road
network with only the origin and destination of the route
provided. It is apparent that only one route (the solid black
line) is valid, subject to the road network. However, since
previous studies produce the shortest path instead (the red
dashed line), they only consider the spatio-temporal correla-
tions between trajectory points while ignoring the topological
characteristics of urban traffic networks, rendering an invalid
trajectory. In addition, although Ren et al. improved recovery
performance by formulating trajectories as segment ID and
moving ratio to circumvent the subsequent map-matching,
the huge quantity of road segments in a city induces a
dimensionality explosion, thereupon undermines the model
inference performance [13], [14]. For example, the number
of candidate segments in each step of inference may exceed
10 000 (see Table I for details), obstructing fast model training
and online inferences. Furthermore, the accuracy of the model
inference is exacerbated by the lack of consideration of the

road topology characteristics, e.g., the topological and length
characteristics of the road segment are essential for inferring
the ID and ratio respectively.

To jointly tackle the aforementioned challenges, we propose
a novel deep learning model Map-informed Adaptive Spatio-
Temporal Autoencoder (MASTA), that considers the road
network topology for trajectory recovery. We introduce a
pre-trained attributed network embedding (ANE) [16] module
to embed the road segment characteristics into the input
data, thus helping the model better extract the spatio-temporal
correlations within trajectories. Furthermore, inspired by the
well-known Graph WaveNet [10], we propose a novel adaptive
mask inference module that integrates a distance-based and an
adaptive mask matrix to help segment inferences via weighting
each candidate segment adaptively. The main contributions of
this work are summarized as follows:

• We embed the road topology features into trajectory
data via a pre-trained ANE module, allowing more road
topology characteristics to be used in extracting the
spatio-temporal dependencies from coarse trajectories.

• We propose a novel adaptive mask inference module that
combines a distance-based mask and an adaptive mask
to assist the model in making accurate road segment
inferences in the recovery process.

• We conduct comprehensive case studies on two
real-world trajectory datasets and compare the perfor-
mance of the proposed model with state of the arts.
The results show that our model consistently outperforms
existing ones.

The rest of the paper is structured as follows. Sec. II reviews
related research on trajectory recovery. Sec. III formalizes the
trajectory recovery problem. Sec. IV gives a detailed descrip-
tion of the proposed model MASTA and training strategy.
Sec. V presents a series of case studies on two real-world
trajectory datasets and discusses the results. Finally, the paper
is concluded in Sec. VI.

II. RELATED WORK

Trajectory recovery is a crucial task in various
trajectory-based applications and has been extensively
studied over the years. Previous research in this area can
be broadly classified into two categories: history-based and
data-driven approaches.

A. Naïve History-Based Approaches

History-based approaches recover trajectories by domain
knowledge-driven simple rules and statistics. An intuitive
and straightforward approach to recovering an LSR trajectory
between two consecutive points is to use historical data to find
the Most Popular Route (MPR) between them and take it as the
recovery result [17], [18], [19], [20]. As an alternative to MPR,
other studies recovered LSR trajectories by searching the top-
k routes in the topology [21], [22]. Subsequently, researchers
attempted to incorporate transition probabilities into the recov-
ery process. Banerjee et al. [23] utilized Gibbs sampling to
learn Network Mobility Model (NMM) from a large-scale his-
torical trajectory dataset. Similarly, Wu et al. [24] developed
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a fully probabilistic approach that accounts for both temporal
and spatial dependencies.

The previous approaches are limited by a strong assumption
that frequent historical trajectories will appear in the future
with high probability and rely on sub-optimal methods to
extract complex features among traffic data, rendering inferior
results than recent solutions as follows.

B. Deep Learning Approaches

Compared to the naïve history-based approaches, deep
learning methods have shown their superiority in trajectory
modeling in recent years. Recurrent Neural Networks (RNNs),
together with their modern variants such as Long Short-Term
Memory [25] and Gated Recurrent Unit (GRU) [26] are known
for their outstanding capability of extracting dynamic features
from time series and are widely used in modeling trajectory
data [27], [28], [29], [30], [31]. Considering the similarity
between trajectory prediction and recovery, prediction models
based on extracting temporal features are applied to the
recovery tasks [32], [33]. Wu et al. utilized RNN to model
trajectory data and attempted to address the road network
constraints for the first time in [11]. Feng et al. proposed an
attentional recurrent network that captures multi-level peri-
odicity in historical data to predict the next location [14].
However, these models often require complete historical data
to support the process of extracting complex spatio-temporal
features in order to make one-step predictions accurate and
stable. Thus, they may not perform well in trajectory recovery
with high missing rates. Tailor-made model design for feature
extraction and recovery from traffic data in the presence of
missing values is critical. Wang et al. applied the seq2seq
model with KF to model and recover LSR trajectory data [12].
Xi et al. developed Bi-STDDP, which combines bi-directional
spatio-temporal correlations and user preferences for recov-
ery [34]. Leveraging the superior performance of attention
models originating from natural language processing [35],
Xia et al. adopted the fully attentional neural network to extract
periodic regularities from historical data [15]. Ren et al. used
a seq2seq model that simultaneously infers road segment IDs
and rates, eliminated the need for subsequent map-matching
processes and achieved state-of-the-art performance [13].

Despite that the aforementioned deep learning models
have achieved better results than history-based approaches
in trajectory recovery, they have not adequately taken into
account the road topology characteristics associated with the
trajectory data. Additionally, the problem of having too many
candidate segments during inference, possibly leading to inac-
curate recoveries, has not been fully addressed. Motivated
by these research gaps, we propose a novel deep learning
model MASTA based on the simple-yet-effective auto-encoder
architecture for trajectory recovery considering road network
topology characteristics.

III. PRELIMINARIES

In this section, we introduce the preliminaries and the
problem formulation of trajectory recovery considering the
road network topology.

Fig. 2. Examples of preliminaries concepts.

Definition 1 (Raw Trajectory): A raw trajectory τ ∗ is pre-
sented as a sequence of GPS points, denoted as τ ∗

=

{c1, c2, · · · , cn}, where each GPS point refers to the latitude,
longitude coordinates, and the timestamp of the observation,
respectively.

Definition 2 (Road Network): The urban road networks can
be represented as a directed graph G = (V, E), where V
denotes the set of intersections and E represents the set of
straight road segments. It is noteworthy that curved road
segments may be discretized into a series of interconnected
straight sub-segments. For ei ∈ E , each road segment has
an origin intersection vo

ei
=

〈
latoei

, lngo
ei

〉
∈ V , a destination

vd
ei

=
〈
latdei

, lngd
ei

〉
∈ V , and additional features such as road

classification, neighboring points of interest, etc.
Definition 3 (Map-matched Trajectory): To accurately

determine the route taken by a trajectory, a map-matching
process is required. Each point ci in τ ∗

= {c1, c2, · · · , cn} is
projected onto the road network via map-matching to produce
a projected point pi = ⟨ei , ri , ti ⟩. ei denotes the road segment
ID, and ri refers to the moving ratio, which represents the
proportion of the moving distance over the total length of
segment ei . ti is the corresponding time step. Fig. 2a shows
an example of the map-matching process, where the original
blue point is projected onto its nearest segment to generate a
projected red point. Particularly, r = len(vo, p)/ len(vo, vd),
where len(vo, p) means the moving distance between road
origin intersection vo and point p, and len(vo, vd) means the
total length of road. In addition, since the road sections are
all straight, the position ρ = ⟨lat, lng⟩ of point p is fixed and
calculated by the following rules:

ρ = vo
+ r × (vd

− vo). (1)

Definition 4 (Map-matched ϵ-Sampled Trajectory): A
map-matched trajectory is considered to be ϵ-sampled if the
time interval between any two consecutive points is equal
to ϵ, i.e., for consecutive points pi = ⟨ei , ri , ti ⟩ and pi+1,
ti+1 − ti = ϵ, ∀i, 1 ≤ i < (n − 1).

Definition 5 (Map-matched k%-Keeping Rate Trajectory):
Within a map-matched ϵ-sampled trajectory τ =

{p1, p2, · · · , pn}, arbitrary points are missing. The remaining
LSR map-matched trajectory τ l

= {pl
1, pl

2, · · · , pl
m} has less

points compared to the original trajectory τ , and its keeping
rate is defined as k% if m

n × 100% = k%. Consequently,
the time intervals between consecutive points in τ l are not
constant and do not follow ϵ. Fig. 2b presents an example
of the LSR trajectory τ l (decorated by red color) and the
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corresponding ϵ-sampled trajectory τ (blue one). In this
example, the keeping rate of τ l is 3

6 × 100% = 50%.
Problem 1 (Trajectory Recovery): Given a LSR raw tra-

jectory τ l∗
= {c1, c2, · · · , cm}, trajectory recovery aims

to recover a ϵ-sampled map-matched trajectory τ l
=

{pl
1, pl

2, · · · , pl
n}. m

n × 100% = k% represents the degree
to which the input data is missing, and ϵ means the time
interval in the map-matched trajectory. The LSR raw trajectory
τ l∗ is first projected onto the road network using map-
matching algorithms, resulting in LSR map-matched trajectory
τ l

= {p1, p2, · · · , pm}. Then, a neural network model is
designed to recover the map-matched ϵ-sampled trajectory
τ̂ = { p̂1, p̂2, . . . , p̂n}. The recovered trajectory τ̂ should
resemble the original one τ , and |τ̂ | = |τ |.

IV. METHODOLOGY

In this section, we elaborate on the proposed MASTA.
We start by presenting the overview of the proposed model.
Then we introduce each constituting module and the model
training method.

A. Overview

Fig. 3a illustrates the overview of the proposed MASTA.
The model is based on the encoder-decoder structure,
which has shown state-of-the-art performance on sequence-
to-sequence tasks [36]. The urban traffic networks have a
non-negligible effect on the distribution of trajectory points,
e.g., the coordinates of most moving objects are on road
segments. This means that the road topology characteris-
tics is crucial for the model to extract the spatio-temporal
correlations from trajectory data and then infer the missing
trajectory points precisely. To achieve this, each trajectory
point consisting of the road segment ID, moving ratio, and
time of sample is processed by the pre-trained ANE module to
embed road topology characteristics into the trajectory. After
the processing of the pre-trained ANE module, the encoder
module utilizes GRU layer to extract the complex temporal
dependencies from LSR trajectories. The decoder module
contains the pre-trained ANE, the attention mechanism, GRU,
and an adaptive mask inference layer. It iteratively infers the
road segment ID and moving ratio and generates a high-
sampling-rate trajectory. By inferring the road segment ID and
moving ratio rather than the coordinate, the model ensures that
the inferred points are on road segments, thus eliminating the
need for subsequent map-matching processes and minimizing
the error accumulation problem on the recovery result.

B. Encoder

The urban trajectory contains complex spatio-temporal cor-
relations, within which earlier trajectory points reflect the later
trend and the road network topology further constrains the
precise locations. Nevertheless, existing trajectory represen-
tation methods, namely, GPS and distinct-cell, discard the
latter and undermine the recovery performance. In this paper,
we employ the map-matched k%-keeping rate trajectory τ l

=

{pl
1, pl

2, . . . , pl
m} as the model input, which utilizes the road

segment ID and moving ratio to fix each point. Furthermore,

we apply the pre-trained ANE module to embed road topology
characteristics and make it easier for the model to extract the
spatio-temporal dependencies from coarse trajectories.

1) Attributed Network Embedding: Even though combining
the segment ID and moving ratio can determine the geo-
graphic coordinates of each point, the lack of topological
characteristics makes it difficult for the model to extract
spatio-temporal correlations and make subsequent inferences.
Driven by the outstanding performance of network represen-
tation learning on various network tasks (e.g., link prediction
and node classification [37], [38]), we introduce a pre-trained
ANE module to integrate the road segment features into
the trajectory and assist the model in extracting the com-
plex spatio-temporal dependencies from the LSR trajectory.
However, the ANE focuses on learning low-dimensional node
embeddings, whereas we aim to extract topological features
of road segments. It is imperative to reinterpret urban road
segments as fundamental nodes while establishing the inter-
connections between these segments as the edges delineating
the network structure. Thus, in the subsequent introduction
about ANE, we shall adopt the term “node” to signify the
urban road segments.

Compared to previous Network Embedding methods [39],
[40], ANE generates the node embeddings through the net-
work topology and the node attribute features. Specifically,
it first utilizes the latter to construct the latent relationship
among nodes and then employs the DeepWalk [39] method on
the reconstructed network to generate the node embeddings.
For constructing the hidden relationship, we utilize three
kinds of edge features, namely, edge length, neighbor count,
and highway classification (e.g., primary, trunk_link,
living_street, etc.). Given the nodes feature Fnode ∈

R|E |×3, we utilize the following cosine similarity function to
calculate the similarity between nodes:

cos(F i
node, F j

node) = 1 −
||F i

node − F j
node||2

2
, (2)

where ||·||2 is L2 norm of a vector. In order to make the hidden
relationship matrix sparse and thus to be able to distinguish
the strength of the relationship between different nodes, we
establish connections with the top-q1 most similar node pairs.
Consequently, we derive the sparse hidden relationship matrix
Ahid ∈ R|E |×|E |, containing q|E | 1-valued entries representing
the connected nodes. Finally, based on the hidden relationship
matrix Ahid and original network topology Ageo, the recon-
structed relationship matrix A is processed by the following
rules:

A[i, j]
=

{
0, if both A[i, j]

hid and A[i, j]
geo are 0

1, otherwise.
(3)

Considering that the reconstructed matrix A will be applied for
the DeepWalk process, it is sufficient for matrix A to simply
record whether nodes are related to each other or not (0,1).
It is noteworthy that the reconstructed matrix A is processed
by the network topology Ageo and the node attribute features
Fnode. Thus, it is inherently information-richer than Ageo.

1In the case studies, we empirically set q = 30.
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Fig. 3. The architecture of the proposed MASTA. (a) The model consists of an encoder and a decoder. The encoder consists of the pre-trained ANE and
GRU module, the decoder consists of pre-trained ANE, attention, GRU, and adaptive mask inference layer. (b) The adaptive mask inference layer is composed
of the ID and moving ratio inference sublayers. The ID inference layer consists of the distance-based mask matrix and adaptive mask matrix modules.

Subsequently, the DeepWalk method is applied to derive
latent representations of different nodes based on the recon-
structed matrix A. It walks from each node and generates
length L node sequence for T times. After the random walk
process, it generates T × |E | node sequences to form the
training dataset. For each node sequence, we use a window
of length 2w + 1 (empirically set to 10 in case studies [16])
to slide over this sequence and generate a set of training
pairs Set .

For the node embedding method, the Skip-Gram model [41]
is proposed. Its training objective is to learn node represen-
tations in favor of predicting the nearby nodes in a node
sequence. Thus, the Skip-Gram model maximizes the follow-
ing function: ∑

(ei ,e j )∈Set

= log P(e j |ei )

=
exp(Ei · E j )∑|E |

k=1(exp(Ei · Ek))
, (4)

where (ei , e j ) means node pair in training dataset Set , and E
denotes the dense embeddings of the corresponding node. It is
clear that Eq. (4) is related to the number of nodes |E |, so the
training efficiency of Skip-Gram is unsatisfactory. In order
to accelerate the training process, the Skip-Gram Negative
Sampling (SGNS) [42] method is proposed, which maximizes
the following function:

log σ(Ei · E j ) +

∑
neg

Ek∼PD

[
log σ(−Ei · Ek)

]
, (5)

where Ek is the embedding of a negative sample from the
unigram distribution PD . Maximizing Eq. (5) will make the
embeddings of Ei and E j (in one node sequence) close to
each other while the embeddings of Ei and Ek away from
each other. This means that the embeddings of nodes closely
presented in one node sequence are similar. After the training
process of the ANE module, it can be utilized to integrate the
complex topological characteristics into trajectories and assist
in extracting the spatio-temporal dependencies and making
inferences from the original trajectory. Thus, through the
pre-trained ANE layer, the road segment ei of point pl

i in input

trajectory τ l is first projected to Ei ∈ R1×D . As mentioned
in Sec. III, a projected point consists of the road segment
ID ei , the moving ratio ri , and the corresponding time step ti .
We then get the embedding vector of point pl

i by concatenating
the moving ratio ri and time step ti to ANE module’s output.

Ẽi = ANE(ei ) ⊕ [ri , ti ]. (6)

Note that, ti is a relative number based on the trajectory’s start-
ing point, i.e., 0,1,2,3,. . . . Thus, through the pre-trained ANE
module, the input trajectory data τ l

= {pl
1, pl

2, . . . , pl
m} ∈

Rm×D which contains the information of road segment ID,
moving ratio, and time step is transformed to Emb =

{Ẽ1, Ẽ2, . . . , Ẽm} ∈ Rm×(D+2).
2) Gated Recurrent Unit: After integrating the road

topology characteristics through the pre-trained ANE layer,
we have eased the way for the model to extract the hidden
spatio-temporal dependencies in trajectory data. Considering
the dynamic temporal features contained in the trajectory data
and the limitation of RNNs in processing long-term sequential
data, we employ GRU to extract the temporal dependency [26].
By utilizing reset gate and update gate, GRU regulate the
flow of information while avoiding the gradient problems.
For time step t , GRU processes the input trajectory data
Ẽt and generates the hidden unit S̃t based on the following
propagation rules:

ut = σ(Wz[Ẽt , S̃t−1] + bu),

rt = σ(Wr [Ẽt , S̃t−1] + br ),

ct = tanh(W [Ẽt , rt ⊙ S̃t−1] + bc),

S̃t = ut ⊙ S̃t−1 + (1 − ut ) ⊙ ct , (7)

where ut and rt are the update gate and reset gate, and W ∈

R(D+2+F)×F and b ∈ R1×F are trainable model parameters. ⊙

denotes element-wise multiplication. After Emb goes through
L layers of GRU module, we get a hidden state sequence
S̃ = {S̃1, S̃2, . . . , S̃m} ∈ Rm×F . By sequentially processing
the data, the GRU model is capable of extracting the temporal
dependency from the trajectory representation Emb, and the
last hidden state S̃ is subsequently passed to the decoder
module.
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C. Decoder

Similar to the encoder model, the decoder module also
contains the pre-trained ANE module, which first projects
the inferred trajectory point of the previous step p̂i−1 =〈
êi−1, r̂i−1, ti−1

〉
to the dense representation Êi−1 ∈ R1×(D+2).

To initialize the decoder, we set the Ê0 = 0.
1) Attention: In addition to the dynamic regularities presen-

tation, the trajectory also exhibits complex spatial correlations,
where each coordinate is influenced by other points with vary-
ing weights. These weights are highly dynamic and depend on
the geographical location and time step of each point. To cap-
ture these dynamic relationships between trajectory points,
we draw inspiration from the attention mechanism in natural
language translation tasks [35], [43]. We employ attention to
learn the changing correlations between the different trajectory
points over time. Specifically, the attention mechanism assigns
different weights to each point in the LSR trajectory based on
the previously inferred coordinate, generating a dense repre-
sentation that captures the corresponding spatial correlations
and facilitates the inference of the next coordinate. Given the
dense representation Êi−1 and the output state of the encoder
module S̃, the weighted sum is calculated as follows:

ai−1 =

m∑
j=1

αi−1, j S̃ j , (8a)

αi−1, j =
exp(ui−1, j )∑m

k=1 exp(ui−1,k)
, (8b)

ui−1, j = vT tanh(WE Êi−1 + WS S̃ j ), (8c)

where αi−1, j is the attention score between dense representa-
tion Êi−1 and the encoder output S̃ j , and

∑m
j=1 αi−1, j = 1.

Symbol ui−1, j is the similarity between Êi−1 and S̃ j . Further,
WE ∈ R(D+2)×FA , WS ∈ RF×FA , and v ∈ RFA×1 are weight
matrices. The attention mechanism can model the highly
dynamic weights at each point, which is an effective tool for
analyzing the complex spatial correlations in trajectory data.
Besides, since we introduce the pre-trained ANE module to
integrate topological characteristics into the trajectory data,
it enable the attention mechanism to extract more mean-
ingful hidden spatial correlations. Finally, we combine the
attention-weighted sum ai−1 with the previous inferred coor-
dinate representation Êi−1 to get the output of the attention
mechanism: Ai−1 = [ai−1, Êi−1] ∈ R1×(F+D+2).

Next, the output of attention mechanism Ai−1 is processed
by the L layers of GRU module to extract the temporal
dependency. The hidden state is updated as follows:

Si = GRU(Ai−1, Si−1), (9)

where GRU represents the process of Eq. (7). To initialize the
GRU module in the decoder, we set the S0 = S̃m .

2) Adaptive Mask Inference: Compared with predicting the
GPS coordinates, inferring discrete segment ID and moving
ratio can reduce the complexity of model training and ensure
that the inferred points are on the road network to omit the
subsequent map-matching process. Nevertheless, inferring the
road segment IDs where the missing point locates is also
tricky because there is typically a large number of candidate

road segments in a city. To tackle this problem, we propose a
novel adaptive mask inference module (AMI) consisting of a
distance-based mask layer and an adaptive mask layer to assist
the model in making road segment inferences.

For the time interval ϵ, the moving distance of an object
is in the range of [0, Vmax × ϵ]. Thus, to infer the segment
IDs of time step t on the trajectory τ l , we can utilize the
inferred point p̂t−1 of the previous time step and the movable
range threshold to build a distance-based mask matrix so as to
narrow the range of candidate segments. Since the movement
of an object is uncertain and is affected by many factors
(traffic congestion, weather conditions, etc. [44]) we can only
build a coarse-grained mask matrix based on distance. Further-
more, since RNNs have the problem of error accumulation in
processing sequence data [26] (the inference of the previous
trajectory point is incorrect), the distance threshold shan’t
be too small. Thus, given the inferred point of the previous
time step p̂t−1 =

〈
êt−1, r̂t−1, t − 1

〉
, the distance-based mask

matrix (DMM) M t
dis ∈ R|E |×1 is generated based on the

following rules:

M t
dis[i] =

{
1, if len( p̂t−1, ei ) ≤ γ

0, if len( p̂t−1, ei ) > γ,
(10)

where γ = Vmax × ϵ is the distance threshold to narrow the
range of candidate segments. len( p̂t−1, ei ) denotes the shortest
path distance between p̂t−1 and ei on the urban network,
which can be calculated by Dijkstra algorithm [45].

Although DMM makes restrictions on the candidate road
segments, its coarse-grained nature may result in a relatively
weak function during the inferring process. To address this
limitation, we propose an adaptive mask matrix (AMM)
M t

adp ∈ R|E |×1. Building upon the superior performance of the
self-adaptive adjacency matrix in Graph Neural Networks that
learn hidden spatial dependencies to extract comprehensive
spatial correlations [10], [46], AMM assigns heterogeneous
weights to candidate road segments. This approach enhances
the segment inference process by offering more nuanced and
context-specific weighting to better capture the underlying
spatial relationships between road segments. Considering the
current feature information and the overall correlations of the
trajectory are crucial to constructing the AMM [15], [47],
we first concatenate the hidden state of GRU module St , the
first and last GRU output of encoder module S̃1, S̃m to get
the input vector ht = [St , S̃1, S̃m] ∈ R1×3F . Furthermore, the
purpose of the model to infer segment ID and moving ratio
makes the road network characteristics non-negligible. Thus,
given the trajectory information ht and the urban road segment
feature set Eset = {E0, E1, . . . , E|E |−1} ∈ R|E |×D , the M t

adp
is generated by the following rule:

M t
adp = σ((EsetWE ) × (ht Wh)T ), (11)

where Wh ∈ R3F×C and WE ∈ RD×C are learnable parame-
ters, and σ(·) is the sigmoid activation function to restrict the
weight within (0, 1).

Compared to DMM, AMM provides finer-grained differen-
tiation on candidate road segments for the inference process.
Nevertheless, DMM is also indispensable because inaccurate
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AMM may have an adverse impact on the corresponding
inference process (e.g., the next trajectory point is on segment
ei , but M t

adp[i] is incorrectly set to 0). This issue is particularly
common in the early stages of model training when the
correct mapping between trajectory spatio-temporal features
and the appropriate AMM has not yet been learned. Therefore,
considering the model training stability, we integrate M t

dis and
M t

adp masks together to generate the final mask matrix M t as
follows:

M t
= βM t

dis + (1 − β)M t
adp, (12)

where β (set to 0.5) is a tuneable parameter to control the
information weight from the DMM and AMM.

Finally, based on the mask matrix M t
∈ R|E |×1 and the

hidden state St , the road segment inference is generated by the
fully connected (FC) layer with softmax activation as follows:

P( j) =
exp(St · W j + B j ) ⊙ M t

j∑|E |

k=1 exp(St · Wk + Bk) ⊙ M t
k

, (13)

where P( j) means the probability that the next trajectory
point is located on road e j , and W ∈ RF×|E | and B ∈

R1×|E | are learnable parameters. M t is integrated into the
softmax function to assist the model in making inferences
by narrowing the candidate set and weighting each candidate
segment adaptively. This approach improves the precision and
reliability of the inferred road segment ID, which is determined
by selecting the highest probability P among all candidates.
The inferred moving ratio r̂t is processed by the following
rule:

r̂t = σ(Wr St + br ), (14)

where Wr ∈ RF×1 and br are weights, and σ(·) is the sigmoid
function.

3) Training Scheme: By recursively processing the infer-
ence n times, we can generate the final recovered map-matched
ϵ-sampling rate trajectory τ̂ = { p̂1, p̂2, . . . , p̂n}, where p̂i
contains the inferred road segment êi and corresponding
moving ratio r̂i . Because we infer the road segment ID and
moving ratio simultaneously, the model is trained with the
following losses:

L = Le + ηLr , (15a)

Le = −

n∑
i=1

ei log(P(êi )), (15b)

Lr =

n∑
i=1

||ri − r̂i ||
2, (15c)

where L is the loss function which consists of the road
segment ID inference loss Le and moving ratio inference loss
Lr . Coefficient η (empirically set to 10 in case studies [13])
controls the weighting of these two components. Le is the
cross entropy loss function to minimize the difference between
the inferred road segment ID and the real one. Lr is the mean
squared error to minimize the prediction error on the inferred
moving ratio.

TABLE I
DATASET STATISTICS

V. EXPERIMENT

In this section, a series of comprehensive case studies are
conducted on two datasets to evaluate the trajectory recovery
performance of MASTA. We employ four evaluation metrics
to validate the model’s performance under different keeping
rates and time intervals and compare the results with state-
of-the-art baselines. Additionally, we conduct an ablation test
to verify the effectiveness of each sub-module. Furthermore,
we analyze the sensitivity of the model performance to the
choice of different hyperparameters. Finally, we present the
visualization results of MASTA and compare them with a state
of the art.

A. Dataset and Configurations

We evaluate the performance of MASTA on two real-world
taxi trajectory datasets collected in two major representative
cities of China, namely, Chengdu (CD) and Xi’an (XA). The
datasets are provided by the Didi Chuxing GAIA Project2

and are collected from October 1st to October 31st, 2016 and
from November 1st to November 30th, 2016, respectively. The
corresponding road network topology is provided by Open-
StreetMap.3 The statistics of these two datasets are presented
in Table I. The amount of data is sufficient for subsequent
experiments. In addition, as megacities in China, Chengdu and
Xi’an have complex urban transportation structures. Thus, the
types of related trajectory data are diverse. The sampling inter-
val of GPS points in trajectories is 3 s. However, due to energy
consumption concerns, mainstream GPS-based applications
do not collect location information at such high frequencies.
The sampling interval of car coordinates is typically between
15 and 30 seconds (e.g., taxi trajectory dataset Porto dataset4).
In addition, a short sampling interval leads to reduced uncer-
tainty between trajectory points, reducing the difficulty of the
trajectory imputation task. It makes high-performance imputa-
tion models unimpressive in terms of metrics. To address these
issues and make the model meaningful, we have resampled the
trajectory data and increased the sampling interval to 30 s. This
adjustment provides a wider range over which trajectories can
be moved and also makes trajectory recovery more realistic.
After resampling the trajectory data, any short trajectories
with less than 10 GPS points and those with missing points
are removed. The remaining trajectory data is processed by
the fast map-matching (FMM) algorithm [48] to generate
the ground truth map-matched ϵ-sampled trajectories with
ϵ = 30 s. Due to discrepancies between the road network data
and trajectory information on OSM, trajectories that failed

2These datasets can be downloaded (following approval of access request)
at https://outreach.didichuxing.com/

3https://www.openstreetmap.org/
4https://www.kaggle.com/c/pkdd-15-taxi-trip-time-prediction-ii
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Fig. 4. Probability distribution function (PDF) and cumulative distribution
function (CDF) of trajectory distance.

during map-matching were excluded prior to training. For
the remaining trajectories, the FMM produced high-quality
matches, with the average distance from each original point to
its corresponding matched point being 3.10 m and 3.54 m for
CD and XA, respectively. These lane-level errors are negligible
for the purposes of this study. For the processed trajectory
data, Fig. 4a and 4b shows the Probability distribution function
(PDF) and Cumulative distribution function (CDF) of trajec-
tory distance. The distribution of trajectory distances in the CD
and XA datasets is similar. The trajectory distance ranges of
CD and XA datasets are [0, 7113] and [0, 6102], respectively.
Most trajectories are short-distance trajectories with distances
between 1000 and 3000 meters.

Based on the 30 s-sampling-rate trajectory data, the LSR
trajectory data is generated by randomly keeping k% of the
original data. In this study, we investigate the performance
of the model under different keeping rates, namely, k ∈

{6.25, 12.5, 25} following the practice in [13]. It means that
the average time interval of the generated LSR trajectory
is 8 min, 4 min, and 2 min, respectively. For cross-validation,
each dataset is split into non-overlapping training, validation,
and testing subsets with a ratio of 3 : 1 : 1.

All case studies are conducted on a server with an nVidia
GTX 2080 Ti GPU. The default values for the hyperparameters
of MASTA are as follows. Dimension of the ANE module
D = 16. Output dimension of the GRU module and attention
mechanism F = 256. Number of GRU layers in the encoder
and decoder module L = 2, and the number of hidden layer
neurons of the AMP module in Eq. (11) is set to C = 128.
To infer the DMM with trajectory points of the previous time
step, we set Vmax = 120 km/h, which is large enough for
the traffic speed in the city. The Adam optimizer [49] with an
initial learning rate of 0.001 is used for training, which decays
by 0.7 every five epochs. The batch size is 128. Early stopping
with a patience of 10 is applied to prevent overfitting.

Given the recovered high-sampling-rate trajectory τ̂ =

{ p̂1, p̂2, · · · , p̂n} and the ground truth τ , we adopt the Recall
( |τ̂∩τ |

|τ |
) and the Precision (

|τ̂∩τ |

|τ̂ |
) as the recovery performance

metrices for each inferred road segment ID. Besides, since
our goal is to recover the LSR trajectory points as well as
to ensure that the trajectory route inferred from the recovered
trajectory points aligns with the ground truth, we also consider
the accuracy of the inferred trajectory route. In particular,
we use φ to denote the set of all segments through which the

Fig. 5. Examples of evaluation metrics.

trajectory τ traverses. For the recovered trajectory τ̂ , we utilize
the Dijkstra algorithm to calculate the list of road segment
IDs required to traverse all points, represented by φ̂. The Hit
Rate indicating the level of consistency between the inferred
trajectory route and the real one is therefore calculated as
follows:

Hit Rate =
|φ̂ ∩ φ|

|φ|
. (16)

Fig. 5a presents an illustration of this metric. Based on the
inferred (purple) points, we can get the trajectory route (pur-
ple) which passes through edges {e1, e4, e8, e9}. Considering
the ground truth route (orange) on φ = {e1, e5, e9}, Hit Rate =

66.6%. Nevertheless, the Hit Rate does not fully indicate
how the recovered trajectory τ̂ aligns with the ground truth.
As shown in Fig. 5b, the Hit Rate of the inferred route 1
(purple) and route 2 (red) are both 66.6%, but it is evident
that route 1 is closer to the ground truth. Therefore, we also
calculate the Length Difference between the recovered route
segment list φ̂ and label φ to assist the metric Hit Rate in
evaluating the performance. Length Difference is calculated
as follows:

Length Difference = |len(φ̂) − len(φ)|, (17)

where len(φ) means the total distance that traversed by φ.
Thus, evaluation metrics Hit Rate and Length Difference are
required to work together to measure the performance of
the model (a higher value of Hit Rate and a lower value
of Length Difference represent better recovery performance).
In conclusion, Recall and Precision are primarily oriented
towards assessing the inferred segments at each trajectory
point. Conversely, the metrics of Hit Rate and Length Dif-
ference take a broader perspective by evaluating the segment
information across the entirety of the inferred trajectory.

B. Recovery Performance

In this section, we compare MASTA with several trajectory
recovery baselines. For those methods that infer trajectory
points in plane coordinates, we splice the FMM method to
ensure that the trajectory points are aligned with the road
network.

• Linear [8] + FMM [48]: This baseline approach recovers
the trajectory by linear interpolation. The inferred points
are then projected onto the road networks using FMM.
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• TrImpute [50] + FMM [48]: This baseline approach
generates several candidate points based on historical
trajectory data to fill in the gaps in the LSR path, without
using any prior traffic network information. The inferred
points are then projected onto the road networks using
FMM.

• LPIRNN [11]: This baseline approach utilizes two RNN
models to predict the destination’s road segment by
modeling trajectory data and addressing the network
structure constraints, respectively. The missing points in
the trajectory data are inferred consecutively using this
approach.

• DHTR [12] + FMM [48]: This baseline approach inte-
grates the sequence-to-sequence model with the Kalman
filter to recover the LSR trajectory in plane coordinates.
The inferred points are then projected onto the road
networks using FMM.

• DeepMove [14]: This baseline approach proposes an
attentional RNN model that takes into account multiple
factors. It infers each missing point autoregressively.

• MTrajRec [13]: This baseline approach uses a multi-task
learning model based on sequence-to-sequence structure
to recover LSR trajectories while simultaneously inferring
the corresponding road segment ID and moving ratio.

• AttnMove [15]: This baseline approach introduces a novel
attentional neural network model, which is capable of
modeling trajectory data and extracting periodic patterns
from individual historical trajectories.

• TrajBERT [51] + FMM [48]: This baseline introduces a
novel BERT-based neural network model, which focuses
on implicit trajectories. The inferred points are then
projected onto the road networks using FMM.

Table II presents a comparison of MASTA with selected
baselines on the CD and XA datasets. To begin with, the
MASTA outperforms all baselines for all keeping rates k ∈

{6.25, 12.5, 25} and shows the most significant improvement
in recovery performance for k = 6.25. Specifically, for CD
with k = 6.25, the MASTA outperforms the best-performing
baseline (MTrajRec) by 11.6%, 9.15%, and 6.83% on Recall,
Precision, and Hit Rate, respectively. Furthermore, the pro-
posed model reduces the Length Difference evaluation metric
by 69.5%. The superior performance of the proposed model
can be attributed to three factors: (i) the autoencoder structure
and its sub-modules capture the dynamic temporal depen-
dency in the trajectory data; (ii) the pre-trained ANE module
incorporates road topology characteristics into the trajectory
data and an attention mechanism extracts spatial correlations;
and (iii) the novel adaptive mask inference module facilitates
adaptive segment inference by avoiding an excessive number
of candidate segments.

Additionally, it is worth noting that the performance of all
methods on dataset CD is inferior to that on dataset XA,
suggesting that the network topology of CD is more complex
than that of XA, which is consistent with the number of edges
presented in Table I. For different trajectory distances, the
model’s performance decreases slightly by about 9% on the
long-distance (larger than 3000 m) trajectory recovery com-
pared to the short-distance trajectories, but remains stable. The

Fig. 6. Performance comparison of different approaches on different time
intervals.

rule-based approaches, including Linear and TrImpute, exhibit
unsatisfactory recovery performance due to their strong prior
assumptions and inability to capture the dynamic trend of the
trajectory. Notably, TrImpute shows an abnormal behavior in
which all four metrics increase as the keeping rate rises, con-
trary to the expected decrease in the Length Difference metric.
Among the deep learning methods, AttnMove suffers from
overfitting problems, potentially due to the inclusion of per-
sonal preference features in the ride-trajectories. TrajBERT’s
trajectory recovery results are not satisfactory, probably due to
its focus on implicit trajectory recovery. LPIRNN’s recovery
performance is inferior, as it solely relies on the RNN module
to process the trajectory data, making it vulnerable to missing
data. In contrast, DHTR, DeepMove, and MTrajRec exhibit
stable and satisfactory performance. DHTR’s performance is
limited due to its use of discrete grid representation, which
introduces noise into the trajectory data. On the other hand,
MTrajRec achieves the best results by simultaneously inferring
segment ID and ratio, effectively avoiding the problem of error
accumulation.

In addition to different keeping rates, we also investigate
the model sensitivity at different time intervals. We select a
wide range of time intervals from 30 s to 90 s with a 15 s step.
Fig. 6 shows the simulation result on CD dataset with 12.5%
keeping rate. It is clear that MASTA outperforms all baselines
at every time interval, which demonstrates the generality
and robustness of the proposed model. The performance gap
shrinks with the increasing time interval, which suggests that
the trajectory inference process becomes more challenging
with the increased time interval and heightened uncertainty.

For the missing types of trajectory data, we also try
to explore the MASTA’s imputation performance under the
non-random missing type (where the missingness of the data
is continuous). Fig. 7 shows the simulation result on the
XA dataset with 12.5% keeping rate. In order to make the
results clear, we have chosen to present evaluation matrices
Hit Rate and Length Difference. We remove AttnMove by
default due to its overfitting problem on the dataset XA.
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TABLE II
PERFORMANCE COMPARISON WITH DIFFERENT KEEPING RATE (6.25% / 12.5% / 25%) ON CD AND XA DATASETS WITH RECALL,
PRECISION, HIT RATE, AND LENGTH DIFFERENCE. HIT RATE IS REPORTED IN PERCENTAGE (%) AND LENGTH DIFFERENCE IN (km)

Fig. 7. Performance comparison of different approaches on XA dataset with
non-random missing type, 12.5% keeping rate and 30 s time-interval.

Clearly, the MASTA model outperforms all baselines under
the non-random missing type, demonstrating the proposed
model’s robustness. The model’s imputation performance with
non-random missing types is slightly degraded compared to
random missing. The reason is that non-random missing is
more complex than random, making it more difficult for the
model to extract spatio-temporal correlations in low-sampled
trajectories.

C. Ablation Test

In order to investigate the contribution of each sub-module
to the overall recovery performance of MASTA, we carry
out comprehensive ablation tests with the following ablated
variants:

• No-ANE: The pre-trained ANE module is removed.
• No-Attn: The attention mechanism in the decoder module

is replaced by a linear layer.
• No-ANE-A: Both the pre-trained ANE module and atten-

tion mechanism are removed.
• No-AdpM: The adaptive mask matrix Madp in the AMI

layer is removed.

Fig. 8. Performance comparison of ablation models.

• No-Mask: Both the distance-based mask matrix Mdis and
adaptive mask matrix Madp in the AMI layer are removed.
The mask matrix M is filled with 1.

All variants are trained and tested on CD dataset with a 12.5%
keeping rate. The simulation results are shown in Fig. 8.
Overall, the proposed MASTA demonstrated superior perfor-
mance compared to the other variations, which confirms the
contribution of each sub-module to the overall performance.

Out of the variations, the AMI layer shows the most
significant contribution to the recovery performance. This
highlights the crucial role of AMI in narrowing down the
range of candidate segments. By comparing models No-AdpM
and No-Mask, we can conclude that only utilizing Mdis has a
minor effect on the recovery performance, which is consistent
with its function of providing a coarse-grained restriction.
Additionally, the No-ANE module shows a significant drop
in Length Difference. This can be attributed to the removal
of the pre-trained ANE module, which makes it challeng-
ing for the model to incorporate road characteristics. As a
result, the inference process, particularly the moving ratio
inference, is affected. Moreover, the recovery outcomes of
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TABLE III
PERFORMANCE OF MASTA WITH FOUR HYPERPARAMETERS ON

CD DATASET. HIT RATE IS REPORTED IN PERCENTAGE (%)
AND LENGTH DIFFERENCE IN (km)

variants No-Attn and No-ANE-A not only emphasize the
critical role of spatial feature extraction in trajectory recovery
but also demonstrate the contribution of the road topology
characteristics integrated by the pre-trained ANE module in
the extraction process.

D. Hyperparameter Test

The hyperparameters setting of the proposed model is criti-
cal to the recovery performance. In this section, we investigate
the sensitivity of six parameters of MASTA, namely, the
dimension of ANE module D, the GRU output dimension F ,
the number of GRU layers L , the hidden dimension of AMI
module in Eq. (11) C , the information weight β in Eq. (12),
and the number of neighboring nodes q of Ahid in this section.
We set D ∈ {8, 16, 32, 64}, F ∈ {64, 128, 256, 512}, L ∈

{1, 2, 3, 4}, C ∈ {32, 64, 128, 256}, β ∈ {0, 0.25, 0.5, 0.75, 1},
q ∈ {1, 15, 30, 60} for simulation on CD dataset with a 12.5%
keeping rate.

Table III shows the simulation results. In terms of
performance changes, all hyperparameters have the same
characteristics: the model’s recovery performance increases
significantly with an increase in parameter values and the
model capacity. Nevertheless, the excessive parameter search
space caused by overly large parameter values can lead
to the overfitting issue [52]. Taking the hyperparameter D
as an example, the model’s recovery performance improves
notably as the parameter D increases from 8 to 16. However,
the model’s performance decreases slightly as D increases
from 16 to 64. This phenomenon is consistent with the

information on the number of candidate segments in the
dataset we used. Since the number of candidate roads in
CD and XA datasets does not exceed 216, it is sufficient
to use a 16-dimensional vector to distinguish different roads.
The hyperparameter β controls the information weight from
the DMM and AMM in Eq. (12). When the value of β

is small (β = 0, 0.25), the model does not fully utilize
the critical role that AMM can provide with fine-grained
differentiation on candidate road segments, making the model
perform poorly. When β is too large (β = 0.75, 1), it causes
the model to ignore the vital role that DMM can play in
stabilizing the training process. This results in a longer training
process (the average number of training iterations increases
from 26 to 42) for the model with negligible improvement
in recovery performance. The hyperparameter q controls the
sparsity of the hidden adjacency matrix Ahid, which affects
whether the process of generating node embedding can take
into account knowledge of node attributes. When q = 0,
the Attribute Network Embedding process degenerates to the
Network Embedding process, resulting in poor performance.
When q is too large (q = 60), the edges of the matrix
Ahid are too dense, which makes it difficult to distinguish
the strength of the relationship between nodes and affects the
model performance.

Furthermore, we observe that the evaluation metrics Recall
and Hit Rate perform inconsistently in some cases. Compared
with the performance of L = 1, L = 2 is better in metrics
Hit Rate but worse in Recall. This is due to the fact that
the focus of these evaluation metrics is different. Recall and
Precision focus on the recovery of each point, while Hit Rate
and Length Difference focus on the accuracy of the entire
recovered trajectory. Since the accuracy of the whole trajectory
is more vital than the precision of each trajectory point in this
task, we choose 2 as the default parameter of L instead of 1.

E. Qualitative Analysis

To better investigate the recovery performance of MASTA,
we conduct a visualization case study in this section. Fig. 9
shows the visualization of recovered trajectories of MASTA
and MTrajRec on the XA and CD dataset with a 12.5%
keeping rate and 30 s time interval. The black points and curve
in Fig. 9a represent LSR coordinates and the real trajectory
route, respectively. The grey points in Fig. 9a denote missing
points in the 30 s time interval trajectory. The green points
in Fig. 9b show the recovery results of MASTA. It can be
seen that the trajectory points inferred by MASTA are all
on the correct road segments, ensuring that the trajectory
route generated by the inferred coordinates is consistent with
the ground truth. It demonstrates the superior performance
in extracting the complex spatio-temporal correlations in the
trajectory data and making precise coordinate inferences of
MASTA. In contrast, Fig. 9c illustrates the recovery result of
MTrajRec, which infers the road segment ID and ratio simulta-
neously to eliminate error accumulation. One of the trajectory
points (the seventh point with red color) is incorrectly inferred
in this sample. While the inferred road segment is geograph-
ically close to the ground truth, the trajectory must bypass
a redundant circle to correct this mistake and return to the
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Fig. 9. Visualization of recovered trajectories of MASTA and MTrajRec on the XA and CD dataset with 12.5% keeping rate and 30 s time-interval.

TABLE IV
COMPARISON OF MODEL SIZE AND EPOCH TRAINING

TIME WITH DIFFERENT KEEPING RATE

correct road segment due to the limitations of the urban road
network. The reason for this phenomenon is that MTrajRec
considers the characteristics and relationships of segments
incompletely, making the inference of road segments more
complex, which affects the recovery performance. In addition,
Fig. 9d to 9f show the visualization of recovered trajectories
on the CD dataset. Similarly, Fig. 9f shows that the MTrajRec
infer incorrectly for the tenth missing trajectory point because
of the lack of consideration of road segment characteristics.

F. Computational Cost

To investigate the computational efficiency of the proposed
MASTA, we present a comparison of the model size and epoch
training time for different keeping rates across four models
with competitive recovery performance: DHTR, DeepMove,
MTrajRec, and MASTA. Table IV shows that while MASTA
has the highest number of parameters (11.6 million), its epoch
training time is competitive, particularly at higher keeping
rates. For example, at a 0.25% keeping rate, MASTA is

faster than both DHTR and DeepMove, despite having more
parameters. This observation demonstrates that the adaptive
mask inference mechanism in MASTA effectively manages
computational cost with selecting candidate road segments.
In contrast, MTrajRec has the fastest training speed, but this
comes at the cost of a smaller model with less recovery
accuracy compared to MASTA. These results suggest that
MASTA strikes an effective balance between model size
and computational efficiency, offering higher recovery quality
while maintaining competitive training times.

VI. CONCLUSION

In this paper, we propose a novel deep learning model
MASTA based on the encoder-decoder architecture for tra-
jectory recovery considering the road network topology
characteristics. Since the spatial features in the trajectory
data are significant but previously ignored in the recovery
process, we introduce a pre-trained ANE module to integrate
road topology characteristics into the trajectory data, which
helps to extract spatio-temporal dependencies more effectively.
Subsequently, we employ the attention mechanism and GRU
for spatial and temporal correlation modeling, respectively.
Furthermore, since the large number of candidate road seg-
ments in a city can adversely affect the model’s inference
process, we propose a novel adaptive mask inference module,
consisting of a distance-based mask matrix and a learnable
adaptive mask matrix to assist the model in making segment
inference by weighting each candidate segment adaptively.

To evaluate the recovery performance of MASTA, we con-
duct comprehensive case studies on two real-world trajectory
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datasets. Compared with the state-of-the-art baselines, the
simulation results demonstrate the superiority and stable per-
formance of the proposed model. An ablation test is conducted
to demonstrate the effectiveness of each sub-module in con-
tributing to the overall performance. In addition, we investigate
the sensitivity of four hyperparameters on model performance.
While MASTA shows strong recovery performance, one lim-
itation is that it may rely on highly accurate map-matching
results, which was not fully evaluated in this study. Addressing
map-matching errors in LSR trajectories and making the model
more robust to such errors is a valuable future direction.
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