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Abstract—Autonomous vehicles (AVs) have become an emerg-
ing crucial component of the intelligent transportation system
(ITS) in modern smart cities. In particular, coordinated op-
erations of AVs can potentially enhance the quality of public
services, e.g. logistic and AV charging services. However, the
joint logistic and AV charging scenario involves the sophisticated
interactions between a large number of complicated agents,
dynamic logistic, and electricity prices in real-world systems.
Since AVs are individuals owned by different parties, the design
of attractive incentive to motivate them to provide multiple public
services becomes a fundamental issue. In this paper, we develop
an urban intelligent system (UIS) by exploiting the efficient
incentive mechanisms, e.g. non-cooperative and cooperative game
theoretic approaches, to motivate the AVs to provide logistic
and charging services in UIS. For the non-cooperative game
approach, we formulate the interaction between the selfish AVs
and the aggregator as a Stackelberg game. Meanwhile, the
aggregator, known as the leader in the game, aims to decide
the logistic and electricity trading prices, and then the AVs,
executed as the followers, determine their service schedules.
Furthermore, considering that all the players are willing to
cooperate, we develop a cooperative potential game for the
selfless AVs to maximize the social welfare of the UIS. These
case studies demonstrate the effectiveness and practicability of
proposed incentive mechanisms that can motivate EVs to provide
high quality logistic and charging services by maximizing their
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utilities. Also, both the proposed schemes provide significant
system revenues than that of conventional system optimization-
based approaches.

Index Terms—Autonomous vehicles, frequency regulation,
game theory, intelligent transportation systems, logistic service,
vehicle-to-grid.

I. INTRODUCTION

ITH the development of advanced technologies, the
Wnotion of smart city has emerged as a promising
paradigm to enhance the quality of life in urban areas. By
incorporating various innovative information and communi-
cation technologies (ICTs), smart cities aim to improve the
quality of many urban operations and services by exploiting
various advanced technologies. This objective can be achieved
under the effective deployment of urban Internet-of-Things
(IoT) [1], [2] that are capable of upgrading traditional and
existing public services, e.g. transportation systems. Indeed,
Intelligent Transportation Systems (ITSs), as one of the essen-
tial components in a smart city, are able to function the city
transportation system productively such that the conventional
vehicular transportation within cities can be improved. In
general, the upgrade of traditional transportation systems to
ITSs requires the application of autonomous vehicles (AVs)
[3]. Considering the use of vehicular technologies, ITS can
leverage abundant vehicular information to remotely broadcast
and determine the routing instructions to achieve the desired
ITS objectives [4]. Thus, the deployment of AVs contributes
not only to more efficient and safer transportation circum-
stances, but also to enhancing core urban services, e.g. logistic
services.

Logistic services in ITS aim to handle mainly parcel deliv-
ery operations in urban areas, which refer to the distribution of
goods to the final destination in the supply chain management
[5]. The increasing demand for fast and punctual parcel
delivery operations advocates the adoption of more energy-
efficient and environmental friendly city logistic services.
In fact, the utilization of AVs can effectively fulfill these
requirements. Since AVs are generally equipped with a large
storage occupancy and are capable of adopting dynamic and
cost-effective routing [6], the supply chains, such as the
parcel delivery process, can be further optimized by AVs. For
instance, it has been demonstrated in [7] that the planning
and scheduling of industrial processes can be optimized in
couriers and express services through the utilization of AVs.
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Hence, by implementing efficient AV coordination approaches,
the quality of city logistic services can be notably enhanced.
In fact, recent research studies have also demonstrated the
effectiveness of AV-supported logistics services in ITS, see
[7]-[11] for more examples.

On the other hand, it is envisioned that future sustainable
smart cities will incorporate remarkable renewable generations
into the city power grid [12]. However, the intermittency and
uncertainty characteristics of renewable generations result in
inevitable random and uncorrelated power fluctuations in the
grid, which further jeopardize the stability of the city power
grid. To tackle this problem, one possible solution is to utilize
the installed batteries of the large numbers electric vehicles
(EVs) to mitigate the fluctuation of renewable generations.
Since most AVs are made in the form of EVs [13], they can
greatly contribute to the regulation of grid stability through ef-
ficient energy management, such as dynamic wireless charging
approaches. The promising application of dynamic wireless
charging facilities enable AVs to charge while they are in
motion over the dynamic charging facilities. Since AVs are
typically powered by electricity and they use batteries to
store power for propulsion in smart cities, they can actively
participate in vehicle-to-grid (V2G) systems, cf. [14], [15], in
order to provide power system services, such as power grid
frequency regulation [16]. However, they are developed based
on the grid optimization and optimistically assume that the
system operator assigns fixed schedules to the AVs. In practice,
AVs are owned by different customers who are generally more
concerned about their utilities rather than the overall system
operations. Hence, it is still a pressing issue of how to motivate
AVs to participate in the both transportation and city power
grid systems and provide joint urban logistic and charging
services.

To address the aforementioned issues, efficient incentive
mechanism, i.e., game theory, can provide an effective frame-
work for analyzing the relationship between the individual
utility and the system goals. For game theoretic approaches,
each decision-maker develops a unique plan that optimizes
its own utility rather than following the instructions from
a centralized controller. Since each AV can select the best
strategy to maximize its utility, game theoretic approaches nat-
urally ensure the satisfaction of AV utilities in the system that
motivate the participation of AVs in providing joint logistic
and charging services. In fact, most of existing studies have
investigated the AV scheduling problem with the provision
of a single public service through various game theoretic
methods, e.g. logistic services [17], [18] and charging services
[19], [20]. However, there are still some research gaps in
these works. For example, the studies in [17], [19] proposed
explicit pricing models that forego some benefits offered by
associated companies in order to directly motivate AVs to
provide logistic or charging service. Therefore, it inspires us to
develop an implicit smart pricing model that can determine the
logistic and charging prices based on the real-time information
signals from the transportation and power grid systems. In this
way, the related companies may provide logistic and charging
services without having to pay the AVs directly, which lowers
their expenses. Furthermore, the neglect of multiple public
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services provisioning sacrifices the potential benefit of the
UIS operations under the limited number of participated AVs.
Even worse, applying the existing results, e.g. [17]-[20], to
practical systems would result in low operational efficiency
in completing various tasks due to the increasing demands
of multiple public tasks offered in urban areas. Hence, this
encourages us to develop a smart pricing scheme to motivate
AVs to implicitly provide multiple public services, e.g. logistic
and charging services.

In this paper, we develop both the non-cooperative and
cooperative game theoretic approaches for an urban intelligent
system (UIS) by exploiting AVs. The two formulated games
jointly provide AV logistic and charging services in urban
areas. In particular, we focus on the determination of the best
strategy for the joint services in a cost-effective manner. Mean-
while, logistic and electricity pricing models are developed to
motivate AVs to provide joint services implicitly. The main
contributions of this work are summarized as follows:

o Different from the existing approaches, e.g. [7]-[11],
[21]-[23], that unilaterally consider the application of ei-
ther logistic or charging service, we design a generic UIS
framework to jointly provide city logistic and charging
services using AVs, which also guarantees effective path
planning operations that can reduce the service time of
joint schemes and the power consumption of the AVs.

o Unlike the existing studies [17]-[20] that have only
designed unique incentive pricing models for providing
single public service, we devise a general pricing model
creating certain incentives to accommodate AVs to pro-
vide both the logistic and charging services implicitly. In
addition, we study both non-cooperative and cooperative
game theoretical approaches to motivate multiple types
of AVs to jointly provide these services by reacting to
the decision prices for the joint service. Through efficient
cooperation, we can obtain the optimal social welfare of
the aggregator and the participated AVs in a distributed
manner.

« We analyze the existence and uniqueness of Nash equilib-
rium of these games and present that both AV logistic and
charging services can achieve the near-optimal perfor-
mance. Then, we assess the performance evaluation of the
proposed UIS framework through a comprehensive series
of case studies, which confirm its cost-effectiveness.

The rest of this paper is organized as follows. In Section
II, we examine closely the related studies and highlight the
technical challenges involved in this work. For Section III,
we develop the system architecture, including transportation
networks, AVs, and system operations. In Section 1V, we for-
mulate the proposed incentive mechanisms with well-defined
constraints and utility functions. Then, Section V introduces
the formulation of a non-cooperative approach with the de-
vised algorithm, while Section VI illustrates the formulation
of a cooperative approach and its related algorithm. Section
VII details the case studies that evaluate the proposed incentive
approaches and Section VIII concludes this work.
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II. RELATED WORK

With the gradual adoption in smart cities, AVs, known as
to possess a crucial role in ITS, are expected to contribute
to city logistic services. It is expected that AVs can provide
high-quality city logistics services under the coordination
of ITS control centers. There are several pieces of existing
research work on studying the benefit of parcel delivery
services provided by AVs, such as [7]-[9], [11]. For instance,
a dynamic EV routing model was designed in [8] for goods
delivery in logistics industry, which considered a time-varying
traffic condition and the EV charging patterns. Moreover, in
large-scale urban areas, [9] devised an efficient algorithm to
manage the AVs to deliver parcels in a safe and efficient
manner. Considering the rapid increase on logistics demands,
a system was developed for planning and control the delivery
service in [7]. This approach further optimizes the efficiency
of dispatching process and improve the service quality with
less required numbers of vehicles. Lastly, a pricing mechanism
was developed in [11] to encourage market competition by
accommodating multiple AV operators. However, none of
these studies on AV logistics jointly consider practical AV
charging behaviors. In fact, the dynamic energy consumption
caused by the motions of AVs can greatly affect the task
completion of AVs, especially to accommodate massive long-
distance parcel delivery tasks.

Considering the development of future sustainable smart
cities, dynamic wireless charging operations pose a significant
impact on the city power grid. Specifically, since power tracks
(PTs), i.e., the power supply units, are deployed beneath the
traffic roadways for energy transfer operations, AVs can be
controlled to charge while in motion under multiple route
plans [24]. Meanwhile, through the reliable wireless power
transfer techniques [25], the security and privacy among the
AV fleet during the charging/discharging process can be further
ensured. Hence, such techniques can indeed facilitate the ef-
fectiveness of the AV resource management, e.g. [26]. Inspired
by this emerging application, recent studies have focused
on designing dynamic wireless charging protocols for EVs
[21]-[23]. In addition, considering the interaction between
AVs and the power grid, EVs can significantly influence the
grid’s demand-side management through dynamic wireless
charging. For instance, [27] explored the potential benefit
of EV dynamic wireless charging systems for the demand-
side management. Moreover, the provision of V2G regulation
services can further assist the stabilization of power grid,
which has been demonstrated in [28]-[30]. Even though an EV
dynamic wireless charging system proposed in [31] accounted
the dynamic V2G scheduling scheme with the provision of
V2G regulation services, the time-varying EV driving patterns
were not addressed by existing results. In this work, we
address both the logistic and charging problem of AVs by
means of an UIS framework, since the AV driving patterns
are related to the schedules of logistic services in the city
area.

In addition to the aforementioned studies, an AV logistic
system was proposed in [15] for cooperative charging and
routing behaviors of AVs in the city area. Additionally, an
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optimization problem for offering AV logistic services was
developed in [32] based on the schedules for request alloca-
tion, vehicle routing, and battery charging, which was solved
by the devised two-stage scheduling method. Furthermore, a
pricing scheme in [33] was established as a core-selecting
mechanism to maximize the customer’s utility and prevent
shill-bidding, which is designed based on the Vickrey-Clarke-
Groves mechanism. Yet, these approaches are designed from
the perspective of system optimization and optimistically
assume that AVs follow the fixed schedules dispatched by
the system operator. In order to investigate the relationship
between the behaviours of the system goal and AVs, several
existing studies have studied the AV scheduling problem with
the provision of a single public service through various game
theoretic methods, e.g. [17]-[20]. For the provisioning of
logistic services, [17] proposed two incentive game models
to maximize the platform’s profits while [18] designed a
dynamic Bayesian game approach to minimize the AV delivery
cost. However, these aforementioned studies do not consider
the detailed charging scheme for battery-driven AVs, even if
their mobility patterns are considered in the city area. To
consider the AV charging schemes, [19] and [20] proposed
both the non-cooperative and cooperative game approaches for
the provisioning of charging services, which included demand
and renewable generation uncertainties, respectively. However,
the authors in [19], [20] do not consider the mobility operation
of EVs under the ITS, e.g. the neglect of allocation scheme for
matching EVs to EV aggregators in the city area, which indeed
affects the charging behaviors of EVs. In practice, an improper
allocation plan may easily lead to unnecessary waiting time
for EVs to charge at available EV aggregators due to the
limited number of EV aggregators. As a result, it is crucial for
the system to coordinate EV charging schedules by properly
assigning EVs to EV aggregators. In this paper, we propose
the use of non-cooperative and cooperative game theoretic
approaches to motivate the participation of AVs in providing
both logistic and charging services implicitly in smart cities,
which consider the design of smart pricing models.

III. SYSTEM DESIGN
A. Road Network

To accurately depict the physical distance and linking from
one location to another within a given area, the road network
can be described based on graph theory [34]. The road network
is described as a directed graph G(V, &), where the set of
nodes V represents the junction locations of the road segments,
which are connected by the edges in the set £. For each road
segment (i,j) € € at time ¢, we further define dj;(t) as the
travel distance of AV n from location ¢ to location j. Due to
potential asymmetries between distinct route plans, it should
be noted that d;’;(¢) may not always equal d7;(t). Besides, we
consider the PTs are embedded over the certain number of the
road paths of the city traffic network.

B. Autonomous Vehicles and AV Aggregator

Both public and private AVs are taken into account in our
design. The set of participating AVs is denoted as N. By
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traveling between any two locations (i, 7), where i,5 € V,
the AVs successfully achieve their assigned parcel delivery
objectives. It should be noted that the AVs can transport
packages for a predetermined time period. Each service request
is then given to the n-th AV and they must complete before the
service deadline. In addition, the number of logistic service
requests during the participation period are predetermined
before the execution.

In a city area, we consider multiple AV aggregators repre-
sented by different entities managing the fleet of specific AVs
individually. Each aggregator can be regarded as a subordinate
component of multiple aggregators that are connected to the
system operator. The size of an aggregator is determined by
the size of its subordinate AV fleets, geographical factors,
communication radius, etc. The operation of an aggregator in
the proposed UIS refers to the coordination in [29], which
elaborates a multi-level vehicle-to-grid system structure with
the utility grid operator, the aggregators, and the EVs.

C. System Operations

Fig. 1 provides an overview of the UIS system architecture.
The multi-level structure considers two different types of in-
teraction incentive mechanisms, namely, the system-aggregator
incentive game and the aggregator-AV incentive game. Each
mechanism operates between a node and its immediate sub-
ordinate nodes. In this paper, the focus is the design of the
aggregator-AV game, which governs how an aggregator of
AVs interacts with its attached AVs to satisfy the logistic
and charging requests in an arbitrary region of urban areas.
The specific design of this incentive game is shown in Fig. 2.
Meanwhile, both traffic and energy information are considered
in the UIS operator so as to provide joint logistic and charging
service. In practice, different types of AVs are belonged by
their contracted parties and they have their own preferences to
select either of the incentive mechanisms due to the individual
goals of these parties. However, the unilateral consideration
of a non-cooperative game for AVs can incur more losses
for the utilities of both AVs and the aggregator due to the
competition among the AVs and the selfishness of the AVs
and the aggregator. Therefore, we propose incentive mecha-
nisms for both non-cooperative and cooperative aggregator-AV
systems, which can simultaneously execute in the system to
achieve the overall functionality of UIS. Additionally, different
from the optimization-based approaches that provide single
public service [7]-[11], [21]-[23], we consider the provision
of multiple public services simultaneously to further improve
the efficiency of system operations under the limited number
of AVs, especially for joint logistic and charging services.

By scheduling the participated AVs, the proposed UIS seeks
to provide both logistical and charging services in smart cities.
As shown in Fig. 2, two basic functions are included in the
smart agent. First of all, each agent, i.e. agent k¥ € A in
Fig. 2, can compute both the logistic and charging/discharging
schedules for each AV via the computing unit. Then, through
the distributed computation among these agents, the optimal
AV schedules for the game can be determined. After that, each
agent shall exchange the information by communicating with
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Fig. 2. Agent-based information flow in the proposed UIS.

the aggregator or other smart agents. In this direction, one
smart agent can share the scheduling information with other
smart agents and receive pricing signals from the aggregator.
Besides, in contrast to the cooperative approach that all the
players are willing to cooperate to maximize the social welfare
of the entire system, we further study the case where all the
players in the non-cooperative system, aim to maximize their
own utilities in a selfish way. The related steps of the games
indeed follow the concept of game theory shown in [35]. Last
but not least, in practice, there may exist some groups select
to participate the non-cooperative games due to the their own
preferences rather than participating the cooperative game to
further improve the social welfare of the entire system. In this
case, we need to consider the coexistence of these two games
in UIS in order to assessing its practicability for dynamic and
complex urban environment.

IV. SYSTEM MODEL

As illustrated in Section III, the goal of UIS is to address the
open problem of joint parcel delivery and charging for all the
participating AVs in urban areas. This section mainly describes



This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/J10T.2023.3244550

TABLE I
NOMENCLATURE FOR AV LOGISTIC SERVICES.

% Index set of nodes

E Index set of road paths

N Index set of AVs

x5 Binary variable of whether AV n traverses road (3, j)
" Departure point of AV n

I Destination point of AV n
L‘:ffq Deliver location of AV n at request ¢

Q Total logistic request set of all AVs

On Logistic request set of AV n

d; Staying duration of AV n at node j
Dn g Service duration of AV n at request ¢

Tx Service deadline of AV n
Th,q Maximum required service time for AV n at request g
Tn,q Minimum required service time for AV n at request ¢
T Time of arrival of AV n at node j

T Travel time of AV n on road (¢, 7)

a” Unit routing cost of AV n

8" Unit transportation service cost of AV n

our game formulations to the aforementioned problem in
depth. Table I provides a clear explanation of all relevant
parameters.

A. Operational Constraints

Let 7 be a binary variable that indicates whether AV n €
N traverses over the road segment (7, ;) as follows:

" 1 if AV n traverses road segment (i, j) € &,
xy = (1)

0 otherwise.

In practice, AVs can make numerous visits and stop at the
same node in the course of different trips. Yet, to simplify the
formulation of our problem, each AV n € A is supposed to
visit each node of the transportation network only once under
each service request ¢. Then, we designate 7 > 0 as the time
when AV n reaches node j. In addition, the time duration of
AV n staying at node j is specified as d; > 0.

Besides, AV routing and parcel delivery are the two key
operations covered by the proposed UIS. To ensure real-
world applicability, all AV operations must be carried out by
satisfying a set of specified constraints.

1) Route Constraints: The n-th AV in UIS will arrive at
its destination after being assigned a request for a specific
operation, such as parcel delivery. This suggests that in order
to reach the final location, the AV needs to traverse across at
least one road segment, which can be accomplished by

sz 2 1’ Vn € N’ ] € {Lg:}qlq € Qn}7 (2)
%

where Q,, is the index set of logistic service requests of AV
n and it is related to the number of parcels delivered during
the entire service period.

The AV network flow model is modeled based on the
city’s road network. The incoming and outgoing flows are
denoted by > .y, :Efj and ),y a:é“l respectively. For AVs, the
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connectivity of the consecutive road segments can be ensured
by

1 VneN,j= L& Ly 4 LY,

doap = al =91 VneN,j=LyF L £ LY,
i€V i€V 0  otherwise,

3)
where the departure and destination points of the associated
routes are denoted by LS and LY, respectively. When AV
n approaches node j, the first two cases in (3) guarantee that
there would be an incoming and an outgoing flow between
the departure and destination locations, respectively. Let us
consider all road interactions, excluding those involving the
departure and destination points, as an example. An incoming
flow would result in an outgoing flow if AV n reaches node j.
Otherwise, there would be an equal number of incoming and
leaving AV flows. As a result, (3) ensures the connectivity of
vehicular routes.

In practice, some routes may be restricted to certain types
of cars. Private AVs, for instance, are not permitted to drive
on the road segments that are only available for authorized
vehicles, i.e., autonomous public buses utilized in [36]. We
can implement additional restrictions to take into account such
possibilities. First of all, we define (V’,E’), where the set of
nodes V' C V signifies road intersection points connected by
the set of edges £ C & in the restricted zone. Assume that
AV n is restricted for accessing to road (¢,7). The related
constraint can be expressed as x7; = 0, Vi € V',j € &
This constraint indicates that AV n is not permitted to move
between node ¢ and node j because they are within a restricted
area.

2) Logistic Service Constraints: The quality of the logistic
services is mainly measured by the delivery time spent of AV
n. The minimum time duration to stay is indicated when AV
n loads or unloads parcels at node j by

d} > Dy g, Vi €{LE g€ Qu}, VR EN, 4)

n,q

where D,, , is the service time for loading or unloading parcels
for the n-th AV.

Additionally, keep in mind that 7;* denotes the time where
AV n reaches node j. The duration of AV n traversing the
relevant road segments must also be taken into account for
accuracy of estimation. When the AV moves through (i, ) €
&, 71 should be no less than the sum of the trip time and the

J
time for loading the packages, as determined by

>+ d + T

ny Vel =1neN,i,jeV, (5

where 77} represents the n-th AV’s travel time from node 7 to
node j. Then, its parcels will be delivered to the destination
point by following

Tog <70 <Tpg, VneN,jeV, 6)

where T}, , and T), , are the expected minimum and maximum
times at request g. Finally, the service deadline of the system
operations is the time required to complete the service, which
follows where the expected minimum and maximum times
at request ¢ are denoted as T, 4 and T;, 4, respectively. The
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TABLE II
NOMENCLATURE FOR AV CHARGING SERVICES.

Time-varying route plan of AV n at time ¢
T Index set of timeslot

Py Active power of AV n at time ¢

pieh Maximum discharging power of AV n

peh Maximum charging power of AV n
SOC,, + State-of-charge of AV n at time ¢

At Length of a time slot
Installed battery capacity of AV n
Charging efficiency

n Discharging efficiency

it Travel distance of AV n for path (4, 7) at time ¢
U Travel velocity of AV n for path (z,7) at time ¢
075 Delay parameter for path (4, j) at time ¢
A" Unit energy consumption of AV n
SOC? Initial state-of-charge of AV n
SOC;, Charging requirements of AV n
SOC, Upper bound of state-of-charge for AV n
SOC, Lower bound of state-of-charge for AV n

completion time for the service is related to the service
deadline for system operations, as described by

e <TX YneN,jeV. %)

Due to the existence of restricted roads, the visiting time of
AV n, 7 where i € V', is set to zero. Accordingly, AV n is
unable to visit node ¢ based on (5). The operational limit of
7, can be included for the case when AV n is only permitted
to move at node j in a specific time period.

3) Linear Transformation: It is clear from the problem
as previously formulated that the objective function and the
majority of constraints are affine. As a result, the optimization
problem can be handled with relative ease. However, constraint
(5) is modeled under the case x!. = 1. This constraint

ij
cannot be directly modeled without prior information on x7’.
To address this issue, we attempt to transform (5) into its
equivalent linear form. Prior to that, the following two cases

are taken into account:
o Case 1: If 2, = 0, starting from node 7 through (4, j) €
&, AV n won’t visit node j. Since 7" is constrained within
a feasible region, there is no relationship between 7;* and
7. Similar to this, C}* and Cj” have no direct relation.

J

o Case 2: If zj; = 1, 7;" must be greater or equal to the

right hand side of constraint (5).

Then, constraint (5) is transformed into the equivalent linear
form by using the big-M reformulation [11], [14], [15], [37]
as

T]n ZT1n+d?+Tz7Jl*M(lix;nj)a VHEN,i,jEV, (8)

where M is a sufficiently large number to guarantee the
feasibility of this constraint.

4) Dynamic Wireless Charging/Discharging: In this part,
we aim to tackle the AV dynamic wireless scheduling that
AVs are willing to participate. Within the total time period
T, the AVs perform dynamic wireless charging/discharging
while providing the logistic services in the city area. Moreover,
the stability condition of the city smart grid system should
also be fulfilled since the provision of ancillary services
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in the urban area is considered. Here, we further extend
the mathematical model in [31]. The operation bounds for
charging and discharging powers of AV n follow

PN < Py <P Vne N teT, )

where PYh < (0 and Pt > 0 are the discharging and charging
power of AV n, respectively. Symbol y,, ; presents the binary
parameter to indicate whether AV n is traveling over the PTs
or not. For instance, if AVs do not participate the dynamic
wireless scheduling, y,: = 0,Vt € T, holds for the entire
time period, which further reflects that such AVs are known
as the group that solely considers traveling on roads without
wireless charging or discharging.

The charging and discharging activity of AV n is then
carried out while it is connected with the PTs and operates
dynamic scheduling operation at each time slot. As a result,
it is possible to determine the state-of-charge (SOC) of each
participating AV n € N at time ¢ by

At
SOC,, 1+ar = SOC,, ¢ + @77 (Ppt) Py, t€T, (10)

where Cap,, > 0 represents the installed battery capacity
of AV n, and 7(-) denotes the energy efficiency of the
charging/discharging power of each AV, which is calculated

by
nch
N(Pnt) = {1/ndch

where 1", n9h € (0, 1] represents the charging and discharg-
ing efficiencies of each participated AV n, respectively.

Recall that the travel distance of AV n from point ¢ to
point j at time ¢ is defined as dj}; ,. The time-varying energy
consumption of the battery level of AV n at time ¢ can then
be described as

Pn,t Z Oa

11
Pn,t<07 (i

)\n "

Cap,, " (12)
where A" > 0 denotes the unit energy consumption factor of
AV n.

The travel speed across the road segment (i, j) € £ at time
¢ is indicated as v} , for AV n. The actual routing plans for
the AV may be influenced due to the immediate changes of
city traffic conditions, which further affects the travel speed
of AV n. Therefore, according to [31], we introduce a delay
parameter 0;;, to present the instantaneous traffic condition,
e.g. the sudden traffic congestion. Since this parameter is
relevant to the vehicle travel speed, we can have

dt, = (U:Lj’t — Gmg) At, Vn € N, (Z,]) eé.

17,t

SOC,, t+at = SOC,, + —

(13)

Through the connections of wireless PTs, it also meets the
energy demand of charging/discharging scheduling in addition
to completing the routing plans for each AV n. Each AV n’s
required SOC level corresponds to the energy requirement. Let
SOC,, ini and SOC,, rcq represent the starting SOC of the AV
n at the source location and the required SOC level of the
AV n, respectively. Before arriving at the final destination, the
charging requirement must be satisfied as indicated by

SOC,,, 71 > SOCY + SOC}, Vn € N, (14)
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TABLE III
NOMENCLATURE FOR PROPOSED MODEL.

U Utility function for AV 7 in logistic services

Ug Utility function for AV n in charging services

Un Total utility function for AV n

Qg Unit fuel consumption cost for AV n

leffq Base revenue for AV n at logistic request ¢

p];%fq Trading price for logistic service of AV n

pfl‘"t Trading price for charging service of AV n at time ¢
SOChe Base satisfaction level related to the SOC of AV n

Yn Sensitivity index for AV satisfaction

U lj’l Utility function for the aggregator in logistic services
Ue Utility function for the aggregator in charging services

Ua Total utility function for the aggregator

Cn.,q Operation cost for managing AV n at request ¢
reward Reward index for providing logistic service
R™® Reward for providing daytime regulation service

Pt Trading price with the city power grid at time ¢

E Trading energy with the grid operator at time ¢
P Total active power of the city area at time ¢
P Regulation signals at time ¢

P Reference price for logistic service

ph Reference price for charging service

D Upper bound of reference price

P Lower bound of reference price
plead Base load of the aggregator at time ¢

) Ratio of selling to buying electricity price

where SOC;, is the charging requirement of AV n.

Additionally, over-charging and deep-discharging circum-
stances should be avoided during the charging/discharging
process. Consequently, at time ¢, the operational limits of SOC
should be

SOC,, <S0C,,; <SOC,, Yne N, (15)

where SOC,, and SOC,, denote the lower and upper SOC
limits of AV n, respectively.

Without loss of generality, the following assumptions are
adopted before the problem formulation:

1) During the participation time, each AV reports its travel

schedules with individual charging requirement.

2) The regulation services are zero-energy services due to
the zero expectation of the required energy requirement
for a sufficiently long period.

For the first assumption, it is assumunly adopted in the
related studies, e.g. [28] and [29]. On the other hand, given
that requests for regulation services result from grid power
forecast errors, the second assumption is also reasonable [38].

B. Autonomous Vehicle Model

1) AV Logistic Service: For each AV n, the utility function
of providing logistic service is defined as
UF =3 > alduer+ 3 (RE,
teT (i,j)€€ q€Qn
= P (Tangry — Tn,q)Q) ) (16)

where «;’; denotes the unit fuel consumption cost for AV n and
lefq is the base revenue for providing logistic service for AV
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n at request ¢g. In addition, p,l,%fq denotes the individual trading
price for logistic service of AV n by the service time of all
the AVs TJN = {7}, 77,...,7)'}. This concave utility function
reflects the cost for AV traveling and the revenue for trading
price for logistic service. Meanwhile, the larger difference of
the third term indicates a higher cost on providing the AV
logistic service.

2) AV Charging Service: Besides logistic services provided
by the AVs, the dynamic wireless charging/discharging behav-
iors of AVs in a smart city is also considered in this paper.
When the AVs travel over the road segments installed with
PTs, the AVs can follow their preferences on participated
dynamic wireless scheduling. For the participated AVs in
dynamic wireless scheduling, the related utility function for
the AVs is shown as

Ui == pi oAt
teT

+ Yl (SOCY™ + SOC,, |71) » (17)

where pﬁlh,t denotes the individual trading price for charging
service of AV n by the charging/discharging powers of all AVs
Py = {P1t,Pot,..., Pnt}. The first term in (17) reflects
the cost of buying electrical energy and the revenue of selling
electrical energy while the second term shows the satisfaction
of participating in dynamic wireless charging/discharging. For
the second term, by following [20], SOC?®¢ can be denoted
the base satisfaction level related to the SOC of AV n. Note
that the function In(-) is monotonically increasing and strictly
concave with respect to SOC,, |7, which is the SOC level
at the end of the time period. Besides, ~,, is the sensitivity
index for AV satisfaction and it maps the trade-off between
the satisfaction level and economical benefit of each AV.
Specifically, this index maps the satisfaction of AV scheduling,
which relates to its economical benefit. In this way, the
different AV objectives can be denoted by a uniform utility
function.

By considering both AV logistic and charging services, the
overall utility function for AV model can be described as

U, =U 4 UM vneN. (18)

C. Aggregator Model

1) Aggregator Logistic Service: Considering the provision
of logistic service on the aggregator, one of its utility includes
three parts, namely, the operational cost to coordinate AVs to
provide city logistic services and the reward from trading with
AVs. Hence, such a utility function of the aggregator can be

described as
US'==2_ > cnat By,
neN qeQ

19)

where ¢,, , denotes the operation cost for managing AV n at
request q. Ra is defined as the reward function related to
the AV trading price on providing the logistic service at each
request ¢ € Q. This reward function can be denoted by

reward

p
Zne./\f ZqEQn Tn, Lds ’

n,q

Ry = (20)
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where p¥@d s the reward index for providing logistic service
in the city. The function Rs indicates the reward received at
the aggregator when providing the logistic services by means
of the fleet of AVs, which is associated with the service
complete time of each logistic request ¢, 7,, L -

2) Aggregator Charging Service: On the other hand, for
the charging service provided by the aggregator, the related
utility function comprises three main components, including
the cost/revenue from trading with the participated AVs, the
cost/revenue from buying/selling energy from/to the city smart
grid system, and the revenue on providing the V2G regulation
service. Hence, we describe this utility function of the aggre-
gator as

Uzh = _ Zp;()tEEOI + Z p:thPn,tAt

teT neN teT
— (R =Y (P), @n
teT
where pi® denotes the trading price with the city power grid
and E* =)\ Pn At is the trading energy with the grid

operator. Moreover, £ € (0, 1] is the penalty factor to assess
the performance of the regulation services in consideration of
the battery degradation issue, while R™# is the base reward for
providing these services in the city area. The first term presents
the cost/revenue from buying/selling energy from/to the system
operator, while the second term indicates the revenue from
trading with the participated AVs. Then, the total active power
profile of the city smart grid, P!, is calculated by

S =Y (A Y P,

teT teT neN

(22)

where P, ; and P;*® denote the power profile of AV n and
the regulation signals from the energy market at time f,
respectively.

By considering both AV logistic and charging services, the
overall utility function for the aggregator in the system is given
by

Ua=U§+Ug (23)

Besides, the aggregator aims to maximize its own utility
function by choosing the appropriate fixed prices p'€', p* for
providing logistic and charging services, respectively. The
operating conditions is defined as

p < [P, p™" <, 24)

where p and p are the lower and upper bounds of the reference
price, respectively.

3) AV Trading Price Model: The AV trading price model
includes two main parts, namely, logistic and charging trading
prices. The trading price for AV logistic service is defined as

lgt gt Tn L
Ppg =P .
Thq

The proposed trading pricing model for the AV logistic
services in (25) is the charging variable price indicator, which
denotes the service quality in the AV logistic system. Specifi-
cally, it is represented by the ratio of the delivery completion
time of each request ¢ € Q, to the maximum allowable

(25)
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service deadline for each AV. This pricing model can drive the
AVs to complete delivery service sooner such that they pay the
relatively low service fee at each logistic request. Thus, the
AVs can be motivated to provide efficient and quick logistic
services in a smart city.

Besides the AV logistic trading price model, the AV elec-
tricity price model upon the same time period is further
implemented. The trading price model for AV charging service
is denoted as

Pn t = ChC( )(Ptload + Ptreg + Z Pk,t)
keN
— pchC<Pn7t)(Pgoad + Ptreg + Pn,t

(26)

+ Z Pk,t)a

keN\{n}

where P}°* > 0 denotes the base load of the aggregator at
time ¢. In addition, this model represents the equivalent total
load when the V2G technique is implemented. To differentiate
the buying/selling price, we define ((P, ;) as follows:

1 if P,y >0,
C(Pn,t) = { .

. 27)
§ if Pyy <0,

where § is the ratio of the selling price to the buying price on
AV charging service.

This proposed AV electricity price model takes the equiva-
lent load P}° as a price indicator, which follows [20]. Based
on (26), it can motivate AVs to provide the regulation services
during the participation period. When P;®* > 0, AVs are
motivated to perform discharging mechanisms when the smart
grid requires the regulation up operation. The reason is that
higher selling price gives incentives for AVs to sell electricity
back to the smart grid. Similarly, when P,"® < 0, AVs are
motivated to charge more since the buying prices becomes
lower. Thus, without any control from the system, AVs can
autonomously provide the V2G regulation services to stabilize
the grid by reacting to the trading prices.

V. NON-COOPERATIVE INCENTIVE GAME APPROACH

In this section, we investigate the incentive mechanism for
the non-cooperative system, in which all the players in the
system, such as AVs and the aggregator, are selfish, and the
objectives are both to maximize their individual utilities. Here,
we formulate the interaction between the aggregator and as a
Stackelberg game [39] over the participation time period 7.
Moreover, we prove the existence and uniqueness of the Nash
equilibrium of this game shown in the following.

A. Nash Equilibrium for AV Problems

For the formulated AV problems, given the strategies and
trading prices of other AVs, the aim is to determine the logistic
and charging service schedule that maximize its own utility
function, which is denoted as

Pl1: maximize U, (28a)

subject t0 (27w pax, T, P, 7] € 2, (28b)
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where x7 .4 refers to the binary variable defined in (1) over
the routin?; [;Llan (L3, L&Y and 77, is the time when AV n
arrives at node L&', The feasible nstrategy set of AV n for
the non-cooperative game is defined as Z,,, which includes all
the feasible sequence of AV traverse trajectory T e pasts node
arrival time TE#, and charging/discharging powers ]5;1777. Then,
the strategy set for this game can also be shown as

Zp ={@ Ve pon, TLaws P subject to (2) — (7),(9), (10),
(12),(14),and (15)}. (29)

The game W(Z,F) is the set of coupled optimization
problem P1 of all the AVs. It includes the strategy set
z£ Hi\f:l Z,, and the related payoff function that is denoted
as F(N) = >, cn(Un), which is also defined as the Nash
equilibrium problem with the set of feasible solution [40].
Basically, a Nash equilibrium solution is a feasible value of
Z* under the condition that no AV may unilaterally deviate
and obtain more benefit if the other AVs’ strategies do not
change. In the meantime, the best response of AV n refers to
the strategy of AV n at the Nash equilibrium.

B. Pricing Game for Aggregator

Since the best responses of all the AVs on the joint services
are obtained via the previous process, the aggregator thereby
minimizes its utility by selecting the proper trading reference
prices p'¢t and p'. Then, we can formulate the pricing game
optimization problem as

Ua
subject to  (25).

P2 : maximize (30a)

(30b)

C. Existence and Uniqueness of Nash Equilibrium

In this part, we utilize the variational inequality theory to
demonstrate the existence and distinctiveness of the Nash equi-
librium for the proposed non-cooperative game. The existence
and uniqueness of the Nash equilibrium may not be guaranteed
due to the intricacy of the formulated game. Hence, we impose
the following assumptions:

Assumption 1: 6 =1 in P1.

Assumption 2: 7", n%h > 0.95 in (11).

These two assumptions are based on the provision of AV
charging services in practical systems. Assumption 1 means
that the electricity purchasing price from the aggregator to AVs
is equal to the selling price from AVs to the aggregator. For
the non-profit local trading center that ensures the satisfaction
of the optimal social welfare of energy buyers and sellers, it
is essential that the electricity purchasing price is set as the
same value as the selling price. In addition, the effect is further
discussed if these prices are not equal. For the logistic scheme,
if the logistic purchasing price is higher than the selling price,
the AVs prefer to execute fewer service requests. When the
logistic purchasing price is less than the selling price, more
economical profits can be earned from the participated AVs.
Besides, AVs can always earn profits through energy arbitrage
in the V2G system if the selling electricity price is higher than
the buying price, which not a ideal circumstance in the energy
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market. On the other hand, AVs will lose their incentives to
sell any reserved electricity back to the power grid if the
selling electricity price is lower than the buying price. In this
case, they fail to provide the regulation services. Therefore,
according to the validation in [20], it is feasible to assume that
the buying price equals the selling price. Besides, Assumption
2 refers to the energy efficiency of Lithium-ion battery that
achieves over 95%, which follows [41].

Then, some lemmas based on the variational inequality
theory are utilized to facilitate the proof in the game theory
shown in the followings:

Lemma 1: Given the formulated game in P1, for each AV
n, we have:

1) The strategy set of Z,, is convex and close.
2) The utility function is convex and differentiable in any
variables of the set Z,,.

Then, we transform the game W(Z, F) to VI(Z,f), where
f = (yU,)Y_, and v/(-) denotes the gradient operator in
calculus. Suppose that the set Z is compact (closed and
bounded) and convex, and the function f is continuous. The set
of solutions is then nonempty and compact. Therefore, given
VI(Z,f) admits a singular solution if f is strongly monotone
on Z. The existence and uniqueness of the Nash equilibrium
are demonstrated by the subsequent theorem.

Theorem 1: For any combination [p'®', p™"] chosen by the
aggregator, the existence of a Nash equilibrium of the formu-
lated game W(Z, F) is guaranteed.

Proof: The strategy set of the game is defined by the set
of constraints (2)—(7), (9), (10), (12), (14), and (15). By the
definitions in [42], the feasible set defined by (2) and (3) is
convex. Then, it is also clear that the feasible solution set
spanned by (4), (6), (7), (9), (10), and (12) is clearly convex.
Through linear transformation, constraint (5) can be converted
to (8), which is also convex. As for (14), and (15), they are
proved to be convex by following the proof of Lemma 2 in
[28]. Therefore, the feasible region defined by the strategy set
of the game, known as the intersection of the above convex
sets, iS convex.

Besides, the utility function includes two parts, namely, et
and US", respectively. For function U, by taking the second
derivative of UTILgt with respect to Tl it can be proven that

the utility function U is convex. Similarly, by taking the
second derivative of US" with respect to P, 7, one can verify
that U,CLh is convex. Therefore, the positive sum of these two
convex functions is convex, which further indicates that the
utility function (18) is convex. Considering Lemma 1, we can
conclude that there exist at least one solution for the game. H

Theorem 2: For any trading price combination [p'e!, ph]
given by the aggregator, the uniqueness of a Nash equilibrium
of the formulated game W(Z, F) is guaranteed.

Proof: The utility function U,, includes two parts, namely,
U and Uch. The Hessian matrix is obtained by taking the
second derivative of the convex utility function (18). The idea
of mathematical induction makes it simple to demonstrate
that all of the leading principal minors in the Hessian matrix
are negative. The Hessian matrix is hence negative definite.
Therefore, the Hessian matrix is negative definite. Then, based
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on the theory in [42], this function is monotone on Z. Given
W(Z,F), if F is strongly monotone on Z, W(Z,F) then
ensures a unique solution. Since W(Z,F) is equivalent to
VI(Z,f), the uniqueness of the Nash equilibrium for the game
W(Z,F) is also ensured. In conclusion, the uniqueness of the
Nash equilibrium for the game W(Z, F) is guaranteed. W

Accordingly, by solving the strongly monotone utility func-
tion, the uniqueness of the Nash equilibrium for the game
W(Z, F) can be presented. The equilibrium of the Stackelberg
game is then demonstrated when the aggregator sets the
optimal prices based on the best responses of AVs.

D. Algorithm for Non-Cooperative Strategy

Based on the existence and uniqueness of Nash equilibrium,
we devise an algorithm to effectively find the solution of the
Nash equilibrium problem for AVs and the aggregator.

Algorithm 1 presents the devised non-cooperative best
response-based AV algorithm. Initially, it requires the selection
of feasible starting points Z°. Then, each AV addresses
its own problem by solving P1 with the parameters of the
logistic and charging services in a distributed manner. By
solving P1 in each iteration, we utilize the branch-and-bound
approximation to compute the optimal solutions. Note that if
there exists a unique Nash equilibrium, the branch-and-bound
approximation [43] is guaranteed to converge to the Nash
equilibrium. Here, the iteration number is set as m, which M is
capped at the maximal allowable iteration number. Moreover,
the convergence tolerance, which is defined as ¢, follows
the rule |Z™ — Zm~1< ;. Furthermore, the computation
complexity of this algorithm depends on the number of time
slots |7| and number of nodes |V|. The time complexity of
Algorithm 1 is O(|V|?+|T|>®) in each iteration, which only
depends on the number of nodes in the traffic network and
the number of timeslots | 7| since this problem is solved in
a distributed manner. Last but not least, since this problem
is solved with the three variables x” L Laso TLds[, and P, 7 in
each iteration, the information privacy of each user can be
preserved since the data is related to the AV mobility patterns.
The related data includes the service time of each AV, the
routing plan of each AV, and the SOC of the AV’s battery.
During this process, this user privacy information do not need
to be reported in advance to the AV aggregator.

Algorithm 1 Non-Cooperative Best Response-Based AV Al-
gorithm

1: Select any feasible starting points Z9 for AV n and
initialize the iteration index m.
for m = 1: M do
Compute the optimal solutions Z]* based on P1.
if the stopping criterion is met then
Return the optimal solutions as Z:.
else
Set m < m + 1
Return to Step 3 for next iteration.
end if
end for

D AN

._
4
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VI. COOPERATIVE INCENTIVE GAME APPROACH

Considering the competition among AVs and the selfishness
of AVs and the aggregator, the non-cooperative approach
incurs more losses for the utilities of both the AVs and the
aggregator. In this section, we study a cooperative approach
in the system, in which all the players prefer to cooperate
in order to maximize the system social welfare. Hence, a
potential game method is developed in a distributed manner.

A. Problem Formulations

For a cooperative system, the social welfare maximization
problem for the system is formulated as the sum of the utility
of the aggregator and the utilities of all the AVs. Then, the
utility function for the cooperative game of the system is
described as

W:ZUMLUA

neN
lgt
3 (T X atauty+ X (ns,
neN MeT (i,j)e€ qEQn

_ plftq( n)ngé — h)2> 4 '}/nln<SOCl,:Lase

+ SOCn,TI)) D IPICTE
neN qeQ
- - (Rfeg —ey (Pz°‘>2>' Gh
teT teT

By (31), we can thus formulate the social welfare maxi-
mization problem as

P3: maximize V¥ (32a)
subject to  (2) — (7),(9), (10), (12), (14), and (15).
(32b)

Here, we define the feasible strategy set of P3 as H, =
{x’LL L TE;L:[, P, 7 satisfying all the constraints}. According
to game theory, a potential game refers to the reflection of
a single global function whether there are any incentives of
all the players to alter their strategies or not. Based on this
concept, we denote U as the potential function. When AV n
changes from the strategy action H. to H2, the difference in
the potential function W equals the difference of the utility
function of this player. For this game, the optimal action of
the potential function refers to the Nash equilibrium and such
action further indicates that the optimal social welfare can be
achieved. Thus, in a cooperative system, the utility function
of AV is described as

P>

n. g .n E Igt
O‘zjdljﬂfxij + (qu

teT (i,5)€€ q€Qn
— P (o, et — Tng)?) +mIn(SOCH™
preward
+ SOCn,lT\ Z Cngt+—=—""—""
qeQ Z’JEQ Tn, Lz
=D B - (Rreg e> (P ) S5
teT teT
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where the first four terms are related to the cost and revenue
of providing the AV logistic services, while the other terms
correspond to the cost and revenue of providing regulation
services for UIS. In addition, the trading price for AV logistic
services is denoted as plﬁgfq, which refers to (25). Besides,
according to the price model formulated in [20], the electricity
trading price between the system and the aggregator can be
set as ?ttm. Therefore, it can be denoted as

P = 16C(Fa,t) (Pioad + P+ Z Pk,t),

keN

where pg denotes the fixed price set by the energy market and
Pltoad denotes the base load of the smart grid at time ¢, which is
related to the load demand without the incorporation of V2G.
In addition, ((Pg,), which is defined as the buying/selling
prices function, is calculated in the similar way shown in (27).
Note that in (34), it can be proved that the sum of charging
costs from all the AVs is no less than the total cost that the
aggregator pays to the grid such that the AV aggregator can
always earn profits.

Based on the structure of a potential game, the utility
function in (33) combines costs and revenues from both AVs
and the aggregator. Note that the actual AV utility function
refers to the sum of the first, the second, and the fifth terms.
The rest of the terms are used to facilitate achieving optimal
system social welfare. Hence, in a cooperative system, (33)
can be viewed as a reinforced AV utility function.

The cooperative game is formulated as J(#, k), which
comprises the strategy set H = HszlHn and the payoff
function £ = > . ®,. Given the utility function, ®,, is
an exact potential game since the following constraint holds:

\IJ(HvlmH—n) - \II(,H?m,H—n)
= (bn(H:L;an) - (bn(Hiva'rL)v

(34)

(35)

where H_,, denotes the strategy set of other AVs except for
AV n. The social welfare function in the cooperative system
can, in a single potential function, capture the incentive of AVs
to alter their strategies. Then, the solution of the formulated
problem can be obtained by collectively solving the following
problem, shown as:

(36a)
(36b)

P4 : maximize &,

subject to [xzsﬂm sy T P, 7] € Hay.

B. Existence and Uniqueness of Nash Equilibrium

The existence and uniqueness of the Nash equilibrium for
the proposed cooperative game are presented in this section.
Based on the assumptions mentioned in the previous section,
the theorem and proof for the cooperative system are provided
in the following.

Theorem 3: Based on Assumptions 1 and 2, the existence
and uniqueness of the Nash equilibrium of the game 7 (H, K)
are guaranteed.

Proof: For the potential game J(H, K), the potential func-
tion, known as the social welfare function of the system, is
defined in (31). There should be at least one Nash equilibrium
in the potential game based on its properties. By exploring
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the property of P3, the uniqueness of the Nash equilibrium is
guaranteed. Besides, for (31), by taking the second derivative
of this function with respect to the variables, this function is
shown to be strictly concave. In addition, given that Assump-
tions 1 and 2 hold, the feasible set H is convex, which follows
the proof of Theorem 1. Hence, the optimal unique solution for
P3 is obtained. Since P3 and J(H,K) both share the exact
same solution. Thus, it is ensured that 7 (%, ) admits the
uniqueness of the Nash equilibrium. |

C. Algorithm for Cooperative Strategy

The objective of the potential game is to determine how
the achieved utility is fairly distributed among the participated
AVs. The main purpose is to determine the stability of the
coalition and establish how different disjoint coalitions of
AVs can achieve the objective and how the achieved utility
is fairly distributed among the members of each coalition.
Hence, we devise a related algorithm for the cooperative
game approach to present the entire process. Based on the
existence and uniqueness of Nash equilibrium, the related
algorithm is devised for AVs and the aggregator to find the
Nash equilibrium in an effective manner.

Algorithm 2 presents the devised cooperative best response-
based AV algorithm. Initially, it requires the selection of feasi-
ble starting points in the set HO € H . Then, each AV fairly
addresses its own problem by solving P4 with the parameters
of logistic and charging services in each iteration. Based on the
utilization of the branch-and-bound approximation on solving
P4 in each iteration, the existence and uniqueness of the
Nash equilibrium point are ensured. After that, the stopping
criterion of this algorithm is checked. If the solutions satisfy
the stopping criterion, the solutions are updated as the final
optimal solutions. Last but not least, the time complexity of
Algorithm 2 is O(|V|?>+|T|>°) in each iteration, which is only
depends on the number of nodes in the traffic network and
the number of timeslots |77| since this problem is solved in
a distributed manner. For the security and privacy concerns
of this devised algorithm, the privacy information of each
user can indeed be preserved and they do not required to be
reported in advance to the AV aggregator.

Algorithm 2 Cooperative Best Response-Based AV Algorithm

1: Select any feasible starting points 7—[?\/ for AV n and
initialize the iteration index m.
2: for m =1: M do
Compute the optimal solutions Hy; based on P4.
Broadcast the solutions to other AVs.
Setm < m + 1
if the stopping criterion is met then
Update the optimal solutions as H}.
else
Return to Step 3 for another iteration.
10:  end if
11: end for

R A A

VII. CASE STUDIES

In this section, we evaluate the effectiveness of the proposed
game theoretic methods. After describing our setup for the
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experiment, we evaluate the proposed approaches’ quality
of logistic and regulation services within real-world traffic
networks. Then, we study the effects of various AV fleet
sizes on our evaluation metrics. After that, we examine the
convergence of the two game theoretic approaches. Finally,
we investigate the social welfare of the entire system.

A. Simulation Setup

We evaluate the performance of the proposed UIS in real-
world transportation systems. In particular, we conduct the
simulations in Garden City, Alabama, Where the related traf-
fic map is gained from a public source'. This urban area
comprises a total of 106 nodes and 268 edges with different
lengths of road segments. Based on the OpenStreepMap data
[44], we construct a road network of the area. In particular,
all the primary, secondary, tertiary, and residential roads/paths
are extracted to construct a graph as depicted in Fig. 3.
The maximum and minimum edge lengths are 939.51 meters
and 4.25 meters, respectively. In addition, we set the system
operational period from 9:00 a.m. to 3:00 p.m. to capture
the daily AV mobility patterns, which can be divided into
|7|= 180 slots with At = 2 minutes.

Our parameter settings for the AV logistic and regulation
services are presented below. We first set the deadline for
approaching the final destination of the parcel service equal
to the system operational period. Then, the service time
for loading and unloading parcels follows U[5, 30] minutes
and each service request deadline varies between 60 to 180
minutes, where U[-] is the uniform distribution operator. Based
on [45], we set the 8" and transport costs o} to $83.68 per
hour and $1.73 per mile, respectively. The final destination
of the parcel delivery of every service request is randomly
chosen and it is different from the departures. Meanwhile, the
priority of requests is linked with the related deadlines. Each
AV executes multiple travel schedules due to various service
requests and we set the rest time between two consecutive
service plans to 2 minutes. Besides, the operation cost for
managing AV ¢, , is set to $20.79 [46]. On the other hand,
for the regulation services, we exploit the regulation signal
data on September 1, 2017 [47], which considers a random
forecast error e(t) ~ N(0,0.3) during the investigated time
period. By following the PJM market standard [48], the base
regulation reward is set to $40 per MWh and the regulation
capacity of the Garden City is set to 300 kW.

The settings for AVs are presented in the following. There
are two types of electric AV groups with |N|= 50, e.g.
BMW i3 with 42 kWh [49] and Tesla Model X with 100
kWh [50]. We assume that each AV travels with a fixed
velocity of 40 kilometers per hour. In the meantime, the
unit energy consumption A" of each AV is set to 1.112
kWh per kilometers. In this work, we assume that these
two groups of AVs solely participate in dynamic wireless
charging/discharging so as to investigate the ideal system
performance. The dynamic wireless charging systems follow
the charging standard SAE J2954 with the WPT Power Class

Ihttps://dataverse. harvard.edu/dataset.xhtml?persistentId=doi: 10.7910/
DVN/CUWWYJ
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1 and 2 [51]. Then, the discharging and charging power
limits are set to -7 kW and 7 kW, respectively. Moreover,
the efficiency for charging/discharging is set to 0.9. Besides,
we model the SOC settings of AVs based on the uniform
distribution, which can be denoted as U[-] [28]. Specifically,
we set the initial SOC of AV n as U[30%, 40%], while
the charging requirement is set to follow U[0%, 20%]. The
charging/discharging mechanism’s safety condition is taken
into account when the minimum and maximum SOCs are
U[10%, 20%] and U[90%, 99%], respectively. Last but not
least, the charge price is set to $0.59 per kWh, which is in line
with Manhattan’s current price, and the average grid electricity
price pg is set to 0.01.

B. Performance Metrics

We consider the variance of the selected urban area’s total
active power profile P* to be one crucial performance metric,
which is calculated by

2
Var( P — tot Ptot _ 37

teT

A lower variance value indicates improved daytime V2G
regulation service, which also demonstrates flatness of the
active power profiles of the city smart grid.

C. Scenarios for Comparison

We consider four different typical scenarios to evaluate the
effectiveness of the proposed system model in the following:

1) S1: Proposed non-cooperative approach.

2) S2: Proposed cooperative approach.

3) S3: System optimization approach in providing logistic
services [37].

4) S4: System optimization approach in providing regula-
tion services [31].

The non-cooperative approach formulated in Section V is
denoted by S1. In S1, we consecutively execute | 7| time slots
through the non-cooperative best response-based algorithm
and then obtain the average value as the final solutions. S2
presents the proposed cooperative game theoretic approach
formulated in Section VI. We also obtain the average values by
consecutively running |7| time slots through the cooperative
best response-based algorithm. Note that S1 and S2 consider
both the provision of logistic and regulation services in the
city area. Other than the previous two scenarios, S3 solely
considers the provision of logistics services in the city area.
Specifically, it solves the joint routing and charging problem
by means of mixed-integer linear programming in a distributed
manner. Furthermore, S4 unilaterally considers regulation ser-
vices provided by AVs. For this framework, we deploy the
optimal dynamic V2G wireless charging/discharging frame-
work with the implementation of Dijkstra’s algorithm [52].
The utilization of Dijkstra’s algorithm aims to investigate the
shortest distance of every AV routing plan.
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D. Effectiveness of Proposed Mechanisms in Logistic Services

In this part, we mainly study the practicality of the proposed
games on the real-world traffic network of Garden City. The
directed graph is obtained through the related dataset reflected
in Fig 3b. Then, we simulate the above four scenarios to
measure the efficacy of the AV logistic service.

Based on the settings in Section VII-A, we first study the
AV utility and average computation time of the two proposed
games in comparison to the other two baseline approaches.
Table IV shows that both S1 and S2 obtain higher AV utility,
which efficiently motivates the AVs to participate in providing
AV logistic services. Since S3 only provides AV logistic
services in the city, the AV utility is lower than that of the
other three techniques. Therefore, it is apparent that both
S1 and S2 can achieve the provisioning of AV logistic and
regulation services through effective motivations. The reason
is that the proposed path planning scheme can achieve a lower
joint service time and the power consumption of the AVs
shown in Table IV such that both S1 and S2 can contribute
to relatively higher AV utilities. Besides, we can observe that
the computation times of S1 and S2 are relatively high when
compared with S3 and S4. The reason is that both S1 and
S2 consider the joint provision of AV logistic and charging
services, which further increases the computational complexity
of the problems with more operational constraints.

Next, we investigate the benefits of multiple logistic re-
quests. Specifically, during the operational time period, we
evaluate four cases with 1, 2, 3, and 4 logistic service requests,
respectively. According to Tables V, it indicates lower AV
utility in S1 with the increased number of service requests
since AV needs to pay more for providing the logistic services.
Then, for S2, the AV utility becomes higher when increasing
the number of service requests. This result also indicates that
the more requests arranged by the system, the better contribu-
tion on the provision of both logistic and regulation services
in the city can be obtained. Regarding average computation
time, we can observe that the values of S1 and S2 are close
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Fig. 3. The downtown map and road network of Garden City. (a) Garden City downtown map. (b) Garden City downtown road network.

TABLE IV
COMPARISON OF DIFFERENT SCENARIOS IN LOGISTIC SERVICES.

Scenarios S1 S2 S3 S4

Average AV Utility (US$) 487.81 522.52 106.82  448.82

Mean computation time (min) 28.80 24.58 4.88 9.44
TABLE V

PROPOSED GAMES IN DIFFERENT NUMBER OF LOGISTIC REQUESTS WITH

50 AVs.

Number of logistic requests 1 2 3 4

St:

Average AV Utility (US$) 487.81 478.52  469.25  456.90

Mean computation time (min) 11.40 14.65 13.90 15.32

S2:

Average AV Utility (US$) 522.52  547.85 573.03 598.55

Mean computation time (min) 28.80 24.67 24.88 22.13

to those of S3 and S4. This is due to the fact that the solution
space does not change as a result of an increase in service
requests, which do not affect the number of problems created.
Therefore, these results show the effectiveness of the proposed
games in providing AV logistic services.

E. Effectiveness of Proposed Mechanisms in Regulation Ser-
vices

The effectiveness of the proposed game theoretical ap-
proaches is evaluated based on the quality of the daytime V2G
regulation service provided in the city. It is reflected by the
variance of the total active power profile of the city smart grid.
We assume that the PTs are installed over all the road segments
in the city. The result is shown in Fig. 4. In this figure, we can
observe that both S1 and S2 can effectively smooth out the
active power fluctuations during the complete time period. S2
achieves a better performance than S1 because S1 incurs more
losses for the utilities of both the AVs and the aggregator. For
S3, since it only considers the logistic service providing, the
neglect of AV charging services cannot influence the active
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Fig. 4. Comparison of different scenarios in regulation services.

TABLE VI
PERFORMANCE OF REGULATION SERVICES UNDER DIFFERENT
SCENARIOS.
Scenarios S1 S2
Var(P°Y(7)) (k2W?2) 350x 1072 890 x 1073
Var(f*°(T)) (Hz) 6.92x 1078 2,18 x 1078

Scenarios S3 S4

Var(PY(T)) (k2W?2)
Var(f*(T)) (Hz)

4.93 x 103
5.34 x 1014

8.20 x 10~3
1.07 x 102

power profile of the city power grid. Besides, S4 can achieve
a better performance in flattening the power fluctuations, since
the objective of this approach mainly focuses on the quality
of the provision of AV charging services. Additionally, Table
VI presents a similar result, demonstrating that S1 and S2
both have relatively low variance values, resulting in greater
performance in providing the daytime V2G regulatory service.
Furthermore, we investigate the impact of different sce-
narios on the grid frequency. We denote f'*' as the grid
frequency of the city area. Table VI presents the effects of
the grid frequency under various approaches. Note that the
grid operates at a standard frequency of 50 Hz and the stable
region of this system is within the [49.5, 50.5] Hz range, which
presents a tolerance bound at 1% based on its operational
requirements. Table VI shows that S1, S2, and S4 can all
satisfy the stability requirements of the city power grid, while
S3 cannot keep the grid stable due to large volatility in
frequency deviations. Thus, our proposed non-cooperative and
cooperative games can both ensure the grid stability in UIS.

E. Sensitivity Analysis Under Irresponsive AVs

From the previous discussion, all of the AVs are assumed
to be responsive to maximize their own utilities in the game.
However, in practice, there may exist irresponsive AVs that do
not desire to alter their individual strategies so as to maximize
their own utilities. For example, for the non-cooperative game,
several AVs may perform deterministic delivery and charging
strategies rather than operating in response to time-varying
prices. In this case, these AVs can be regarded as “noisy
players” in the game who may worsen the performance of both
logistic and regulation services. In this part, we investigate
the sensitivity analysis taking into account irresponsive AVs
in the non-cooperative game, which is reflected by the service
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TABLE VII
SENSITIVITY ANALYSIS UNDER IRRESPONSIVE AVS IN
NON-COOPERATIVE GAME.
Proportion of irresponsive AVs 20% 40% 60%
Var(PY(T)) (k2W?2) 9.17 56.12 615.03
Mean unit cost per AV (US$) 460 474 493
Proportion of irresponsive AVs 80% 100%
Var(PY(T)) (k2W?2) 1.82 x 103> 5.16 x 103
Mean unit cost per AV (US$) 512 532

150

100 -
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50 -

Active Power (kW)
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= = =81 with 40% Irresponsible AVs
=100 |81 with 60% Irresponsible AVs
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Fig. 5. Performance of regulation services under different proportion of
irresponsive AVs in non-cooperative game.

quality with different portion of irresponsive AVs. Here, we
assume that all the irresponsive AVs perform constant charging
powers and operate in a fixed delivery time. Specifically, for
the delivery time, we set tZgg‘ = m, while we set P,(t) to a
fixed value of AV n based on its charging requirement during
the total time period. The result of the profile of active power
is shown in Fig. 5. It is obvious that S1 with less irresponsible
AVs can achieve the most flatten active power profile while
S1 with full irresponsible AVs performs the worst. In addition,
the variance of each profile in Fig. 5 is presented in Table
VIIL This result also indicates that the variance is the smallest
when 20% AVs in the system are irresponsive, which further
indicates that S1 achieves better quality in providing regulation
services in this situation. Furthermore, the effectiveness of Al-
gorithm 1 is indeed reflected. Specifically, during the iterative
process, the behaviors of irresponsive AVs can be detected
by other responsive AVs and then they can manipulate their
own strategies accordingly. In addition, when the proportion
of irresponsive AVs increases, the variance raises such that the
quality of regulation services is in turn deteriorated. Besides,
considering the unit cost per AV in logistic and charging
operations, the increasing trend also indicates the reducing
quality of joint service when the number of irresponsive AVs
increases.

G. Impact of Different Fleet Size

We further study the impact of different fleet size on the
performance of the proposed approaches, which is associated
with the scalability of the proposed games. In this part, we
evaluate the system performance of five cases with 10, 20, 30,
50, and 100 AVs, respectively. Meanwhile, we utilize three
different performance metrics being tested, shown in Fig. 6 and
Table IX. According to our results in Fig. 6, the variance of
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TABLE VIII
PROPOSED GAMES IN MULTI-AGGREGATORS-BASED SYSTEM WITH 50
AVS.
Number of AV aggregators 1 2
Number of AVs per aggregator 50 25
Total Aggregator Utility (S1) (US$)  2.43 x 10% 2.36 x 10*
Total Aggregator Utility (S2) (US$)  2.61 x 10* 2.60 x 10*
Total Regulation reward (S1) (US$)  —3.48 x 10¢  —6.75 x 10%
Total Regulation reward (S2) (US$)  —2.98 x 104  —5.75 x 10*
Number of AV aggregators 5
Number of AVs per aggregator 10
Total Aggregator Utility (S1) (US$) 2.11 x 104
Total Aggregator Utility (S2) (US$) 2.55 x 104
Total Regulation reward (S1) (US$) —1.33 x 106
Total Regulation reward (S2) (US$) —9.63 x 10°
TABLE IX
IMPACT OF DIFFERENT FLEET SIZE OF AVS.
Number of AVs 10 20 30
Average AV Utility (S1) (US$) 422.06 465.58 477.04
Average AV Utility (S2) (US$) 509.65 518.15 521.23
Mean Computation time (S1) (min) 23.68 24.01 24.05
Mean Computation time (S2) (min) 24.47 19.94 22.10
Number of AVs 50 100
Average AV Utility (S1) (US$) 487.81  489.57
Average AV Utility (S2) (US$) 522.52  537.65
Mean Computation time (S1) (min) 28.80 26.15
Mean Computation time (S2) (min) 24.58 23.15
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the active power profile of the city power grid decreases with
the increasing number of AVs, indicating better performance
in providing the V2G regulation service in the city. Moreover,
based on Table IX, fleet size expansion improves the system’s
revenue. This illustrates that more participating AVs results in
a better solution.

We also study the performance of the multi-aggreagtor-
based system. Based on the previous settings, we consider the
city region with 1, 2, and 5 AV aggregators, respectively. The
scale of these aggregators are determined by the participated
AV fleet size in evenly separated geographical region of the ur-
ban area. In this part, we assess the total AV aggregator utilities
in S1 (23) and S2 (31) and the total regulation reward in (21).
According to our results in Table VIII, with the increase of the
number of AV aggregators in the city, higher regulation reward
can be achieved. Hence, more AV aggregators in the urban
area can further help improve the performance in providing
the V2G regulation service. In addition, the total aggregator
utilities for both S1 and S2 are relatively high. It shows that
the utilities of both the aggregators and the AVs are balanced.

Furthermore, we investigate the distributed method’s com-
puting complexity in each of these five scenarios. By empha-
sizing the computation time, we can observe that as shown
in Table IX, the computational complexity of the proposed
games increases on a relatively small scale in proportion to the
number of AVs, since there are more operational constraints on
the optimization problem as there are more AVs presented in
the system. Therefore, it confirms the efficiency and scalability
of the proposed games. This indicates that even though the
computation time increases, the sophisticated problem, e.g.
with 100 AVs, can still be solved in an efficient manner.
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lteration
Fig. 7. Effect of proposed game theoretical approaches on convergence.

H. Convergence Analysis

To validate the exactness and uniqueness of the Nash
equilibria of the proposed game, we assess the convergence
of the Nash equilibrium for both the non-cooperative and
cooperative approaches, shown in Algorithms 1 and 2. In
this part, we assess the case with 50 participating AVs.
Besides, the corresponding tolerance is set to 10~5. The result
is shown in Fig. 7. One may observe that convergence of
the objective value through S1 occurs after approximately
6 iterations, which is shown in blue color. Meanwhile, the
tolerance threshold is activated in Algorithm 1. Similarly, the
objective value through S2, shown in red color, converges
after 9 iterations. These results validate the exactness and
uniqueness of the Nash equilibria of the proposed games of
the devised algorithms.

VIII. CONCLUSION

In this paper, we adopted the incentive mechanisms for
enabling an UIS, which consisted of a non-cooperative and
cooperative game strategy for tackling the provision of AV
logistic and charging services. First of all, a system archi-
tecture for the UIS was developed. Then, considering the
interaction between the aggregator and AVs in the smart city,
we formulated a non-cooperative game approach based on a
Stackelberg game, where the aggregator determines the logistic
and electricity trading prices as a leader while the AVs decide
their strategies as followers. In the meantime, we proposed a
cooperative approach for the aggregator and AVs by following
a potential game so as to pursue the optimal social welfare of
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the UIS. Besides, the existence and uniqueness of the Nash
equilibria for both non-cooperative and cooperative games
were validated, since the related algorithms were devised
to obtain the solution of the Nash equilibria. Case studies
validated the efficient performance of the proposed non-
cooperative and cooperative approaches in UIS by providing
both AV logistic and charging services in different cases. In
addition, the AV utilities could be maximized via the non-
cooperative strategy while the social welfare of AVs and the
aggregator could be further improved through the cooperative
approach. For our future work, we will extend the system
model to a stochastic game that considers the uncertainties
introduced by heterogeneous service requests. In addition, we
will consider to develop a multi-aggregator-based incentive
game to balance various aggregators’ utilities.
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