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Abstract—State estimation is critical to the operation
and control of modern power systems. However, many
cyber-attacks, such as false data injection attacks, can
circumvent conventional detection methods and interfere
the normal operation of grids. While there exists research
focusing on detecting such attacks in dc state estimation,
attack detection in ac systems is also critical, since ac state
estimation is more widely employed in power utilities. In
this paper, we propose a new false data injection attack de-
tection mechanism for ac state estimation. When malicious
data are injected in the state vectors, their spatial and tem-
poral data correlations may deviate from those in normal
operating conditions. The proposed mechanism can effec-
tively capture such inconsistency by analyzing temporally
consecutive estimated system states using wavelet trans-
form and deep neural network techniques. We assess the
performance of the proposed mechanism with comprehen-
sive case studies on IEEE 118- and 300-bus power systems.
The results indicate that the mechanism can achieve a satis-
factory attack detection accuracy. Furthermore, we conduct
a preliminary sensitivity test on the control parameters of
the proposed mechanism.

Index Terms—AC state estimation, cyber-attack detec-
tion, deep neural network (DNN), discrete wavelet transform
(DWT), false data injection attack (FDIA).

I. INTRODUCTION

W ITH the incorporation of information and communica-
tion technologies, power systems are gradually trans-

forming into smart grids [1]. However, power system applica-
tions, such as state estimation [2], are facing great challenges
due to their dependence on telecommunications. One significant
concern is their vulnerability to cyber-attacks [3]–[5]. Adver-
saries of power grids can access and manipulate system variable
measurements by either attacking the measurement devices or
compromising the communication infrastructures [6]. As a re-
sult, compromised system states may interfere the operation of
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the grid, leading to either physical or economical impacts on
the power system. Liang et al. [7] and Deng et al. [8] presented
comprehensive surveys on the impacts of such cyber-attacks.

Among common attacks in cyber-physical systems, false data
injection attack (FDIA) is considered one of the most challeng-
ing threats for the state estimation [7], [9]. Different from other
attacks such as distributed denial of service and jamming, suc-
cessful FDIA can circumvent the conventional residual-based
bad data detection mechanism [10]. Without advanced detection
mechanism, FDIA can be stealthily launched multiple times,
rendering a significant threat to the grid [8].

Much research effort has been devoted to investigating pos-
sible ways of constructing FDIA [8]. Most of the existing work
on constructing FDIA focuses on attacks in power systems with
dc state estimation under different scenarios, due to simple an-
alytical models of the system [7]. For instance, a commonly
recognized attack scenario is that the adversary has partial con-
figuration information of the power network, and can manip-
ulate a partial set of system variable measurements [9], [11],
[12]. In the presented methods, FDIA can successfully bypass
conventional detection methods and inject malicious data into
the system. In the meantime, FDIA targeting ac state estima-
tion is gradually gaining attention in recent years, and analyt-
ical studies have been conducted to construct such attacks. In
[13]–[15], viable methods were presented to perform FDIA in ac
state estimation with complete or incomplete system knowledge.
To conclude, both dc and ac state estimations are prone to FDIA.

At the same time, many results have been reported to defend
against FDIA in dc state estimations.1 Various techniques have
been employed to detect dc FDIA, such as statistical methods
[16], [17], Kalman filter [18], sparse optimization [19], state
forecasting [20], [21], network theory [22], time-series simula-
tion [23], and machine learning [24]–[28]. They all demonstrate
satisfactory detection performance and false-alarm rates against
dc FDIA. See [7] for a survey on the detection methods of FDIA.

However, there is still a research gap in the current FDIA de-
tection paradigm. All previously referenced publications inves-
tigate attacks targeting dc state estimations, which use different
system models from the ac ones employed in most real-world
utilities [15]. As will be demonstrated in Section IV, conven-
tional dc FDIA detection methods cannot detect ac FDIA with

1FDIAs aiming to compromise system states in ac/dc power systems are
called ac/dc FDIA in the sequel.
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satisfactory performance. Little work has been done on detect-
ing ac FDIA in the literature, especially defending against re-
cent attack patterns, e.g., [14] and [15]. In [29], Chaojun et al.
propose an FDIA detection mechanism for ac state estimation
based on the Kullback–Leibler distance of the probability distri-
butions of nominal operating conditions and compromised sys-
tem states. However, its robustness considering normal power
system events, such as load distribution changes, is unknown.
As the manipulated system states of new attack methods obey
Kirchhoff’s circuit laws [15], it is possible that these attacks can
pretend to be normal operating condition changes to avoid being
detected. In [30], Liu et al. developed an information-network-
based state estimation technique to defend against ac FDIA. In
[31], Tian et al. actively changed the transmission line parame-
ters to detect ac FDIA. Both studies aim at ac FDIA constructed
with full power network information, and their performance on
the latest proposed attacks based on partial network information,
e.g., [15], is unknown.

To bridge the research gap, in this paper, a new ac FDIA de-
tection mechanism is proposed, which considers recent ac FDIA
patterns. Different from the previous work for detecting FDIA,
which only adopts the spatial data characteristics in the system
state of one time instance to identify attacks, the proposed mech-
anism also learns from the temporal data correlation presented
in consecutive system states. To achieve this, we adopt the dis-
crete wavelet transform (DWT) algorithm and recent advances
of deep neural networks (DNN) techniques and construct an
intelligent system for ac FDIA detection. In the system, DWT
aims to extract the system state features in a given time period,
and DNN further learns from the temporal–spatial characteris-
tics of the features in a sequence of time periods to distinguish
ac FDIA from normal power system operation events. The main
contributions of this paper are listed as follows.

1) This paper is among the pioneer studies of using DNN
in FDIA detection research. In addition, the proposed
mechanism extracts not only spatial (as did in [24] and
[26]) but also temporal power system dynamic features
for attack detection, which is novel and effective.

2) The proposed mechanism aims to detect FDIA in ac state
estimation, especially recent attack patterns with incom-
plete power network information [15].

3) We assess the proposed mechanism with recently pro-
posed FDIA patterns on two power system test cases. The
simulation results demonstrate satisfactory attack detec-
tion accuracy and false-alarm rate.

4) Parameter sensitivity test is carried out to evaluate
the performance and characteristics of the proposed
mechanism.

The remainder of this paper is organized as follows. In
Section II, we briefly introduce the current state estimation
methods and its vulnerability against FDIA. Section III elab-
orates the proposed FDIA detection mechanism with detailed
explanation on the architecture and implementation issues.
Section IV demonstrates the numerical results on the tested
power systems with parameter sensitivity studies. Finally, we
conclude this work in Section V.

II. STATE ESTIMATION AND FDIA

In this section, we first briefly introduce the state estima-
tion method employed by the utilities and the incorporated bad
data detection mechanism. Then, we give a general pattern of
successful FDIA targeting ac state estimation.

A. State Estimation and Bad Data Detection

The basic principle of state estimation is to estimate the op-
erating condition of the power system using system variable
samples from the measurement units [32]. Typical measure-
ments include voltage and complex power injections at buses,
and complex power flows on branches. Based on the ac power
flow model, we can construct the relationship between measure-
ments z and system states x as follows:

z = h(x) + e (1)

where h(·) is the nonlinear dependency between measurements
and system states, and e is the additive noise with a covariance
R. The equations defined by h(·) are determined by the grid
topology and transmission line parameters. State estimation tries
to find an estimated system state x̂ that fits the measurements
z best, according to the dependency h(·) considering sampling
noise. Subsequently, given z, h(·), and R, system states can be
estimated by minimizing the weighted least square [32], [33]

x̂ = argmin
x

[z− h(x)]TW[z− h(x)] (2)

where W ≡ diag{R−1}. In practice, (2) can be solved using it-
erative approximation methods, e.g., Newton–Raphson method.

However, due to the nonlinearity of h(·) and the iterative
manner of the approximation solutions, solving (2) can be com-
putationally expensive [2]. Furthermore, the convergence is not
guaranteed [33]. As an alternative, power system engineers
sometimes employ a linearized dc power flow model to ap-
proximate the ac model. A dc model simplifies the system by
making three assumptions:

1) line resistance is negligible;
2) bus voltage profile is flat; and
3) voltage angle deviation over transmission lines is small.

As a result, the relationship in (1) can be simplified to

z = Hx + e (3)

where H is the measurement Jacobian matrix [33]. Accordingly,
(2) is transformed into

x̂ = argmin
x

[z−Hx]TW[z−Hx]

= (HTWH)−1HTWz ≡ Ez (4)

where E ≡ (HTWH)−1HTW. This closed-form solution can
provide fast estimated states, but also introduce approximation
error due to the dc power flow model assumptions [33].

Considering the sampling error of measurement units and
potential malicious attacks, current power systems employ
a residual-based bad data detection mechanism to protect
state estimations [33]. The measurement residual is calculated
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using the difference between observed measurements z and
measurements inferred by the estimated system state, denoted
by ẑ = h(x̂) (ac model) or ẑ = Hx̂ (dc model). Bad data detec-
tion mechanism compares the Euclidean norm of the residual
r = z− ẑ with threshold τ . If ||r||2 > τ , the estimated state is
considered compromised by bad data; otherwise x̂ is trustwor-
thy. The value of τ is typically determined by a hypothesis test
Pr{||r||22 ≥ τ 2} = α, where α is the confidence level [33].

B. FDIA With Complete Network Information

The objective of adversaries to perform FDIA is to mislead the
system operator to consider a compromised x̂a = x̂ + c as the
estimated system state, where c is the deviation of power system
state. To achieve this, an adversary can change the received
measurements at the control center to za = z + a, where a is
the injected attack vector. To circumvent bad data detection
mechanism,2 the attack vector should be constructed as

a = h(x̂ + c)− h(x̂). (5)

In such cases, the Euclidean norm of the residual is unchanged

||ra ||2 = ||za − h(x̂a)||2 = ||z + a− h(x̂ + c)||2
= ||z− ẑ||2 = ||r||2 (6)

and the attack can bypass the residual-based detection. The
detailed attack vector construction process is elaborated in [13]
and [34]. However, there is one drawback in this FDIA pattern.
According to (5), the adversary requires complete knowledge
of the grid, including the topology (h(·)) and estimated states
(x̂). In the meantime, FDIA can only utilize less-than-perfect
system information in practice [7]. To consider this limitation,
recent work proposed new FDIA patterns using partial system
knowledge [14], [15]. For instance, a recently published result in
[15] successfully constructs injected attack vectors using voltage
angle differences of selected transmission lines, which will be
introduced in the following.

C. FDIA With Partial Network Information

In [15], the rule of thumb of using partial network in-
formation to construct FDIA injection vector is to satisfy
Kirchhoff’s circuit laws, given only selected voltage angle dif-
ferences. Specifically, the voltage angle differences of lines con-
necting a compromised bus and another noncompromised one
are used to calculate feasible power flows of respective lines,
and thus, the power injections of the compromised buses are
obtained. Those for the other buses can consequently be calcu-
lated by the algebraic sum of all connecting buses. Utilizing the
above-mentioned idea, an attack vector can be constructed as
follows [15].

1) Initialize the system state vector [V θθθ]T = [V 0θθθ0]T, where
V 0 is the initial attack voltage profile.

2) Compute the attack vector [PQpq]T(bus real/reactive
power injection and line flow) using the current [V θθθ]T.

2In the sequel, we consider ac power flow model unless mentioned.

3) Check the constructed attack vector against the upper
and lower bounds of real power bus injections and
real/reactive power line flows [15]

P ≤ P ≤ P ,−p ≤ p ≤ p,−q ≤ q ≤ q (7)

where the overlined and underlined variables are the up-
per and lower bounds, respectively. If all bounds are
satisfied, [V θθθ]T is used as the attack vector. Otherwise
continue.

4) Calculate the incremental state vector [ΔV Δθθθ]T by solv-
ing an optimization problem

minimize
10∑

i=1

1TSi (8a)

subject to

⎡

⎢⎢⎢⎢⎢⎢⎣

ΔP

ΔQ

Δp

Δq

ΔV

⎤

⎥⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

∂P /∂V ∂P /∂θθθ

∂Q/∂V ∂Q/∂θθθ

∂p/∂V ∂p/∂θθθ

∂q/∂V ∂q/∂θθθ

0 1

⎤

⎥⎥⎥⎥⎥⎥⎦

[
ΔV

Δθθθ

]

(8b)

P ≤ P + ΔP + S1 − S2 ≤ P (8c)

− p ≤ p + Δp + S3 − S4 ≤ p (8d)

− q ≤ q + Δq + S5 − S6 ≤ q (8e)

V ≤ V + ΔV + S7 − S8 ≤ V (8f)

θθθ ≤ G(θθθ + Δθθθ) + S9 − S10 ≤ θθθ (8g)

where G is the coefficient matrix that transforms bus
voltage angles into line angle differences. Variables Si

are slack control variables that determine the incremental
state and attack vector [15].

5) Update attack vector [V θθθ]T ← [V θθθ]T + [ΔV Δθθθ]T and
go to Step 2.

By repeating this process, the adversary can construct an at-
tack vector against ac state estimations without being detected
by the residual-based bad data detection method [15]. In addi-
tion, as will be illustrated in Section IV, the constructed attack
vectors can also bypass the detection of many existing dc FDIA
detection methods. Therefore, it is essential to develop a new
mechanism that focuses on detecting ac FDIA.

III. ONLINE FDIA DETECTION MECHANISM

As analyzed in Section II, well-constructed FDIA can effec-
tively bypass bad data detection mechanism in ac state estima-
tion. This is because the injected false data satisfy Kirchhoff’s
circuit laws [15], rendering all residual-based attack detection
methods invalid. Thus, it is not possible for the system op-
erator to distinguish FDIA from normal power system events,
given measurements from the same sampling time period. How-
ever, this does not make FDIA undetectable. Synchrophasor
data of a power system over a period of time can be consid-
ered as a temporal–spatial matrix/tensor. It is widely accepted
that the data have spatial correlation, which is represented by
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Fig. 1. Proposed online FDIA detection mechanism with a DNN-based
attack detector.

Kirchhoff’s Laws. At the same time, the temporal correlation
also exists in power systems among consecutive time slots,
which is especially strong in transient and dynamic operations
due to the inertia and momentum in the whole system. In current
FDIA constructions, adversaries focus on constructing attack
vectors satisfying the spatial dependencies of system variables,
i.e., (5), and ac power flow equations [14], [15]. The tempo-
ral dependency between consecutive system states, or power
system dynamics, is ignored. This correlation in system states
can provide more information for the system operator to detect
FDIA while reducing false alarms on normal grid events.

Utilizing this principle, in this section, we propose an on-
line FDIA detection mechanism using recent advances in deep
learning techniques. We first elaborate the structure and data
flow of the proposed mechanism. Then, we present the detailed
implementation of the mechanism with brief introductions to
the techniques employed. Finally, we discuss the offline train-
ing and online detection processes of the proposed mechanism.

A. Proposed Detection Mechanism

The proposed FDIA detection mechanism is depicted in
Fig. 1. This mechanism considers the system states and measure-
ments from consecutive discrete sampling time instances, i.e.,
the time instances when the conventional state estimation takes
place. These sampling time instances may have an interval Δ
ranging from milliseconds (PMU-based measurement systems)
to a few seconds (conventional supervisory control and data
acquisition (SCADA) system). At an arbitrary sampling time
instance t, the mechanism takes real-time measurements zt and
the utility’s knowledge of the power network h(·) as inputs, and
develop FDIA attack detection results as the output. The input
data first go through an ac state estimator, which estimates the
current system state as x̂t [2], [32], [33]. The estimated state
is then tested with the bad data detector to prune any measure-

ments with bad data. In this step, bad data caused by sampling
and communication errors can be effectively detected, since they
generally do not satisfy the circuit laws, rendering high residual
values [8], [33].

After these conventional state estimation processes, the pro-
posed FDIA detection mechanism introduces a new FDIA detec-
tor to further analyze the estimated system states. The detector,
as shown in the dashed box in Fig. 1, comprises two data pro-
cessing schemes. It takes the estimated system states x̂t from the
previous state estimator as input. The system state is first stored
in a system state history database. Then, a feature extractor iden-
tifies the spatial data correlations (features) of the immediately
past 60 system states, and the resulting information, denoted by
ft , is stored in a feature history database. Subsequently, the fea-
tures of the current and previous w − 1 sampling time instances
are input to an attack detector, which learns the temporal data
correlation and detects FDIA. In this process,w is a user-defined
control variable. A large w can lead to more features in the time
domain, rendering a thorough system dynamics. However, the
computational efficiency may be compromised. We will study
the sensitivity of w in Section IV.

In this FDIA detector design, it is evident that the detection
performance is dominated by the feature extractor and attack
detector. These two blocks need to derive the distinguishing
spatial–temporal characteristics of the system state dynamics,
and make accurate classifications on attack events against oth-
ers. In this paper, we employ DWT algorithm to extract the
attack features due to its outstanding feature extraction capa-
bility [35], [36]. In addition, existing neural network units are
adopted to construct a DNN to further identify attack patterns
from the extracted features. Contributed by recent advances
of deep learning technologies, DNN is widely recognized as
a superior methodology for classification tasks [37]. Variants
of DNN have been employed recently in solving many power
system operation problems; see [24] and [38] for examples.

B. DWT-Based Feature Extractor

DWT is a digital signal processing technique aiming to ex-
tract the hidden time–frequency domain characteristics of any
input signals. The technique convolves the input data sequence
with wavelets, which are zero-mean functions derived from pre-
defined mother wavelets. Typically, a wavelet ψa,b(t) can be
developed from its mother wavelet ψ(t) as follows:

ψa,b(t) =
1√|a|ψ

(
t− b
a

)
(9)

where a and b are scaling and shifting parameters, respectively.
DWT is performed based on discrete form of (9) by discretizing
a = 2j and b = 2j × k, j, k ∈ Z. Then, this wavelet can be
employed to transform a sequence of input signal s(t) using the
following equation:

dj,k (s(t), ψ(t)) =
∫ +∞

−∞
s(t)ψ∗j,k (t)dt (10)

where ψ∗j,k (t) is the complex conjugate of discrete wavelet

ψj,k (t) = ψ(t/2j − k)/
√

2j .
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TABLE I
FEATURE EXTRACTION WAVELETS AND DECOMPOSITION LEVELS

However, the analytical solutions to (10) is not always obtain-
able [35], [39], [40]. To address this problem, a widely adopted
method proposed in [35] is employed in this paper. The basic
concept of the method is to utilize the multiresolution decom-
position of s(t) at level M , which is defined by

s(t) =
∑

k

aM ,kϕ

(
1

2M
− k

)
/
√

2M

+
M∑

j

∑

k

dj,kψ

(
1
2j
− k

)
/
√

2j

� AM (t) +
∑

j

Dj (t) (11)

where aM,k and ϕ(t) are the approximation coefficient at level
M and the companion scaling function, respectively [35]. Using
this relation, s(t) can be decomposed into an approximation
coefficient AM (t) and M detailed coefficients Dj (t). Mallat
[35] gives the detailed algorithm for this decomposition.

From (10) and (11), it can be observed that different wavelets
and decomposition levels M can lead to different decomposed
signal coefficients. These coefficients will further influence the
feature extraction capability of the DWT-based feature extrac-
tor. While there should be an optimal setting of wavelets and
M values for optimal performance, it is impractical to test all
wavelets. As an alternative, they are typically selected strate-
gically according to the data properties [40], [41]. Specifically,
when the data contain sufficient sample of signals, db and sym
families of wavelets are generally preferred due to their robust-
ness regardless of special data properties [40]. Other wavelets,
e.g., bior and coif families, suffer from their longer filter
lengths, which can lead to low level of decomposition and bad
feature extraction capability [40]. Therefore, in this paper, four
wavelets from db and sym families are employed to decompose
the input signal, i.e., bus voltage magnitudes and phase angles.
The wavelets and their respective M values are recorded in
Table I.

According to (11), in total 16 signal coefficients can be cal-
culated from one input signal. However, the decomposed data
sequences are generally too long to be employed in subsequent
calculations [36]. In addition, it has been shown that the statis-
tical features of these data sequences can also represent critical
features of the input signal [36]. Hence, we adopt the mean
and standard deviation values of all coefficients to represent the
features of the input signal in the proposed feature extractor.
These statistical features have demonstrated their efficacy in the
literature for classification tasks; see [36], [40] and [41] for ex-
amples. Consequently, 16(coefficients) × 2(mean and standard
deviation) × 2N (bus voltage magnitudes and angles) = 64N
features are calculated for each system state of an N -bus power

Fig. 2. Proposed DNN-based attack detector.

system. These features are stored as a representative feature vec-
tor of the respective time instance in the feature history database,
as depicted in Fig. 1.

C. DNN-Based Attack Detector

In the proposed DNN-based attack detector, we adopt exist-
ing DNN units to construct a recurrent neural network (RNN)
model. This network aims to distinguish attacks from normal
power system operating events, by learning from the temporal–
spatial system state features extracted by DWT. RNN is a type
of neural network that considers both the temporal and spatial
dependencies of a sequence of input data. In the constructed
network, two types of neuron layers are utilized, namely, gated
recurrent unit (GRU) [42] and fully-connected (dense) layers.
Each layer can establish a mathematical relationship between
the input and output data. When these layers are chained up, the
combined mathematical expression is used to simulate nonlinear
system models.

In this paper, we carefully tuned the hyperparameters of
the network, namely numbers of layers and neurons in each
layer, to achieve a satisfactory attack detection accuracy. Fig. 2
presents the schema of the proposed DNN-based attack de-
tector. The constructed RNN model is composed of two GRU
layers and two Dense layers. In GRU, given a sequence of input
data {ft−w+1, . . . , ft}, GRU calculates a sequence of output
{gt−w+1, . . . , gt} as follows:

gt = zt ⊗ gt−1

+ (1− zt)⊗ tanh(wfgft + wgg (rt ⊗ gt−1) + bg )
(12a)

zt = sigm(wfzft + wgzgt−1 + bz ) (12b)

rt = sigm(wfrft + wgrgt−1 + br ) (12c)

where⊗ is the elementwise multiplication operator, and allw
and b matrices are the learning parameters of GRU. The Dense
layers map the input–output relationship using the following
equation:

y = actv(wdense ∗ x+ bdense) (13)

where x and y are the input and output, respectively. wdense and
bdense are the learning parameters of Dense layers, and actv is
the activation function [43].
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After feature extractor processes the current estimated system
state, this attack detector first queries the feature history database
for the extracted features in the past w sampling time instances.
The 64Nw features are input into two layers of GRU, each of
which has 1024 neurons, to investigate the temporal dependency
of these w time instances. The result is fed into two fully-
connected layers with 512 and 128 neurons, respectively. Both
layers are activated by a sigmoid function. These two layers aim
to interpret the temporal dependency generated by GRU into
an index indicating whether an FDIA is detected in the studied
time span. Finally, the index is considered as the output of the
FDIA detector.

In this DNN design, hundreds of thousands of learning pa-
rameters needs fine-tuning in order to achieve a satisfactory
FDIA detection accuracy. However, it has been demonstrated
to be impractical to simultaneously optimize so many parame-
ters without considerable overfitting problem, which may lead
to poor performance on the accuracy with new data [44]. In
the implementation, an effective technique, called “dropout,” is
employed to address this issue [44]. This technique randomly
sets the output of neurons to zero with a predefined proba-
bility. The dropped-out neurons thus do not contribute to the
calculation. This technique reduces the coadaptation relation-
ship among neurons, so more robust features can be extracted
in the learning process [45]. In the constructed DNN, dropout is
applied to both of the fully-connected layers at a 30% dropout
ratio.

D. Offline Training and Online Attack Detection

Before using the proposed FDIA detector to identify FDIAs,
the optimal values for the network learning parameters, i.e., the
values for the w and bmatrices/vectors in (12) and (13), need to
be first optimized. This parameter tuning process is called train-
ing, which aims to find the optimal learning parameter set that
matches the input and output relationship presented in the train-
ing data [46]. The training data can include real attack system
dynamics in the operating history. However, due to the relative
scarcity of such real data, synthetic simulated power system dy-
namics subject to FDIA and normal events can be employed to
enrich the training dataset for better detection performance. As
illustrated in [15] and [34], constructing attack vectors for such
systems are notably harder than in dc systems. So the adver-
saries are quite likely to follow existing patterns for attack, e.g.,
[15]. In such cases, using synthetic training data generated by
these patterns can emulate the real-world attack characteristics,
since both attack vectors are computed by algorithms instead of
being measured. This data enrichment method is also employed
in other FDIA research, e.g., [18]–[20], [24]–[27], [29].

To construct a complete training set, the desired output of the
FDIA detector, i.e., yt in Fig. 2, is set according to the following
rule:

yt =
{

1, FDIA in the past w time instances from t
0, otherwise

. (14)

Given a collection of D training cases {x̂t,(i) , yt,(i)}Di=1, we
employ the Adam optimizer [47] to find the optimal values of

all learning parameters in the DNN-based attack detector. The
binary cross entropy error function is employed as the training
objective

minimize −
D∑

i=1

[yt,(i) log ŷt,(i) + (1− yt,(i)) log(1− ŷt,(i))]
(15)

where ŷt,(i) is the actual FDIA detection result of x̂t,(i) with the
proposed mechanism.

For online detection of FDIA, the previously trained learn-
ing parameters are utilized to establish the mathematical re-
lationship between power system dynamics and attacks. With
estimated power system states, it is trivial to calculate the cor-
responding ŷt ∈ (0, 1) value. FDIA is detected if this value is
greater than 0.5, and vice versa. As will be demonstrated in
Section IV, the attack detecting process is fast enough to detect
FDIA in an online manner.

IV. CASE STUDIES

In this section, we assess the performance of the proposed
ac FDIA detection mechanism on IEEE 118-bus and 300-bus
power systems. Three sets of analyses are conducted. We first
test the general ac FDIA detection accuracy and false-alarm rate
of the proposed mechanism, and compare the results with those
in the previous work. Next, we summarize the performance of
the proposed mechanism on various groups of attacks with dif-
ferent statistical characteristics. Then, we investigate the impact
of history window size w and system sampling interval Δ on
the performance.

Data volume is critical to the performance of DNN [37].
While too few samples cannot include the characteristics of ac
FDIA for learning, too many samples may potentially lead to
overfitting problem. In this paper, 200 000 samples are employed
to train the proposed DNN. These data are generated by time-
domain simulation of power system dynamics, and the attack
vectors are developed by the existing attack pattern introduced
in Section II-C. In the simulation, we consider both the nomi-
nal and randomly selected N − 1 power network topologies,3

and the power network parameters are obtained from [48]. The
initial load level is set to be a random value between 80% and
110% of the nominal value. As a result, 200 base operating con-
ditions of each test system are recorded. We generate the power
dynamics of normal load changing events and FDIAs based on
these conditions. For each operating condition, we first gener-
ate 500 random load changing events. In each event, randomly
selected loads in the system are changed to new values, ranging
from 50% to 150% of their nominal loads. Consequently, the
time-domain simulation for the power system dynamics of the
100 000 cases are conducted using DIgSILENT PowerFactory
[49]. In addition, we follow the approach in [50] and [51] to

3Most power systems are designed to maintain at least N− 1 reliabil-
ity/stability, and it is quite possible that these systems operate on such topolo-
gies, e.g., in maintenance and construction tasks. Therefore, considering N− 1
cases is appropriate in order to develop a generalized mechanism for ac FDIA
detection.
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generate random noise for the dynamics

Ṽ ∠θ̃ = V ∠θ + ΔV ∠Δθ

where V ∠θ + Δ, ΔV ∠Δθ, and Ṽ ∠θ̃ are the simulated voltage
phasor, imposed noise phasor, and the resulting voltage phasor
in the dataset, respectively. The noise phasor is generated from
a truncated complex Gaussian distribution [50]

f(ΔV ∠Δθ|0, (10−2)2)

=

⎧
⎪⎨

⎪⎩

9
π (1−e−9)(10−2)2|V ∠θ |2 exp(− 9|ΔV ∠Δθ |2

(10−2)2|V ∠θ |2 ),

if |ΔV ∠Δθ| ≤ 10−2|ΔV ∠Δθ|
0, otherwise

.

These phasors comply with the phasor measurement sys-
tem (PMU) accuracy requirement by IEEE Standard for Syn-
chrophasor Data Transfer for Power Systems [52], i.e., the total
vector error is no more than 1%.

Besides the above 100 000 normal operational cases, we also
construct another set of 100 000 FDIA cases with the 200 base
operating conditions. For each operating condition, first, 100
attack cases are constructed with (5) to simulate FDIAs with
complete system knowledge. Then, 400 other attack cases are
constructed using the heuristic summarized in Section II-C,
which was developed in [15]. These attack cases are distin-
guished by their different maximum allowed bus power injec-
tions (−50% to +50%), voltage magnitudes (−20% to +20%),
angle difference (−15◦ to +15◦), and line power flows (up to 1.5
times of the nominal value), whose values are randomly gener-
ated according to the record in [15]. Interested readers can refer
to this literature for a more detailed introduction on the method
to develop valid FDIA attack vectors for ac state estimation. Fi-
nally, the attack vector is injected into the power dynamics of the
corresponding operating condition to construct an FDIA case.

For cross validation, the total 200 000 power dynamics test
cases for each test system are randomly divided into a training
set and a testing test by 3:1 ratio, which accords with the com-
mon practice [38]. The training set is used to train the learning
parameters in the DNN, and the testing set is employed to assess
the attack detection accuracy. All simulations are conducted on
computers with an Intel Core i7-7700 CPU, an nVidia GTX
1080 GPU, and 32-GB RAM. The DNN is constructed using
TensorFlow for computational speed boost [53].

A. FDIA Detection Performance

We first study the general FDIA detection performance of
the proposed mechanism. In this test, we set the feature history
window size w = 5, and the sampling interval Δ = 33.3 ms
to simulate a typical wide-area measurement system. Both test
power systems are assessed, and the simulation results are shown
in Table II.

From the simulation results, it can be observed that the pro-
posed mechanism can develop a satisfactory ac FDIA detec-
tion accuracy. For both test systems, the detection accuracy is
more than 90%, and the mechanism works slightly better on the
118-bus system due to its less complex topology. By comparing
the detection results on testing and training cases, it can also be
concluded that overfitting is insignificant in the trained DNN.

TABLE II
AC FDIA DETECTION PERFORMANCE OF THE PROPOSED MECHANISM

TABLE III
COMPARISON OF AC FDIA DETECTION PERFORMANCE WITH EXISTING AC

AND DC FDIA DETECTION METHODS

In both test systems, the detection accuracy remains to be more
than 90% with new unknown data not used in training. This
result demonstrates the satisfactory generalization capability of
the proposed mechanism. In addition, we also present the aver-
age detection and DNN training times for both the test systems.
While the former represents the system overhead introduced
by the proposed detection method, the latter can describe the
complexity of the adopted DNN. From the simulation results,
it is clear that the overhead is insignificant compared with ei-
ther the sampling rate (30 Hz) or the system frequency (60 Hz).
While the DNN training time is huge compared with others, this
process is typically conducted offline.

For a complete comparison, we also present the simulation
results of the other ac FDIA detection mechanism proposed in
[29]. We summarize the data presented in [29, Table I], which is
the FDIA detection accuracy on a small-scale IEEE 14-bus sys-
tem. Since it is unfair to directly compare the results with ours
on 118- and 300-bus systems, we also implement the Kullback–
Leibler detector presented in [29] and test this mechanism on
the same systems for reference. The comparison is presented
in Table III. From the table, it can be observed that the pro-
posed FDIA detection mechanism can remarkably outperform
the previous work. The detection accuracy is improved from
around 70% by [29] to more than 90%, and the proposed mech-
anism provides more robust performance when handling normal
system operation events.

Furthermore, we also employ previously proposed dc FDIA
detection mechanisms in the literature to protect the ac test sys-
tems for demonstration. Specifically, the methods proposed in
[18] and [19] are implemented and tested with the same data.
The detection accuracy is presented in Table III. It can be ob-
served that dc FDIA detection mechanisms present mediocre
fault detection accuracy values at around 70% to 80%. This is
due to the fact that ac state estimation is generally more accu-
rate than dc one due to line loss, rendering voltage deviations
over transmission lines. This can lead to more difficult FDIA
attack construction, but the constructed attack vectors are less
perceptible, especially with dc FDIA mechanisms.
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Fig. 3. Detection accuracy on FDIAs with different attack strengths.

B. Attacks With Different Statistical Characteristics

Besides the previous general accuracy analysis, we are also
interested in how the proposed mechanism performs subject to
FDIAs with different statistical characteristics. In this section,
we further summarize the testing performance of the mecha-
nism. We classify all generated FDIAs into three categories,
namely strong, medium, and weak attacks according to the fol-
lowing rules.

1) Strong attacks: The average power injection deviation in
c exceeds 30% of the nominal value in x, or average
voltage magnitude deviation exceeds 10% of the nominal
value, or average voltage angle deviation exceeds 5◦.

2) Weak attacks: The average deviation of these three sys-
tem variables are smaller than 10%, 5%, and 2◦ of their
nominal values, respectively.

3) Medium attacks: All other generated FDIAs.
These classes can represent the “strength” of attacks in terms of
system variable deviations.

The detection accuracies of attacks with different statistical
characteristics are depicted in Fig. 3. From the figure, we can
conclude that generally it is easier to detect “stronger” attacks
than those with minor system state deviations. This is because a
larger sudden change in consecutive system states, which does
not comply with the nature of system dynamics, is a significant
indication of FDIA, and the proposed mechanism can success-
fully capture this feature. Furthermore, it can also be observed
that the detection accuracy of the proposed mechanism is greatly
influenced by the complex power injection deviation. The influ-
ence is not as significant for voltage magnitude deviation, and
different angle deviations do not have an obvious impact on the
detection performance. This is because normal power system
operation events may also introduce frequent complex power
injection changes, which increase the false positive detections
by the mechanism. Despite the slightly degraded performance
on weak attacks, our mechanism can still achieve a satisfactory
detection accuracy (greater than 85% in worst case scenarios).

C. Impact of History Window Size and Sampling Interval

In previous simulations, we assume that the power system
states are available at 30 Hz. While this configuration emulates
the PMU-driven measurement systems, current utilities are still
in the process of gradually introducing PMUs on top of the

existing SCADA system [54], [55]. Hence, it is important to
study the performance of the proposed mechanism when it is
applied to power system with slower sampling rate, e.g., [54].
In addition, we set the feature history window size to five, and
the window size sensitivity and its impact on the offline time
needs further investigation.

In this section, we study the parameter sensitivities of Δ and
w by testing the proposed mechanism with different parameter
values. The value for w is selected from {2, 3, 5, 7}, and three
scenarios with different sampling rates are tested. Specifically,
Δ is selected from {33.3, 100, 500} ms, which correspond to
30-Hz, 10-Hz, and 2-Hz system state sampling, respectively.
The difference in the sampling rate leads to different numbers
of system states in the same period of time, and thus, higher
sampling rate can better preserve the system dynamics, or input
data temporal correlation. We adopt the training and testing data
generated for the 118-bus power system, and simulation results
are presented in Table IV.

From the sensitivity result, it can be concluded that in gen-
eral, five is a good candidate value for parameter w considering
the FDIA detection accuracy when the measurements are devel-
oped by high-frequency wide-area monitoring system (WAMS).
For smaller w values, the training process can be significantly
shortened due to less computation required in back-propagating
gradient deviations in Adam optimizer [47]. However, the less
computationally expensive training also leads to inferior detec-
tion accuracies regardless of Δ. This is because reducing the
feature history window size undermines the completeness of
power system dynamics in the time domain, which is a critical
factor of the proposed mechanism. On the other hand, while the
attack detection accuracy for w = 7 is similar to that of w = 5,
the drastically increased training time renders w = 7 less effi-
cient. However, when the sampling interval increases, the more
information brought by w = 7 can contribute to detection accu-
racy improvements and, is therefore, more preferred.

Comparing the performance with different Δ values, we can
observe that the proposed mechanism can develop more accu-
rate detection results with a higher system variable sampling
frequency. The reason for this result is that the system vari-
ables sampled at a higher frequency can better represent the
system dynamics, which is especially strong in transient and
dynamic operations due to the inertia and momentum in the
whole system. However, this correlation decays with time due
to the mechanical momentum. Therefore, shorter time intervals
show stronger correlation than longer ones, and the sampled
system states at low rates are merely quasi-steady-state approx-
imations of the grid. As previously analyzed, successful detec-
tion of FDIA of the proposed mechanism largely depends on the
characteristics of system dynamics. Hence, it performs better in
power systems with high sampling frequencies. Despite this, the
proposed mechanism can still provide less than 10% false posi-
tive/negative detection with Δ = 500 ms, which is still helpful in
identifying FDIAs. Note that with the gradual and steady adop-
tion of PMUs into conventional power grid monitoring systems,
it can be expected that system measurements will be provided at
a much higher frequency. The proposed mechanism can provide
outstanding FDIA detection performance in these systems.
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TABLE IV
SENSITIVITY TEST RESULTS OF Δ AND w ON IEEE 118-BUS SYSTEM

V. CONCLUSION

In this paper, we propose a new FDIA detection mechanism
for ac state estimation. While much research has been conducted
for attacks and detections in dc state estimation, little work has
focused on the ac counterpart, which is widely adopted by power
utilities. As FDIAs can construct compromised system states
satisfying Kirchhoff’s circuit laws, conventional residual-based
methods have difficulties detecting such attacks. However, cur-
rent FDIA methods focus on constructing attack vectors satisfy-
ing the spatial dependencies of system variables. The temporal
dependency of consecutive system states is commonly ignored,
which can actually provide more information for system oper-
ators to detect FDIAs. The proposed FDIA detector can learn
from the system state dynamics in both the space and time do-
mains. Utilizing the extracted time-series features, the detector
is capable of distinguishing FDIAs from normal power system
operating condition changes. In the proposed mechanism, we
employ DWT to efficiently reveal the spatial data characteris-
tics. Then, the temporal correlations are captured by a DNN,
which then develops the FDIA detection result.

To assess the performance of our FDIA detection mecha-
nism, we carry out a series of comprehensive simulations on
IEEE 118-bus and 300-bus power systems. In both the systems,
the proposed detector can achieve outstanding attack detection
performance. In addition, our work can outperform the existing
FDIA detectors with notable accuracy improvements. Further-
more, we conduct a parameter sensitivity test on two control
parameters. The results reveal a tradeoff between the training
time and detection accuracy, and suggest an appropriate set of
these parameters for implementation.

Future research of this paper can be divided into two parts. On
the one hand, the false positive and negative rates of the proposed
mechanism may be reduced by improving the structure of DNN
and incorporating more advanced DNN techniques. On the other
hand, how to apply the proposed mechanism in detecting a wider
range of cyber-security attacks is worth investigating.
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